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Sažetak  
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EKG karakteristike koje su nakon toga korišćene za treniranje neuralne mreže u svrhu 
automatske detekcije i predikcije pojave epileptičkih napada. 

Razvoj AMI potvrđen je pojavom ST elevacije i karakterističnim histološkim nalazom 
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1.1 Epilepsy 

Pathophysiological, epidemiological and diagnostic aspects of epilepsy 

Epilepsy has, since ancient times been known as an extremely debilitating but often 
misunderstood neurological disorder. The total prevalence of epilepsy, according to modern 
research is around 1% which along with its debilitating and unpredictable nature makes it one 
of the diseases with the greatest morbidity burden. [Rao VR et al., 2015].   

Paroxysmal occurrence of seizures caused by intermittent hypersynchronous neuronal 
activity, classically within the cortex of the brain, is regarded as the defining characteristic of 
epilepsy. Extent, as well as cortical region localization of hypersynchronous neuronal activity 
provides criteria for classification as well as pathophysiological explanation for seizure clinical 
manifestation.  

If hypersynchronous neuronal activity is localized to a single cortical region, such as the 
temporal lobes, the clinical manifestation will be as partial seizures (i.e. temporal lobe 
epilepsy). If hypersynchronous activity engulfs the entire cortex, the resulting seizure will have 
of grand-mal tonic-clonic type (GTSC) characteristics [Moshé SL et al., 2014]. The cornerstone 
of epilepsy pathophysiology, is neuronal hyperexcitability with impaired functional 
connectivity in the cortex and/or deep gray matter structures. The seizures have a 
characteristic bioelectrical signature detected as interictal epileptiform discharges (IEDs) and 
recorded using surface and/or deep electroencephalography (EEG) signal registering. 
Numerous different epileptic EEG signal isoforms are described in the literature, including 
sharp waves, sharp, transient spikes; polyspikes or spike-wave complexes [Werhahn KJ et al., 
2015].  

The gold standard in diagnosis of epilepsy is defined as a characteristic spike wave 
pattern EEG signal recorded during a seizure, assessed by an experienced 
neurologist/neurophysiologist in coordination with the clinical symptoms [Nashef L et al., 
2009]. As it is commonly the case with gold standards, this technique has its drawbacks. Firstly, 
there is the issue of -significant inter observer variability when it comes to EEG signal analysis 
and interpretation weather subjective (due to individual observer characteristics) or objective 
(since background noise, muscle and electrocardiography (ECG) artifacts can mimic the pattern 
characteristic for epileptic activity). Secondly, the classical technique of EEG recording and 
analysis oftentimes includes the necessity for multiple day video-EEG monitoring in order to 
document the seizure, which is neither convenient nor cost effective [Tzallas AT et al., 2012].  

Furthermore, problems in epilepsy treatment become acutely evident if we take into 
account its stochastic, i.e. paroxysmal, unpredictable nature. Due to the paroxysmal nature of 
epilepsy, antiepileptic drug therapy, the cornerstone of epilepsy treatment, is necessarily 
chronic in nature. On the other hand, the possibility of predicting seizure onset and 
consequently acting with medications in the hours or minutes before the seizure, is rightfully 
considered the holy grail of treatment research [Netoff T et al., 2009].  

Thus, contemporary epileptology is faced with a difficult task of integrating seizure 
diagnosis, prediction, prevention and treatment in order to avoid life threatening outcomes 
caused by an unpredictable and paroxysmal disease. In this task, a multidisciplinary approach 
and automation are two paths that afford great promise. 
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Experimental models of epilepsy 

Understanding the complex mechanisms of epileptogenesis that underlie seizure 
generation cannot be achieved exclusively through human studies. The stochastic nature of 
epilepsy and ethical constraints that are imposed on human studies make necessary the use of 
appropriate animal models [Stanojlović O et al., 2004]. Ideally, the goal of these models is to 
replicate the natural history of symptomatic focal as well as generalized epilepsy as close as 
possible. This pursuit involves replication of an initial epileptogenic insult, followed by an 
apparent latent period and subsequently a period of spontaneous chronic seizures 
[Kandratavicius L et al., 2014].  

There have been multiple experimental animal models developed for contemporary 
epilepsy research. They are categorized by the timing of associated symptoms in to models of 
chronic epilepsy and models of acute seizures and by method of induction in to chemo 
convulsant, electrically or sound and traumatic brain injury induced models [Lévesque, M et al., 
2016]. There are also models created for more specialized uses such as genetic models useful 
in examining absence seizures, models of status epilepticus as well as seizures and in the 
immature brain [Lothman EW et al., 1993].  

The first created and still most commonly used animal epilepsy models are the 
chemoconvulsant models. One of the first chemoconvulsant substances used to model epilepsy 
in rodents was Kainic acid [Sharma AK et al., 2007]. Kainic acid is an L-glutamate analog with 
forceful depolarization effects. When kainic acid is systemically administrated it leads to 
neuronal toxicity and seizures, especially targeting the hippocampus [Nadler JV et al., 1978]. 
After the kainic acid model success many other chemoconvulsant models were developed. 
Pilocarpine is an antagonist of muscarinic acetylcholine receptors. Systemic administration of 
pilocarpine causes hypersynchronized activity of neurons in the limbic system [Furtado MA et 
al., 2002; Turski WA et al., 1983]. There are multiple other compounds widely used in acute 
seizure models. They include strychnine, pentylenetetrazol (PTZ), tetanus toxin, and others. 
The key distinction between chronic vs acute seizure models is that latter are useful for 
studying seizure activity and antiepileptic drug effects but do not necessarily result in chronic 
epilepsy [Barkmeier DT et al., 2003].  

Another compound used to model seizures is lindane, an organochloride pesticide. 
Lindane provokes neuronal hyperexcitability and consequently convulsions in most part by 
inhibiting gamma-aminobutyric acid A (GABAA) receptors. It is postulated that lindane 
interacts with the picrotoxin site within the GABAA receptor chloride channel which suppresses 
chloride influx (Sunol et al., 1998; Anand et al., 1998). When administered intraperitoneally, 
lindane evokes grand mal seizures in a dose-dependent manner. There are numerous studies 
that describe the characteristics of lindane induced seizures and the model is well established 
within the literature [Vucevic D et al., 2008; Hrncic D et al., 2011].     
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1.2 Acute myocardial infarction 
 

Patophysiological, epidemiological and diagnostic aspects of myocardial infarction 
 
 Acute chest pain is one of the most common complaints in emergency departments. US 
statistics estimate this burden accounts for an estimated five million visits.  The highest 
morbidity and mortality of acute chest pain etiologies belongs to myocardial infarction (MI). 
Over 800,000 people yearly experience an acute MI (AMI), and mortality rates are estimated to 
be at around 27%. It is relevant to point out that most of the mortality is accounted for by deaths 
before hospital arrival due to arrhythmic events [Boateng S et al., 2013.] Although these 
statistics appear dismal, they are in fact the result of multiple decades worth of improvement 
in mortality.  

 Since 1970s significant strides have been achieved in reducing MI deaths due to 
advances in diagnosis and management. During this time, the clinical definition of MI was 
changed multiple times in keeping with an increase in precision of diagnostic tests and 
development of more efficient clinical protocols. The current, fourth universal definition of MI 
consists of two main propositions. To arrive at a diagnosis there must firstly be a change (rise 
or fall) in the blood level of specific cardiac markers indicative of muscle damage (troponin I or 
T) with at least one value above the 99th percentile of the upper reference limit [Chapman AR 
et al., 2017]. Secondly this must be correlated with clinical parameters indicative of AMI. These 
clinical parameters include angina and angina equivalents, electrocardiographic evidence such 
as ST segment changes or new left bundle branch block or development of pathological Q waves 
and echocardiographic evidence such as new wall motion abnormalities or a combination of 
these [Thygesen K et al., 2018]. On the other hand, the pathophysiological definition of MI 
remains largely unchanged. The simplest and most encompassing definition of MI is as 
myocardial cell death caused by prolonged ischemia [Saleh M et al., 2018].  

 The classification of MI has also changed significantly over the past decades. From the 
division to transmural MI versus non-transmural MI through Q wave and non-Q wave to the 
contemporary ST elevation and non-ST elevation MI.  Transmural MI is defined as myocardial 
necrosis caused by an ischemic event affecting the entire thickness of the myocardial muscle. 
The ischemic event is most commonly caused by complete occlusion of a major coronary artery 
by a blood clot (thrombus) creating a decrease or completely cutting of blood supply to the full 
thickness of the heart muscle. Non-transmural MI is defined as ischemic myocardial injury that 
does not affect the full thickness of the heart muscle, commonly not involving the epicardium. 
Both Q wave and non-Q wave MI are confirmed by histopathological findings of ischemic injury. 
The findings consist of necrotic myocardium (pyknotic nuclei, hyper-eosinophilia and 
inflammatory cell infiltration) and a penumbra area of inflammation [Michaud K et al., 2020]. 
The change of classification to Q wave and non-Q wave MI instead of transmural and non-
transmural did not hold up to scrutiny and has been since abandoned [Gorlin R et al., 1986]. As 
opposed to the previous classification reflecting pathoanatomic changes (transmural/non-
transmural MI) and chronic ECG changes (Q wave/non-Q wave MI) the modern classification 
relies on acute ECG changes reflecting the need for fast therapeutic decisions reflecting the 
primary PCI era [Zimetbaum PJ et al., 2003].  

 Although morbidity and mortality of MI has been successfully lowered by advances in 
treatment and management, MI still presents a large burden to patients and health systems 
worldwide. It has been shown that environmental and genetic risk factors have a significant 
modifying effect on the clinical course of MI. Furthermore, psychosocial stressors have been 
related to higher risk of heart diseases such as acute myocardial infarction (AMI) in large case 
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control studies [Rosengren A et al., 2004]. The connection between mood disorders, primarily 
depression with AMI has also been well documented [Pozuelo L et al., 2009; Frasure-Smith N 
et al., 2010; Pratt LA et al., 1996] and even cognitive decline can be attributed to cardiovascular 
events since it is significantly faster in elderly patients with heart failure while EEG studies have 
shown changes similar to those in Alzheimer’s disease [van der Wall EE et al., 2011]. 

 

Experimental models of myocardial infarction 
 

 As is the case in epilepsy and other human diseases, animal models of myocardial 
infarction have an indispensable role in exploring new avenues of MI prevention, diagnosis, and 
therapy [Goldman S et al., 1995]. Animal models are unavoidable in the preclinical phase of 
drug development as no other type of study can provide such depth and breadth to 
understanding disease pathophysiology and complement or amend existing approaches to 
diagnosis and treatment of disease [Zaragoza C et al., 2011]. Although most laboratory animals 
used in research have physiology similar to that of a human and thus an intense translational 
capability from “bench to bed”, due to its convenience and standardization, the most commonly 
used model for acute MI is the rodent model. For more than a century, the rat has been the 
animal model of choice for most experimental MI research with the mouse coming in as close 
second, although this trend has recently begun to reverse [Aitman TJ et al., 2008].  

 The most commonly used rat model of MI is the surgical ligation model. This is a highly 
invasive model that requires total anesthesia, ideally with the use of a respirator. After a 
sternotomy and pericardiectomy to liberate the heart, the anterior descending coronary artery 
is isolated and ligated which produces ischemia in its myocardial vascular bed. The high cost 
and need for specific instruments, such as a respirator, have restricted the use of this model to 
highly specialized laboratories while improper use or suboptimal placement of the respirator 
along with prolonged opening of the chest greatly contribute to complications including the 
death of the animal [Zhang R et al., 2004].  

 Isoproterenol (ISO) or isoprenaline induced acute MI model is a reliable and highly 
developed non-surgical animal model in rats [Kannan MM et al., 2013; Brooks WW et al., 2009]. 
The pathophysiological mechanisms of ISO induced MI are numerous and consist of increased 
and prolonged myocyte contraction stimulus coupled with auto oxidation of ISO into reactive 
oxygen species altering membrane permeability, and decreasing the endogenous antioxidant 
enzyme levels [Zaafan MA et al., 2013; Haleagrahara N et al., 2011]. Relative ischemia with 
resulting oxidative stress leading to intracellular calcium overload, metabolic changes and 
alteration in concentration of electrolytes are considered as plausible mechanism of ISO 
induced MI [Upaganlawar A et al., 2011].  

 ISO induced model of MI has several advantages over the coronary artery ligation model 
such as low mortality rate, non-surgical technique, thus no postsurgical infections as well as 
simplicity and cost-effectiveness. Furthermore, in our study it was essential to avoid all 
confounding factors inherent in major surgery such as anesthesia and trauma in order to get 
HRV and EEG signals representative of MI. Therefore, we used in our study ISO-induced MI as 
an experimental model of AMI.  
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1.3 The heart brain axis: a focal point of autonomic regulation 
 

 The heart brain axis is a term used to define the interrelations of higher brain centers as 
well as lower order centers with autonomic and intrinsic neural networks organizing heart 
function. The cardiac autonomic nervous system (CANS) is an important part of the heart brain 
axis and consists of neural networks at multiple functional levels [Fedele and Brand, 2020]. As 
is the case with autonomic regulation of other organs, autonomic heart regulation comprises of 
central nervous system and peripheral, ganglionic gray matter centers. This system enables the 
exertion of autonomic, sympathetic and parasympathetic nervous influences that are core to 
heart regulation [Levy and Schwartz, 1994; Shivkumar et al., 2016]. Due to its inherent 
complexity, the CANS is hierarchically organized and it can be subdivided into three levels (Fig 
1.1).  

 Level 1 refers to brainstem and spinal cord neurons that are controlled by higher CNS 
centers such as medial prefrontal cortex, insular cortex etc [Jaenig W, 2016]. Level 2 consists of 
intrathoracic extracardiac ganglia and level 3 is located in the epicardium proper, forming the 
intrinsic cardiac nervous system (ICNS). The ICNS is located in the epicardial layer and is 
comprised of cardiac ganglia [Paintal, 1963; Schwartz et al., 1973]. ICNS, which is also referred 
to as as the “little brain” of the heart [Armour JA 2008] processes afferent information and 
provides efferent input to the myocardium. The ICNS is also under constant tonic modulation 
of higher order CANS centers (in level 1 and 2). Besides its role as the “final common pathway” 
for the CANS its role is also in tightly modulating regional cardiac function, even when 
disconnected from the higher levels [Ardell JL et al., 2016].  

 Sympathetic and parasympathetic branches of the ANS are key regulatory pillars for the 
CANS. Both sympathetic and parasympathetic systems have the characteristic structure 
consisting of two neuron orders. The sympathetic branch has its first order neuron in the spinal 
cord (intermediolateral column), from where it projects to second order sympathetic neurons 
residing in intrathoracic ganglia (cervical and stellate ganglia) [Ardell JL et al., 2016]. A small 
number of first order sympathetic neurons also form synapses with sympathetic post-
ganglionic neurons in the ICNS [Ardell JL et al., 2016]. Parasympathetic first order neurons 
reside mainly in the nucleus ambiguous of the brainstem and project to neurons located in the 
ICNS ganglia [Armour JA, 2008].  

 The CANS operate by integrating various cardiothoracic reflexes. Reflex transduction 
can be initiated in local afferent neurons of thoracic and or cardiac ganglia as well as neurons 
in the dorsal root, spinal cord, and nodose ganglia. Even cortical centers can play a role in 
initiating reflex arcs [Ardell JL et al., 2016]. The main sensory modalities of afferent stimulus 
are mechanical (mechanosensory) and chemical (chemosensory) stimuli, with the majority of 
intrinsic cardiac afferent neurons being polymodal. [Armour JA et al., 2004]. 
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Fig. 1.1 Schematic illustration of CANS components and their functional connections  

Adapted from Fedele L and Brand T. (2020)  

 Although not considered part of the CANS in the narrow sense, several cortical regions 
play a key regulatory role in the system. The insular cortex (IC) [Verberne AJ et al., 1998; 
Tokgozoglu SL et al., 1999; Oppenheimer SM et al., 1990] and the medial prefronal cortex (PFC) 
[Cerqueira JJ et al., 2008; Tavares RF et al., 2009; Hilz MJ et al., 2006] are seen as the most 
prominent. Insular cortex has one of the simplest neural structures of all cortical centers 
pointing to an older origin and more archaic roles such as limbic and autonomic regulation. The 
mPFCs role in CANS regulation is more surprising. The traditional role of medial PFC is 
primarily in higher brain functions: decision making, executive control, social interaction etc. 
However, its effects on heart regulation have recently become more recognized [Resstel LBM 
et al., 2006].    

 As a whole, the CANS plays a fundamental role in modulating heart wall 
contractility/relaxation dynamic, heart impulse conduction speed, heart rate, and even 
myocyte cohesion. Therefore. an intact and harmonious functioning of the CANS at all levels of 
integration is key for both the electrophysiology and hemodynamic regulation of the heart 
[Zipes DP et al., 2018].  
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1.4 Neurophysiological basis of ECG and EEG 
 

Cardiac conduction system and origin of ECG 
 
  The cardiac conduction system is key in initiation and coordination of cardiac 
electrophysiology. It is composed of the sinoatrial (SA) node, internodal pathways, the 
atrioventricular (AV) node and the His–Purkinje system [Zipes DP et al., 2018; Bennet DH et al., 
2013]. The SA node is the primary pacemaker of the conduction system. It resides in the inflow 
tract of the right atrium, from where it initiates the cardiac action potential. After being 
generated in the SA node, the electrical impulse travels to the AV node through the internodal 
pathways. Under physiological conditions, the only direction for impulse conduction is from the 
atria to the ventricles via the AV node-His bundle pathway. The AV node's role is in slowing 
conduction of the action potential from the atria to the ventricles by approximately 0.13 s 
creating time between atrial and ventricular contraction. The AV node can also take over the 
role of pacemaker in case of SA node failure. The His-Purkinje system begins in the AV node as 
a common bundle that after passing through the interventricular septum branches into the left 
and right hemi bundles. In the myocardium proper the hemi bundles further branch out to 
networks of Purkinje fibers. The low conduction velocity of the ventricular Purkinje system 
(approximately 0.06 to 0.1 s for full ventricular depolarization) allows for a coordinated action 
potential propagation and consequent ventricular contraction. [Huang CL et al., 2017; Pappano 
AJ et al., 2019]. 

 

Fig. 1.2 Schematic illustration of cardiac conduction system components and action 
potentials elicited at different levels of the system  

Adapted from https://www.textbookofcardiology.org/wiki/File:Conductionsystem.svg 
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 The cornerstone of the conduction system and cardiac physiology as a whole is the 
ventricular myocyte. The ventricular myocyte has a triple mandate. It can initiate action 
potentials, (most importantly in the SA and AV node), conduct action potentials (in the 
conduction His-Purkinje system) and finally provide cardiac contraction. In order to achieve 
the necessary goals, cardiomyocytes at various levels of organization are structurally and 
functionally specialized. There are two types of cardiac action potential [Pappano AJ et al., 
2019]. The action potential formed in the SA and AV nodes has a slow upstroke and is brief in 
length while the action potential formed in the myocardium proper and Purkinje fibers has a 
quick onset and longer duration with a pronounced plateau (also called plateau AP). The slow 
and short nature of SA and AV node AP serves to ensure pacemaker dominance, preserving 
optimal impulse propagation while the fast and long AP of the conduction system and 
ventricular myocardium is geared towards fast conduction and optimal ventricular contraction 
[Hall JE, 2020]. 

 The most important diagnostic tool for quick clinical assessment of cardiac conduction 
system function is the ECG. It was introduced as the string galvanometer in 1924. by Willem 
Einthoven and later evolved in to the 12-lead electrocardiogram [Einthoven W et al., 1902, 
Kligfield P, 2002]. The ECG is recorded using electrodes placed on the skin and an ECG recording 
is a time series of average myocyte electrical activity underneath an ECG electrode. It is 
important to understand that the ECG does not measure contraction of the cardiac muscle, 
rather it reflects changes in myocyte membrane ion channel activity giving rise to voltage 
changes. The membrane voltage changes can also be extrinsic, caused by the cardiac conduction 
system as well as intrinsic: caused by intracellular signaling stemming from myocyte 
biochemical and metabolic processes [Farraj AK et al., 2011].  

  The ECG consists of deflections (waves) and intervals. There are three distinct waves: 
the P wave, the QRS complex, and the T wave representing atrial depolarization, ventricular 
depolarization, and ventricular repolarization, respectively. There are also two intervals: the 
PR interval represents the time required for the impulse to travel from the SA node to the 
ventricles and the QT interval is representative of the time required for ventricular 
depolarization and repolarization. The ST segment is a specific structure with important 
diagnostic purposes. It spans from the end of the QRS complex to the beginning of the T wave 
and represents the period of the plateau phase in ventricular myocytes [Bennet DH, 2013; Hall 
JE, 2020].  Since the ECG reflects spatiotemporal alignment of extracellular voltage in the heart 
we are able to infer multiple variables of heart health and function from the ECG. Firstly, rhythm 
and conduction disturbances are based on changes in cardiac electrical properties. 
Furthermore, heart anatomical orientation can be assessed from analysis of the cardiac 
conduction vector. The presence of acute or chronic coronary insufficiency is reflected in the 
ECG and so is cardiac injury, alteration in electrolyte concentrations, nutritional deficiencies as 
well as effects of some drugs and diseases. [Tse G, 2016; Detweiler DK, 1997]. 
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Neuronal electrophysiology and origin of EEG 
 

 The human brain consists of more than 100 billion neurons, which are all part of an 
interconnected network. The varying roles neurons play within the nervous system dictate the 
difference in size and shape as well as position within the network. No matter the role, major 
components of a standard neuron are always the same: the dendrites receive information; the 
cell body (soma) integrates the information and tends to the metabolic needs of the cell and the 
axon conducts signals to other regions of the brain or periphery [London M et al., 2005; Li L et 
al., 2015]. Functionally, the structure of a neuron is represented by two domains. The first 
domain is the somatodendritic domain: soma, multiple dendrites and a short region of the 
proximal axonal segment (axon hillock). The second is the axonal domain: a long projection 
away from the axon hillock and toward the next neuron or a target tissue [Luo J et al., 2016; 
Kirkcaldie MT et al., 2016].  

 Neuronal structure dictates the information flow within the nervous system. 
Information flows from the somatodendritic domain, where synaptic input from neighboring 
or distant neurons is received and integrated to be subsequently transmitted to the axonal 
domain [Jones SL et al., 2016]. Neurons are locally organized into circuits, smaller networks, 
tasked with processing specific information. Neurons that carry information into the circuit are 
dubbed afferent neurons, whereas neurons signaling information away from the circuit are 
referred to as efferent neurons. Nerve cells that integrate the function of local network 
communication of a circuit are called interneurons. Processing circuits are combined to form 
systems that serve a broader function, such as association, memory, vision, etc. [Shipp S, 2007; 
Briggs F, 2010].  

 Communication between neurons is established through synapses. Synapses can 
connect at the cell body, dendrites or the axon. There are two fundamental types of synapses: 
electrical or chemical. Electrical synapses are mainly found in the heart and smooth muscle but 
there are also instances of electrical synapses in the CNS while chemical synapses dominate 
CNS and PNS circuits. Electrical synapses are continuous, i.e. there is a cytoplasmic continuity 
between the communicating neurons (also called gap junction). Chemical synapses, on the 
other hand, function via the excretion of chemical substances (neurotransmitters) from the 
presynaptic neuron in to the intercellular space. The vesicles containing a chemical 
neurotransmitter are activated through an electrical potential arriving at the axonal terminal 
and induced to release the neurotransmitter. The neurotransmitter spreads in the intercellular 
space (synaptic cleft) binding to the receptors at the postsynaptic membrane and initiating the 
opening (or closing) of ionic channels in which modifies the membrane potential [Roux Bet al 
2017]. Flow of electrical current across the cell membrane is accomplished by both cations 
(mainly Na+ and K+) and anions (Cl-) [Kandel ER et al., 2018; Holm TH et al., 2016].   

  The change of ionic conduction and thus neuronal membrane permeability modifies the 
probability of triggering an action potential in the postsynaptic cell. Because the initial, base 
state of the inner cell membrane is negatively charged the movement of cations initiates 
depolarization (reduction of intracellular negative charge leading to less negative membrane 
potential) and triggers AP. If the change in membrane polarization is in the positive direction- 
towards depolarization, the resulting potential is dubbed an excitatory postsynaptic potential 
(EPSP). On the other hand, if the resulting effect is hyperpolarization, the potential is called an 
inhibitory postsynaptic potential (IPSP). In other words, EPSPs elevate the membrane potential 
closer to threshold for action potential generation, while IPSPs lower the membrane potential 
further from the threshold potential. In chemical synapses, the main determinant of whether 
synaptic communication results in an EPSP or IPSP is the nature of neurotransmitter released 
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as well as the type of postsynaptic receptor present. In the cerebral cortex, the dominant 
neurotransmitter is glutamate the synthesis and signaling, of which constitutes 90% of 
neurotransmitter activity making it the principal excitatory neurotransmitter. The principal 
inhibitory neurotransmitter of the cortex is gamma amino butyric acid (GABA). [Holmes et al 
2007] 

  Neurons transmit signals by generating action potentials (AP). When enough EPSPs 
reach the neuronal soma to trigger depolarization action potentials are triggered. On the other 
hand IPSP return membrane polarization in to its negative, steady state slowing or ending AP 
[Lacroix JJ et al., 2013].   

  Electroencephalography (EEG) is a method of recording bioelectric activity of the brain 
using scalp or implanted electrodes [Olejniczak P, 2006]. Electrical activity of large neuronal 
networks is detected via extracellular recordings; in this case, called field potentials. The EEG 
recording is a result of field potentials generated by the spatial summation of dendritic 
postsynaptic potentials (EPSPs and IPSPs) while APs are not detected due to much lower 
impact on electrical field changes. It is a dynamic, temporal representation, as the potential 
difference is plotted as a function of time. The actual postsynaptic potentials detected are 
currents flowing in the cortical structures during synaptic activation of dendrites of a neuronal 
network. Although action potentials having individually larger electrical potential may appear 
to be the obvious source of electrical flows recorded, they only contribute minimally to the 
genesis of EEG graphoelements. [Henderson CJ et al., 1975].  

  EEG activity can be classified in to four distinct rhythms: Alpha (8-13 Hz) Beta (14-30 
Hz), Theta (4-7 Hz), and Delta (1-3 Hz). In general, the amplitude of EEG signal increases as the 
frequency decreases. Each of the four EEG frequencies is associated with a different level of 
arousal of the cerebral cortex. Alpha rhythm refers to the mature normal EEG frequency that 
falls in the alpha range of 8 to 13 cycles per second (Hz) and an amplitude of 15 to 45 microvolts 
[Niedermeyer E et al., 1997, Kozelka JW et al., 1990]. It dominates during relaxed wakefulness. 
It is enhanced by eye closure and physical relaxation or mental inactivity, and blocked by or 
attenuated by visual and mental effort. Beta rhythm is present in the awake mentally active 
state in adults and children. Its frequency ranges between 13-30 Hz is most prominent in the 
frontal cortex and is usually symmetric, having low amplitude (10-20 microvolts). Theta waves 
can be seen in the adult waking EEG and are symmetrically distributed. They predominance of 
theta frequency is considered normal for children as well as adolescents and they are also more 
prominently present during sleep [Nayak CS et al., 2020]. Delta waves, also often referred to as 
slow wave activity are most prominent during NREM sleep but they have also been correlated 
to cognitive and other integrative functions [Harmony T, 2013]. 
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1.5 Acquisition and advanced analysis of biological signals 
 

Significance of EEG in clinical practice and experimental research 
 

  Physiological brain function can be described as the end result of organized, continuous 
communication between neurons. The primary mode of intraneuronal communication is 
provided by synapses, junctions that convey signals from one neuron to another. Synaptic 
transmission is afforded by two structurally different arrangements: chemical or electrical 
synapses [Pereda AE 2014]. Capturing the electrical field oscillations produced during 
interneuronal communication is the goal of electrophysiology. In this way electrophysiology is 
one of the rare methods that can bring us closer to understanding processes that control overall 
body functions and behavior [Chorev E 2009]. Among multitude electrophysiological 
techniques, EEG is the one most commonly utilized in clinical practice.  

  In modern neurology, the EEG has become an essential test for clinical diagnosis and 
outcome prediction of various neurological conditions. At first used for confirming and 
classifying the diagnosis of epilepsy, it has gained importance in various other cases such as 
sleep disorders, encephalitis, Parkinson's and Alzheimer's disease, and even effects of 
pharmacological and toxicological agents [Freeborn DL 2015]. When it comes to scientific 
study, EEG is an essential tool used in various basic science and preclinical fields of study. The 
most common animal model, due to its low price and high availability combined with high 
capacity for generalization and advancement is the rodent model. Rodent models are now used 
as a proxy for many diseases associated with electroencephalographic changes and seizures 
such as epilepsy, stroke and traumatic brain injury [Leiser SC 2011; Yoo, Hyun-Joon et al., 
2021]. 

  The EEG is also important in analysis of physiological processes affected by different 
environmental and disease modifiers such as the sleep-wake cycle as well as dementia, autism, 
genetic syndromes associated with cognitive impairment etc. [Kent BA et al., 2018, 2021; 
Levenga J et al., 2018; Mouchati PR et al. 2019]. As opposed to human EEG recording which is 
largely noninvasive, EEG registration in rodents is an invasive procedure using highly precise 
surgical (stereotactic) methods to implant electrodes into brain areas of interest [Bertram EH 
et al., 1997]. The electrodes are then connected to an amplifier and computer system for 
recording, storing and further analysis by custom made or commercial software. The most 
common method of connecting electrodes to the amplifying/registering apparatus is via copper 
wires but we have recently seen a push towards wireless recording brought about by advances 
in miniaturization and the need for more stable signals with less motion artifact and related 
connection problems [Williams P et al., 2006]. Rodents being highly mobile animals, it is clear 
that motion artifacts are a significant challenge in EEG recording. This especially becomes 
significant for epilepsy research where the violent motion during generalized “grand mal” 
attacks can lead to complete loss of signal in less than air tight wired recordings [Medlej Y 
2019]. When recording is adequately done, we arrive at the arguably most significant hurdle: 
analysis and interpretation of the EEG signal. This has been the driving force behind a lot of 
modern research that in concert with a significant increase in computing power and availability 
brought about novel analysis methods. Today, both complex novel and traditional as well as 
linear and nonlinear methods present a cornerstone of research [Jansen BH 1996; 
Khodabakhshi MB et al., 2020; Ma Yan et al., 2018].  
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Significance of ECG in clinical practice and experimental research 
 

 The electrocardiogram (ECG) can be defined as a time series representing the sum of 
action potentials on the membranes of myocardial fibers during the cardiac cycle 
[Narayanaswamy S 2002]. From its humble beginnings in 1924 when Willem Einthoven 
introduced the string galvanometer [Einthoven W et al 1902, Kligfield P. 2002] and until 
modern times the 12-lead electrocardiogram (ECG) has reached the status of the most 
frequently performed cardiovascular test. Not only it is an essential diagnostic tool in clinical 
cardiology, it is also critical for evidence-based management of patients with differing 
cardiovascular conditions.  

 ECG is used in virtually every instance of cardiological pathology, from acute myocardial 
infarction, chronic cardiac ischemia and heart failure to cardiac arrhythmias and implantable 
cardiac devices. As opposed to most other modern medical diagnostic techniques the ECG has 
multiple obvious strengths. Namely, ECG is cheap, compact, simple, and above all and 
increasingly so: universally available and mobile [Reichlin, T et al 2016]. The progress in 
computer science in both hardware and software, driving biomedical computing and signal 
processing advances, open new options for ECG analysis, including improved filtering, 
morphology feature analysis and a multitude of HRV methods [Surawicz B et al., 1997; Sharir T 
et al., 2012; Lee WK et al., 2016].  

 Besides its obvious significance in clinical work, the ECG is also invaluable in 
experimental studies on animal models of cardiovascular and other relevant pathology [Kumar 
P et al 2017]. There are various techniques for ECG registering available in laboratory practice 
with similarities to EEG and other biosignal recording methods. Firstly, ECG registering 
requires the use of electrodes weather invasively implanted or noninvasively applied, similarly 
to EEG recording. Secondly, it also must rely on a certain conduit to deliver the registered signal 
from the electrode to an amplifier/recorder device, and finally be analyzed through the use of 
custom built or commercial software [McCauley MD et al., 2010].  

 Available methods of ECG recording in small animals have several limitations that 
influence their usefulness in laboratory practice. These limitations arise mostly from problems 
with tightness of electrode adhesion and signal quality. To achieve high signal quality, most 
classical methods require anesthesia and/or use surgical procedures, what is essentially 
invasive electrode implantation and ECG registration. Methods that do not lean into surgical 
electrode placement compensate for the weaker bond by incapacitation of the laboratory 
animal. Both the use of anesthesia and surgical procedures may affect various ECG parameters 
such as morphology, heart rate and rhythm. [Deutschman CS et al., 1994; Kato M et al., 1992; 
Latson TW et al., 1992] Additionally, ECG recording with use of anesthetics is lacking validity 
for HR variability analysis [Fateev MM et al., 2012; Castiglioni P 2013].  

 In effort to create a technique for registering a stable, high quality ECG signal with ought 
the use of anesthesia various authors have developed specially designed boxes, stages, and 
jackets fitted with electrodes. [Pereira-Junior PP et al 2010, Kumar P QT al 2007] Additionally, 
the ideal technique, especially when it comes to registration of nuanced parameters reflecting 
neurocardiac control such as HRV is one that does not hinder the movement of rats.   
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 When addressing the connection problem, it is clear that telemetry has many advantages 
over copper wire transmition and it is sometimes hailed as the gold standard for ECG recording 
in rats [Sgoifo A et al 1996], Besides being cost prohibitive, the most important downside to 
wireless connection when it comes to biosignal recording is in the lower sample rate which is 
especially important for HRV [Guild SJ et al., 2006]. For our study, it was important to use non-
invasive electrode implantation without the use of anesthesia with overall high sampling rate, 
i.e. wired ECG recording in freely moving rats.  

 

Advanced EEG signal analysis 
 

 Using complex algorithms and machine assisted analysis of the EEG signal in order to 
characterize and predict epileptic seizures has been theorized since 1970s, but the technology 
necessary for rigorous study of this possibility has only recently been developed [Viglione SS et 
al., 1975; Litt B et al., 2002]. Many EEG analysis methods rely on the fact that information 
processing in the brain is reflected in the EEG signal as a dynamic change of electrical activity 
in time, frequency, and space. Various linear and nonlinear methods have been used over time 
in an attempt further understanding of the mechanisms behind this information processing 
[Rosso OA et al., 2002; Osorio I et al., 2009]. The analysis of physiological signals and especially 
the EEG signal is challenging because of complexity inherent to the (neural) supstrate of the 
signal and biochemical processes involved in its generation [Acharya UR et al., 20012].  

 Techniques used in characterization and analysis of EEG can be divided into two 
categories: i) linear methods that are further subdivided in to a) time domain based, b) 
frequency domain based, c) time-frequency domain based, and ii) nonlinear methods.  

 Among the linear methods, the oldest and most commonly used method is Fourier 
transformation [Gotman J et al., 1997]. This frequency analysis method allows us to ascertain 
the frequency content of the EEG signal, and is also the basis for more advanced methods such 
as time-frequency analysis. Isolated, time or frequency domain based methods are good for 
whole signal analysis especially when it comes to stationary signals, (signals with little to no 
dynamic change in time). Since most biological signals including the EEG are non-stationary, 
there is necessarily a loss in information when standard frequency or time domain methods are 
used. In other words, the EEG signal analysis requires methods with both a temporal as well as 
frequency dimension. Examples that fulfill this requirement are time-frequency domain 
methods like the short time Fourier transform (STFT) and wavelet transform (WT) [Adeli H et 
al 2003; Khan  YU et al 2003].  

  Methods of nonlinear dynamics are another set of tools that are increasingly used in 
EEG processing. When used with EEG, these measures help understand EEG dynamics in a 
different way than it is possible using other, more traditional methods. These methods have 
been proving themselves on various battlegrounds of neuroscience: one of the first instances 
was in Babloyantz et al., where it was shown that certain non-linear methods can be used to 
study slow wave sleep [Babloyantz A et al., 1985]. Since then applications of nonlinear methods 
in EEG have significantly increased in diverse research areas with new possible clinical 
applications being studied, such as in the prediction of epileptic seizures [Lehnertz K et al., 
1988; Martinerie J et al., 1998], analysis of post anoxic encephalopathies [Stam CJ et al., 1999], 
characterization of sleep phenomena [Abou Jaoude M et al., 2020], and even surgical 
applications such as  monitoring the depth of anesthesia [Gu Y et al., 2019; Hashimoto DA et al., 
2020].  
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There are numerous nonlinear techniques each with a different take on EEG signal 
analysis. One frequently used approach is to quantify the degree of complexity in a time series 
using tools like fractal dimension (FD), correlation dimension, Hurst exponent, largest 
Lyapunov exponent, or entropy measures [Kannathal N et al., 2005]. Fractal dimension 
estimation is based on the concept of fractal geometry, that differs from Euclidian geometry in 
that the dimensions of fractal objects are non-integer forms. [Falconer KJ et al., 2003] As such 
they are not fully described by their topological dimension as two fractal objects of the identical 
topological dimension may “fill up” different amounts of space. This property is described by 
the fractal, non-integer, dimension that assumes the value between two adjacent topological 
dimensions. In essence, fractal objects have different characteristics based on the amount of 
space they fill, meaning two fractal objects of different densities have different fractal 
dimensions. FD represents a powerful method used in various neuroscientific studies [Smits 
FM et al., 2016; Gladun KV et al., 2020; Zappasodi F et al., 2014]. Also, the computational 
complexity of fractal dimension is comparatively lower when compared to other non-linear 
methods most of whom take up a lot of processing power. There are many algorithms used to 
determine the FD of a waveform, but two commonly used are the Higuchi method and the Katz 
method, since they produce accurate, consistent, and discriminating results for EEG analysis 
[Gladun KV et al., 2020; Anderson K et al., 2021].  

 Fractal dimension and other nonlinear parameters rely on the assumption that 
biological signals are nonlinear, and like other natural systems exhibit chaotic properties. 
Although this is basically true, it was shown that biological signals have mathematical 
characteristics which differentiate them from signals created by random processes (Brownian 
motion) as well as from those created by periodic and chaotic processes. These differences 
were characterized and subsequently collectively defined as Bios.  

 Bios is not exclusive to biological processes and can be found in recursive process 
equations that have bipolar feedback (mathematical bios) as well as temporal distribution of 
galaxies and economic fluctuations [Sabelli H at al., 2006; Kauffman L and Sabelli H 2003] 
Bipolar feedback being the cornerstone of regulation in biological organisms only further 
underlines the importance of Bios in characterization of biological signals. The defining 
characteristics of Biotic signals are: novelty, temporal (arrangement) complexity, 
diversification and isometry (especially low ratio of total vs consecutive isometry) as well as 
entropy [Sabelli H et al., 2005]. Biotic analysis of biological signals is a novel method that can 
open new possibilities for research and ultimately novel diagnostic and therapeutic 
approaches.  

 

Advanced ECG signal analysis 
 

 Heart rate variability analysis (HRV) is a method for ECG signal analysis that goes 
beyond the clinically significant visual morphologic analysis that is used daily in MI, arrhythmia 
and other heart disease diagnosis. HRV non-invasively assesses the cardiac autonomic nervous 
system (ANS) by measuring the R-R interval fluctuations in the temporal plane [Shaffer and 
Ginsberg 2017].  

 Essentially, HRV is a surrogate marker for the total dynamic influence of sympathetic 
and parasympathetic branches of the ANS on the intrinsic cardiac nervous system, i.e. the neuro 
- cardiac axis (Clifford et al., 2006]. Multiple models attempt to explain HRV, but what has been 
consistently shown, is that low values of HRV indices relate to cardiac events, such as MI and 
heart failure [Huikuri et al., 1999; Laborde et al., 2017]. Beyond correlation to heart disease, 
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HRV parameters have been found to correlate to numerous other pathophysiological states 
such as acute and chronic stress [Murray 2012; Castaldo et al., 2015], depression and bipolar 
disorders [Bassett, 2015; Koenig et al., 2016], metabolic syndrome [Stuckey et al., 2014] etc. 
Furthermore, HRV parameters are sensitive to physiologic changes and can be used to increase 
understanding of various processes such as sports training and performance (Dong JG 2016; 
Gavrilova EA 2016), nuances of social interaction (Shahrestani S et al., 2015) as well as changes 
in emotional states (Choi KH et al., 2017).  

 The most important HRV analysis methods are: i) time domain methods: deviation, 
difference and geometric based approaches; ii) frequency domain methods: absolute and 
relative power; iii) time-frequency domain and iv) nonlinear domain methods.  

 Time-domain measures and frequency domain measures have no temporal resolution, 
they reflect total HR variability of the signal and are not able to quantify respective 
contributions of different underlying regulatory mechanisms. Deviation based metrics are 
standard deviation of NN intervals (SDNN) and its derivatives, standard deviation of average 
NN (SDANN) and standard deviation of NN interval index (SDNNI). SDNN is the square root of 
the total R-R (N-N) variance given in milliseconds (ms) over the entire signal. It encompasses 
both the high frequency and low frequency component of the HR signals, where the high 
frequency correlates to parasympathetic while the low frequency component is correlated to 
the mix of parasympathetic and sympathetic inputs [Shaffer F et al., 2017]. SDANN and SDNNI 
both add a certain temporal resolution to the analysis, SDNNI more so than SDANN, but as 
derived measures they do not achieve independent significance [Force T 1996].  

 The difference-based approach is derived from the difference between successive NN 
intervals. These measures include (but are not limited to): root mean square of successive 
difference (RMSSD), standard deviation of the successive difference (SDSD), proportion of 
successive NN intervals larger than a given threshold (for example 20 ms or 50 ms—pNN20 
and pNN50, respectively). Being derived from NN interval differences, these measures are 
primarily indicative of short-term variations in HR. Out of aforementioned indices that are 
highly intercorrelated, RMSSD stands out as generally preferred by researchers. This is 
generally due to better statistical properties [Ciccone AB et al., 2017]. As opposed to SDNN, 
RMSSD is more significantly influenced by parasympathetic activity.  Therefore. RMSSD is often 
used to estimate vagally mediated fluctuations in HRV [Ciccone AB et al., 2017].  

 Geometric (i.e., graphical) methods rely on histogram and scatterplot representations of 
NN. Of note is the HRV triangular index (HTI) and triangular interpolation of NN histogram 
(TTIN) as well as other geometrical representations of NN intervals on scatter plots (e.g., Lorenz 
plots). The advantage of geometric methods is lower sensitivity to measurement errors [Malik 
M et al., 1993]. On the other hand, the number of NN intervals required for a reliable assessment 
is significant and requires at least 20 minutes for accurate assessment. This exceeds the time 
window of 5 minutes that is generally accepted as the norm in HRV recording [Force T 1996].  

 Frequency-domain analysis methods are successfully used for assessment of ANS 
contributions to HRV regulation and heart regulation in general. These methods reflect the 
power distribution across varying frequency bands in the ECG signal. The HRV power spectrum 
is classically divided into four bands: ultra-low frequency band (ULF; ≤0.003 Hz), very low 
frequency band (VLF; 0.0033–0.04 Hz), low frequency band (LF; 0.04–0.15 Hz) and high 
frequency band (HF; 0.15–0.4 Hz).  The HF band is considered to be more under the influence 
of parasympathetic (vagal) modulation due to the higher dynamic of vagal as opposed to 
sympathetic signaling. Although this is still somewhat controversial, HF and LF are generally 
considered prominent reflections of parasympathetic and sympathetic activity and the ratio of 
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LF to HF power (LF/HF) is thus accepted as an index of sympathovagal balance [Acharya UR et 
al., 2006; Seyd PA et al., 2008].  

 Time-frequency analysis methods include, STFT, WT, and quadratic approaches such as 
the Wigner–Ville distribution (WVD). The advantages of time-frequency analysis methods are 
that they give us time resolution for spectral changes within the signal as opposed to isolated 
time, and frequency domain methods [Cohen L et al., 1989; Cohen L 1995].  

 Non-linear methods of HRV analysis have much the same strengths as in EEG analysis 
as well as much the same arguments for their use. HRV indices based on non-linear methods 
are necessary to adequately characterize the dynamical properties of ECG signal regulation that 
linear methods are unable to provide [Force T 1996]. The Poincare plot, is one of the most 
common nonlinear methods to asses HRV. Essentially, it represents a scatterplot of NN intervals 
plotted against the corresponding preceding interval, dispersed around the identity line and 
converging into an ellipsoid configuration [Brennan M et al., 2001]. Indices extracted from the 
Poincaré plot are SD1, reflecting short term variability (standard deviation of points 
perpendicular to the identity line), essentially equivalent to RMSSD [Ciccone AB et al., 2017] 
and SD2 reflecting long-term NN variability (standard deviation of points parallel to the line of 
identity) equivalent to SDNN, representing long-term NN variability. SD1 can be used as 
surrogate for high frequency vagal activity whereas SD2 is more in line with sympathetic 
modulation. Putting SD1 and SD2 in opposition creates the SD1/SD2 index, inverse to LF/HF 
ratio and describing sympathovagal balance through relating short to long-term variations in 
NN interval fluctuation. [Hsu CH et al., 2012]. Another nonlinear method is signal entropy. 
Entropy can be calculated by numerous algorithms most commonly used of which are 
approximate entropy (ApEn), sample entropy (SampEn), and multiscale entropy (MSE) [Pincus 
SM 1991; Richman JS & Moorman JR 2000; Costa M et al., 2002]. 

 Since HRV is also a result of underlying cellular electrical activity regulated through 
bipolar feedback as is the EEG it is logical to assume that it will exhibit biotic characteristics. 
Indeed, it was shown that HRV exhibits the defining characteristics of biotic signals and biotic 
signal analysis methods have also shown promise both in different physiological as well as 
pathological circumstances. [Sabelli H et al., 2010; Sabelli H et al., 2011] 

 

1.6 Artificial neural networks  
 

 Artificial neural networks (ANN) are a classification method that deserves special 
mention. ANN systems focus on building models of pathologic and normal signal characteristics 
that are then used to classify a signal based on the models. The neural networks are thus trained 
on the known data set using a gold standard method as reference. This process serves to build 
a model based on characteristics extracted from the known, training, data set. Signal 
characteristics – features used for the model are then selected so that they capture the 
differences between the pathologic and normal signal (for example the epileptic and normal 
EEG).  The training and model building process is a very important determinant of final 
classification performance when it comes to ANN models.  

 Neural network approaches have found many uses in EEG analysis in both physiologic 
and pathologic states. ANNs have successfully been used in automating determination of 
alertness level as well as discerning sleep stages [Kiymik MK et al., 2004; Schaltenbrand N et 
al., 2004]. More recently it has become possible to discern emotions using ANNs as well as 
determine cerebral workload [Siddiqui F et al., 2023; Phan TD et al., 2021]. When the role of 
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ANNs in pathologic EEG is concerned, advances have been made in recognizing the EEG 
signature of depression and bipolar disorder. [Akbari H et al., 2021; Gao Y et al.2020] 

 A very important field where advancements in using ANNs where made was in the 
classification and prediction of epileptic seizures [Yogarajan G et al., 2020]. The first paper to 
be published attempting to use ANNs in seizure detection on the EEG signal was published in 
1996 and a recent literature review conducted in the field limited to only recent studies (five 
years between 2017 and 2022) examined a total of 91 papers [Petrosian AA et al., 1996; Nafea 
& Ismail, 2022]. 

 ANN have shown promise in ECG signal analysis as well. One of the earliest uses of ANNs 
in ECG analysis was automation of ECG interpretation [Silipo & Marchesi 1998]. The 
possibilities of automatic ECG interpretation set to replace human visual pattern recognition 
have only improved over the years. Multiple algorithms for arrhythmias, AMI, and other 
pathognomonic ECG waveforms have been reported [Cho Y et al., 2020; Suzuki S et al., 2022; 
Ansari Y et al., 2023]. Besides the role in cardiologic morbidity ANN ECG interpretation 
especially in the field of HRV offers many possibilities. In physiological conditions ANN HRV 
algorithms have been used in detection of emotions, mental stress detection and even cognition 
[Castaldo R et al., 2019; Arakaki X et al., 2023; Chen YC et al., 2019].  

 When it comes to disease states, automatic detection and prediction of epileptic seizures 
based on HRV are also being extensively studied [Foo SY et al., 2002; Zambrana-Vinaroz D et 
al., 2022].  Both linear and nonlinear HRV features were used in a number of studies to varying 
effect [ Behbahani S 2018; Mason F et al.,2024]. Since no currently available model has, so far 
been able to solve the problem of reliable and accurate seizure prediction based on the EEG 
signal and HRV is somewhat easier and more comfortable to record than EEG, HRV prediction 
of seizures remains an exciting field for research. 

 

1.7 Biological signals as digital biomarkers 
 

 With the expansion of smartphone technologies, and more recently the wearable 
industry the signal registering and analysis technology has become much more mundane and 
accessible. [Kopetz H 2011: Montag & Diefenbach 2018] The technologies that have made this 
possible have also expanded the possible uses of signal analysis. Watches and rings that record 
pulse rates, oxygen saturation, galvanic skin response and increasingly advancing toward full-
fledged ECG monitoring are now increasingly becoming available to the public bringing 
electrophysiology out of the laboratory [ [Janković M et al., 2018; Ometov A et al., 2021].  

 This development has led to expansion in researching new, nontraditional, uses for the 
growing data stream of recorded signals as part of the “Big Data” revolution. The name that 
coined for physiological signals in this framework was digital biomarkers. There are multiple 
definitions of digital biomarkers. From very broad definitions such as that from Piau et al. that 
describe digital biomarkers as: “objective, quantifiable, physiological, and behavioral data that 
are collected and measured by means of digital devices, such as embedded environmental 
sensors, portables, wearables, implantables, or digestibles” [Piau A et al.,2019] to attempts at a 
more focused approach such as discussed in Montag, C et al. 2021.  

 Classical biological signals such as the EEG and ECG are at the forefront of research into 
digital biomarkers. Both EEG and ECG have their traditional roles in diagnosis and treatment of 
various disease states but we are now witnessing an expansion of their use into new venues. 
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The allure is especially in the possibility of continuous (especially ECG) registration and 
automatic signal analysis. The most extensive research in the field of automatic detection, for 
example, is being done on algorithms for automatic atrial fibrillation detection [Wesselius et al., 
2021]. The ECG has also been studied as a biomarker for chronological age.  It was found HRV 
has capabilities for independent prediction of all cause as well as cardiac mortality risk [Hirota 
N et al., 2021]. EEG, on the other side, is being investigated in early detection and classification 
of dementia [Al-Qazzaz et al., 2014] as well as Alzheimer’s disease and even mild cognitive 
impairment [Poil SS et al., 2013; Schumacher J et al., 2020].  

 In order to extract all the information, the digital biomarkers can provide, it is of utmost 
importance to study the utility as well as robustness of each signal analysis technique. Also, 
expanding knowledge in to the interrelation of physiological systems such as is facilitated by 
the heart brain axis is essential to using biological signals in clinical practice.  We believe our 
study addresses both problems and that it will serve to further advance the possibilities of EEG 
and/or ECG features as potential digital biomarkers.  
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2. STUDY GOALS 
 

 

 

 

 

 

 

 

 

 

 

 

 

20



 

The goals of this research were to:  

 

1. Determine the spectral, fractal and biotic characteristics of the medial PFC EEG signal 
as well as ECG signal characteristics in the period before and after Isoprenaline 
administration in the Isoprenaline induced AMI model in rats  

2. Determine the spectral, fractal and biotic characteristics of the preictal, ictal and 
postictal EEG and ECG signal in the rat model of Lindane induced seizures. 
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3. MATERIALS AND METHODS 
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3.1 Experimental animals  
 
 All experiments were performed on adult male Wistar albino rats (200-230 g body 
weight, 2 months old). Experimental animals were obtained from the breeding laboratory of 
Military Medical Academy, Belgrade, Serbia. They were housed in transparent plastic cages 
with ad labium access to food and water. Controlled ambient conditions were used in animal 
housing and experimental facilities (22-23oC, 50-60% relative humidity, 12/12 h light/dark 
cycle - light on at 8 a.m.). A sound-attenuated chamber was used and animals were habituated 
to handling. An acclimatization period of 7 days was used.  

All experimental procedures were fully in compliance with the European Council 
Directive (2010/63/EU) and were approved by the Ethical Committee for Animal Welfare of 
Belgrade University Faculty of Medicine. Experimental procedures were also approved by the 
national ethical body for animal welfare (Permissions No 4455/2 and No 323-07-
08097/1/2018-05).  
   
 

3.2 EEG and ECG registration set-up and analysis  
 

Electrode implantation  
 
 For EEG recordings, all animals were implanted with EEG registering electrode. Namely, 
a stereotaxic apparatus was used for electrode implantation with pentobarbital sodium (50 
mg/kg, i.p.) used as anesthetic. One gold-plated recording electrode was implanted over the 
frontal cortex (coordianates according to Paxinos and Watson atlas: AP 3.5–3.8 mm, ML 0.5 
mm, DV 3.5 mm). Dental acrylic cement was used to fix this system to the skull. Animals had a 
post implantation recovery period of one week prior to further experiments. A 24-h habituation 
to recording conditions was applied. 

Dorsal thoracic region of each animal was carefully shaved one day before ECG 
recording. We developed a custom-made elastic cotton jacket to fit the rat’s mean thoracic 
circumference. Using adhesive gel, the electrodes were attached on the skin of the rat for ECG 
recording, and each electrode was connected via cable to the acquisition system. The rat was 
then placed in the jacket fixing the electrodes in place. A 24-h habituation to recording 
conditions was also applied. 
 

Data acquisition  
 
 An EEG apparatus (RIZ, Zagreb, Croatia) was used for simultaneous EEG and ECG data 
acquisition. The analog filters were set to 0.3 Hz and 100 Hz cutoff frequencies for the high-pass 
and low-pass filters, respectively and a notch filter was used at 50 Hz, for removing the ambient 
noise. A 16-bit NI-SCB-68 (National Instruments, Austin, Texas, USA) data acquisition card was 
used for signal digitization. Sampling frequency was set to 512 Hz. NeuroSciLaBG, custom made 
application developed in NI LabVIEW software package (National Instruments, Austin, Texas, 
USA), was used for continuous data acquisition, storage on computer hard disk and further 
signal processing.  
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ECG and EEG signal analysis: general aspects  
 

 EEG and ECG signals recorded during experiments (AMI induction and epilepsy 
induction, described in details further on) were first visually inspected and then processed with 
advanced signal analysis software techniques to extract relevant features. 
  
Visual inspection comprised of: 
      1.  Visual detection of changes in the EEG signal during epileptic activity as well as 
 discerning the latency, amplitude, number and duration of seizure activity. Ictal period 
 was defined as follow: i) paroxysmal spiking activity; ii) duration of at least 1s, iii) 
 amplitude at least twice the background EEG activity 
      2.   Visual detection of ST depression/elevation in the ECG signal during experimentally 
 induced AMI.  

 
Techniques of automatic signal processing comprised of: 

1. Linear and nonlinear EEG/ECG signal analysis methods were used during both 
experiments to extract characteristic EEG and ECG features useful in differentiation and 
prediction. 

2. A neural network was created for automatic detection/prediction of epileptic seizures 
based on extracted features of EEG and/or ECG signals. 

 
EEG features extracted were: 

1. Median of total signal power and signal power in delta, theta, alpha and beta frequency 
bands for each of the EEG epochs. Fast Fourier transform was used for calculations. 
Median frequency corresponding to maximal spectral density of power in delta, theta, 
alpha and beta frequency bands in all ECG epochs. Welch method was used to asses for 
spectral density signal power. 

2. Fractal dimension (FD) 
3. Biotic parameters: 

a) Isometry as measured by the difference in area under the curve (AUC) between the 
graph of consecutive and shuffled signal segments.  
b) Consecutive isometry as measured by the difference in area under the curve (AUC) of 
consecutive isometry between the graph of consecutive and shuffled signal segments.  
c) Originality graph AUC measurement 
d) Arrangement graph AUC measurement  
e) Standard deviation graph AUC for consecutive and shuffled signal segments. 

 
HRV features were extracted from the ECG signal using Kubios HRV Standard 3.2.0 software 
(Kubios, Finland): 

1. General features: PNS index – parasympathetic activity compared to values during 
normal activity. SNS index – sympathetic activity compared to values during normal 
activity. Stress index – square root of Baevsky’s stress index that represents the 
geometric measure of heart rate variability reflecting cardiovascular stress. High values 
of stress index point to low HRV and high level of sympathetic activation. 

2. Time domain features: mean length of RR interval (MeanRR), coefficient of RR interval 
variation (CVRR=SDNN/MeanRR), median heart rate frequency (MeanHR), standard 
deviation of heart rate (STD HR), minimum (Min HR) and maximum (Max HR) heart rate, 
SDNN, RMSSD, NN20, pNN20, TINN. 
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3. Frequency domain features: VLF, LF and HF power, the LF/HF relation as well as peak 
VLF, LF and HF frequencies. FFT and autoregressive (AR) method was used for spectral 
power analysis 

4. Nonlinear parameters: SD1 and SD2 using Poincare-s method. SD2/SD1 relation, ApEn, 
SampEn as well as measures of signal regularity and complexity, detruded fluctuation 
analysis of short term (DFA α1) and long term fluctuations (DFA α2) 
 

3.3.  Experiment I: model of AMI 
 

AMI induction and experimental design  

 
 Isoprenaline - induced experimental model of AMI has been used in this study, executed 
according to [Gupta et al., 2013]. We randomly divided animals (n=12) into two equal groups: 
experimental and control group (n=6/per group). For AMI induction in the experimental group 
we used intraperitoneal administration of isoprenaline (isoproterenol hydrochloride, Sigma 
Aldrich, USA). The dose used was 150 mg/kg diluted (n=6).  The control group was injected 
with saline. 
 

EEG and ECG signals were registered during five hours on the first day (one hour before 
and four hours after AMI induction) and on the second day for one hour (24 hours after AMI 
induction). Further details explained later in Details on data processing and Fig. 3.3.1. 

 
Heart tissue sampling and histopathological evaluation  
 
 Twenty-four hours after isoprenaline/saline injection, rats were anesthetized using 
pentobarbital sodium (50 mg/kg, i.p.). An inverted T incision was used for accessing the thorax 
and the heart released by cutting the great vessels of the corona cordis. Hearts were 
subsequently removed from the rat body, fixed with 10% buffered formalin solution, 
dehydrated in ethanol, cleared by xylene, and embedded in paraffin. Routine staining with 
hematoxylin and eosin (HE) was used on the five µm thick sections which were then examined 
under the OlympusBX41 light microscope with an OlympusC5060A-ADU digital camera. 
 

Data recording and processing details  
 
 During the first day ECG and EEG were recorded during a five-hour recording session in 
freely moving rats (one hour before and four hours after infarction induction). In the second 
day ECG and ECG tracings were recorded for one hour (24h after isoprenaline administration) 
This is illustrated in Fig. 3.3.1 with denominated periods referred to in the rest of the thesis. 
Signal traces were visually inspected and analyzed during subsequent offline analysis. 
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Fig. 3.3.1 Data acquisition timeline in experiment related to AMI 

 
ECG electrodes montage and adaptation -E, baseline recordings - B, 1st h of data acquisition upon 
isoprenaline injection –H1, 2nd to 4th h of data acquisition upon isoprenaline injection –D1, 1h of 
data acquisition in the 2nd  day (i.e.24h upon isoprenaline administration) – D2. 
 
 Recorded EEG traces were fragmented into consecutive epochs of 60 s. These isolated 
epochs were screened automatically for noise contamination. Rejected from further analysis 
were all epoch with voltage above 500 µV. Additionally, in order to get as clear data as possible, 
additional visual inspection were applied to the epochs and manual exclusions were done.  
Transformation was used to generate power spectrograms for visual inspection. Following 
parameters were used to generate spectrogram: 2 s window duration, 0.5 s window overlap 
and Hann window function.  

We used these following definitions of four classically-reported EEG frequency bands: 
i) delta with range of 0.5 to 4 Hz, ii) theta with range of 4 to 7 Hz, iii) alpha with range of 7- 
13 Hz and iv) beta with range of 13 to 35 Hz. For each rat, band –power curves were computed.  
  EEG recordings were split for further analysis into four predefined time frames as 
follow: B, H1, D1, D2 (see Fig. 2.3.1.). For each rat, time frame and frequency band median value 
of band power were computed. 
 In addition, for each EEG frequency band (i.e. delta, theta, alfa, beta) peak frequency was 
determined. Peak frequency was determined as frequency value (Hz) that had maximum value 
of the Power spectral density estimated within the frequency band limits as defined previously.  
 
 We applied Welch algorithm on raw EEG epochs lasting 1 s to compute the power 
spectral density of the epoch. For each animal and time window (B, H1, D1 and D2) Median 
peak frequency was evaluated for each rat and time frame.   
 
 
3.4 Experiment II: model of epilepsy  
 
Epilepsy induction and registration  

 
Epilepsy induction was performed using intraperitoneal lindane administration (n=8, 

8mg/kg; Sigma Aldrich Co, SAD) (Vucević D et al 2008). The control group was injected with 
2ml/kg of isotonic saline (n=8). EEG and ECG tracings were obtained during a 30-minute long 
monitoring period upon the administration of lindane/saline. Details on EEG and ECG 
registration are given in section 2.2.  
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Analysis of spectral ictal EEG data  
 
 Epoch containing ictal activity were extracted from registered EEG traces. Ictal activity 
has been defined by applying the previously adopted and described criteria (i.e. amplitude at 
least double compared to background activity lasting for more than 1 s). Such epochs were 
further subjected to the FFT in order to compute total spectral power and relative spectral 
power in predefined frequency bands (delta, theta, alpha and beta). We recorded and analyzed 
also duration of each ictal period. Amplitude Histogram of EEG spikes was created by applying 
NeuroSciLaBG functions for classification based on amplitude beans. We defined 22 beans of 
50μV over the interval of -550 and +550 μV.  

  
HRV based seizure prediction using neural networks  
 
  During classification system creation, there often arise feature vectors with large 
dimensions. These vectors can often include correlated, or even repeated information. When 
this is the case, it is necessary to apply dimension reduction, i.e. reduce the number of features 
included in every class sample. The method often used for dimension reduction, and the one 
we used is PCA (Principal Component Analysis) method, also known as the Karhunen-Loeve (KL) 
expansion. 
 In this work, before the feature reduction and classification, 51 HRV features (described 
in section 3.2 were standardized in the interval [-1, 1] (the difference between feature value 
and mean value was divided by the standard deviation of the feature value). Feature reduction 
(from 51 to 20 features) was performed using the PCA to select 95% of the variance.  
 Based on HRV features extracted during one minute before seizure commencement and 
application of PCA dimension reduction we devised a two-category classification: First class 
(class 1) was the normal state, i.e. the period when there is no danger of seizure onset. Second 
class (class 2) was the preictal state, when there is a danger of seizure onset.  
 The classification was performed in the Python programming language using the sklearn 
library for the classificator implementation. The reduced feature data set was divided into 6 
folds, in the manner that each fold consists of only data from one rat (both healthy and 
epileptic). For the training and testing of the classificators, one-fold was used for testing and 
the rest for training. In order to balance the classes in the training set (originally healthy: 
epileptic ratio 1:2), each instance of the healthy class was repeated two times.  Logistic 
regression (LR) and back propagation neural network (NN) were used for the classification. 
 The classification metrics used were Accuracy, Precision, Sensitivity, Specificity, and F1 
score:  

  Accuracy=(TP+TN)/(TP+TN+FP+FN)                      (1) 
Precision = TP/TP+FP      (2) 
Sensitivity = TP / FN+TP      (3) 
Specificity = TN/FP+TN      (4) 

F1 score = 2 * (Precision * Sensitivity)/ (Precision + Sensitivity) (5) 
 
TP (true positive) represents the number of elements that were correctly classified as class 1, 
TN (true negative) represents the number of elements that were correctly classified as class 2, 
FP (false positive) represents the number of elements that were classified as class 2 and in fact 
belong in class 1, FN (false negative) represents the number of elements that were classified as 
class 1, in fact belong in class 2. 
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Biotic EEG based seizure detection using neural networks  
 
  Biotic parameters on EEG segments with a time window of 15 seconds and a moving 
frame of 5 seconds where extracted as neural network features. The following six biotic 
characteristics where used for each EEG signal segment: isometry, consecutive isometry, 
arrangement, originality and local diversification. The biotic characteristics where calculated 
using the Bios Analyser software [H. Sabelli et al 2005]. Previous research has shown that EEG 
signals indeed satisfy the criteria for biotic signals [M. Vorkapić et al 2017].  
 Isomety is a parameter that quantifies recurrent measurements of same length vectors. 
Vector length is calculated by determining the Euclidean norm (the square root of the sum of 
the squares of its terms). Two vectors are considered isometric if the absolute value of the 
difference in their Euclidian norms is lower than the border radius determined by the user [L. H. 
Kauffman et al 1999]. Fig 3.4.1 shows the isometry curve for an EEG segment with and without 
ictal activity.    

 
 
Fig. 3.4.1. Isometry ploted with radius (X axis) as percentage of time interval (Y axis) for ECOG 
signal with ictal activity (blue solid line) and without ictal activity (red dashed line)  
  
 Consecutive Isometry represents isometry for two consecutive vectors. Fig 3.4.2 shows 
the consecutive isometry curve for ictal and non ictal EEG segments. Biotic processes are 
characterized by consecutive isometry curves that have a swift initial upstroke followed by  a 
smaller increase thereafter, with the increase of time series embedding. In Fig 3.4.2 it can be 
appreciated that both ictal and non ictal EEG signal curves show the feature of causality with 
the curve having a slightly less significant upstroke in the non ictal segment. 
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Fig. 3.4.2. Consecutive isometry plotted with radius (X axis) as percentage of time interval (Y 
axis) for ECOG signal with ictal activity (blue solid line) and without ictal activity (red dashed 
line)  
 
  The Arrangement feature for the ictal and non ical segments of EEG signal for 100 
consecutive time series vectors is given in Fig 3.4.3. Arrangement in ictal vs non ictal EEG time 
series grows more significantly with increased embedding. 

 
 
Fig. 3.4.3. Arrangement graph plotted for ECOG signal with ictal activity (blue solid line) and 
withought ictal activity (red dashed line) 
 
 Originallity is represented by a relation of isometry and its “shuffled“ copy (dividing the 
signal in to smaller intervals, them shuffling them) in a signal segment. The graph in Fig. 3.4.4 
shows originality in ictal and non ictal EEG segments. The graph shows that originality for an 
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EEG segment grows further with increased embedding values for the ictal vs the non ictal 
segment.  

 
 
Fig. 3.4.4. Originality graph plotted for ECOG signal with ictal activity (blue solid line) and 
without ictal activity (red dashed line) 
 
 Local diversification (standard deviation of consecutive and “shuffled“ vectors for signal 
segment observed)  is given in Fig 3.4.5 The standard deviation has a much larger value in the 
ictal EEG for both consecutive and shuffled segments.  

 
Fig. 3.4.5. Local diversification plotted with radius (X axis) as a percentage of time interval (Y 
axis) for  consecutive ECOG signal segments with ictal activity (blue solid line) and without ictal 
activity (red dashed line) as well as shuffled ECOG signal segments segments with ictal activity 
(blue dotted line) and without ictal activity (black dash dotted line) 
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  Neural network output consists of two columns, representing ictal and non-ictal 
segments. The signal segment was initially classified visually. Creating, training and testing of 
the neural network was done using Neural Network Pattern Recognition Tool in Matlab 2016b 
(Mathworks, USA) software. The algorithm used to train the network is the scaled conjugate 
gradient backpropagation activated by calling Matlabs built in function trainscg. A dual layer 
neural network with six hidden layers was used. 
 

3.5 Statistical analysis  
 

 Normal distribution of data has been determined by Shapiro-Wilks test. The statistical 
significance of the difference in the registered, observed or calculated parameters with normal 
data distribution were evaluated by t test of one-way ANOVA with LSD post hoc test for 
independent samples. Kruskal-Wallis ANOVA and Mann-Whitney U were used for non-
parametric data comparisons. For determination of statistical significance of differences among 
measurements done in different time points, repeated – measures ANOVA with LSD post hoc 
test was used for multiple comparisons when data showed normal distribution and Friedman’s 
test with non-parametric data. Pairwise comparisons were done by Wilcoxon’s signed rank 
test. Data are expressed as mean ± standard deviation/standard error (SD/SE) or median as a 
non-parametric measure of central tendency with 25th and 75th percentiles as corresponding 
measures of variation. A criteria for statistical significance *p < 0.05 , **p < 0.01 and ***p < 0.001 
were applied. 
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4. RESULTS 
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4.1 Isoprenaline induced acute myocardial infarction model 
 

4.1.1 Isoprenaline - induced ECG and histological changes 
 

 No abnormalities in ECG wave morphology and dynamics were recorded in baseline 
measurements of the control, as well as in the experimental group. The same holds true for 
control group in all subsequent traces. However, as fast as upon 14 min upon isoprenaline 
administration, first ST elevation was recorded in the experimental group. ST elevation was 
present in ECG during all recordings done within the first day (Fig 4.1.1). ST elevation indicates 
development of AMI upon isoprenaline administration. 

 

 

Fig. 4.1.1 Representative ECG traces and histological verification of AMI  

(A) Baseline ECG trace, (B) ECG upon isoprenaline administration with present ST elevation, (C) 
Histological alterations found 24h upon isoprenaline administration in the myocardial wall. Arrow 
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indicates necrotic cells with hyper-eosinophilia, pyknotic nuclei, and inflammatory cell infiltration (H/E 
staining, 200x)   

 

 Histological analysis of myocardial wall was performed 24h upon isoprenaline/saline 
administration in experimental/control group of rats.  This evaluation showed presence of 
ischemic injury in the myocardial wall of rats from experimental group receiving isoprenaline. 
This ischemic injury was featured by presence of necrotic myocardium with an interface of 
inflammation and necrotic area were characterized additionally with hyper-eosinophilia, 
pyknotic nuclei, and inflammatory cells infiltration.  On the other hand, no histomorphological 
alterations were find in myocardial wall slices from the control rats receiving saline (Fig. 
4.1.1.C) 

 

4.1.2 Medial prefrontal cortex EEG signal characteristics during AMI 
 

EEG power spectrum analysis 
 

 The representative EEG strip as well as representative frequency bands after 
decomposition can be seen in Fig 4.1.2 and 4.1.3 consecutively. The results of median power 
distribution represented by 4 time-windows in the experimental group are presented by Fig 
4.1.4. Statistically significant differences (p<0.05) over all animals were found in median band-
power of alpha, beta and theta frequency bands. For the theta band power, the statistically 
significant difference was detected between baseline (B) and 1h (H1) upon isoprenaline 
injection (p<0.05, Fig. 4.1.4B). As for alpha band power, the significant difference was between 
B and measurement done 2-4h upon isoprenaline injection (D1) (p<0.05, Fig. 4.1.4C); and for 
beta band power it was between B and H1 as well as between B and D1 (p<0.05, Fig. 4.1.4D). 
There was no statistically significant difference between baseline and activity in D2 for any of 
the frequency bands, indicating that the differences detected in time-windows of day 1 were 
immediate effects associated with isoprenaline induced AMI.     

 Band peak-frequency analysis results for the 4 time-windows showed differences of 
theta band peak frequency that were statistically significant. The band peak-frequency analysis 
results for theta band are given in Fig. 4.1.4F where we can observe a significant increase of 
median theta peak frequency in the first hour after isoprenaline administration as compared to 
the baseline. This effect is not present during the rest of the day 1 and day 2 windows in which 
the theta peak frequency did not differ significantly from the baseline (p>0.05). No differences 
were found in peak frequency analysis in the remaining frequency bands. No differences in 
median band power were found in any of the observed time-windows in the control group Fig. 
4.1.5 (p>0.05). 
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Fig. 4.1.2 Representative EEG strip.  

 

 

 

Fig. 4.1.3 Representative EEG frequency bands and their respective frequences 
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Fig. 4.1.4 Median power changes per frequency band for the experimental group before 
and after isoprenaline administration   

Median power of delta (A), theta (B), alpha (C) and beta band (D) and total median power (E). Peak 
frequency for theta band (F). *p<0.05 B–baseline, H1 –1h, D1 –2-4h, D2 –24h upon isoprenaline injection.  
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Fig. 4.1.5 Median power changes per frequency band for the control group before and 
after saline administration. 

Median power of delta (A), theta (B), alpha (C) and beta band (D) and total median power (E). Peak 
frequency for theta band (F). *p<0.05 For details see caption to Figs 3.3.1 and 4.1.4  
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Correlation analysis of EEG frequency band relative power and ST elevation 
 

 We used the Pearson correlation coefficient in order to investigate the relationship 
between ST elevation amplitude and relative change of total and each EEG frequency band 
(delta, theta, alpha and beta) median power in time windows 1h (H1), 2-4h (D1) and 24h (D2) 
upon isoprenaline in relation to baseline (B). Fig 4.1.6 depicts scatterplots of statistically 
significant outcomes.  

 We detected a statistically significant strong positive correlation between ST elevation 
amplitude and relative change in power of the alpha band in D1 (r = 0.85, p<0.05, Fig 4.1.6A). 
There was also a significant relative change in power of the beta band in H1 (r = 0.86, p<0.05, 
Fig 4.1.6B) and D1 (r = 0.90, p<0.05, Fig 4.1.6C) that strongly correlated with ST elevation.  The 
relative change in power of other frequency bands as well as total power in relation to B were 
not statistically significantly correlated with ST elevation in any of the time windows (r in range 
from 0.31 to 0.62, p>0.05). 

 

 

 

Fig. 4.1.6. Correlation plots of ST elevation and relative EEG power.  

Pearson correlation demonstrates a strong positive relation between the degree of ST elevation and 
relative change in power of the alpha band in D1 (A); beta band power in H1 (B) and D1 (C) as opposed 
to B time window. For details see caption to Figs 3.3.1 and 4.1.4 
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4.1.3 ECG characteristics during AMI 
 

Time domain HRV features  
 

 Mean RR interval duration showed a significant decrease in 1h (p<0.001), 2h (p<0.001), 
3h (p<0.001) and 4h (p<0.001) compared to baseline values and compared to 24h upon 
isoprenaline administration (Fig 4.1.7 A). Standard deviation of RR interval graph showed no 
statistically significant change in any time point upon isoprenaline administration. Also, there 
were no significant differences in standard deviation of RR interval measured in baseline 
condition and 24h upon isoprenaline administration (Fig. 4.1.7 B). 

 Mean HR was significantly increased when measured in 1h (p<0.001), 2h (p<0.001), 3h 
(p<0.001) and 4h (p<0.001) upon isoprenalin administration compared to baseline values and 
compared to 24h upon isoprenaline administration (Fig 4.1.8 A). Standard deviation of HR 
showed no statistically significant change in any time point upon isoprenaline administration 
and there were no significant differences in Mean HR measured in baseline condition and 24h 
upon isoprenaline administration (Fig. 4.1.8 B). 

 Max HR was significantly increased when measured in 2h (p<0.01) and 3h (p<0.05) 
upon isoprenalin administration compared to baseline values and compared to 24h upon 
isoprenaline administration (Fig. 4.1.9 A). Min HR showed no statistically significant change in 
any time point upon isoprenaline administration and there were no significant differences in 
Min HR measured in baseline condition and 24h upon isoprenaline administration (Fig. 4.1.9 
B). 

 RMSSD, TRI RR index and TNN measurement showed no statistically significant change 
in any time point upon isoprenaline administration and there were no significant differences 
measured between baseline condition and 24h upon isoprenaline administration (Fig. 4.1.10 
A-C). 

 NN50 beats and pNN50 measurement showed no statistically significant change in any 
time point upon administration  and there were no significant differences measured between 
baseline condition and 24h upon isoprenaline administration (Fig. 4.1.11 A and B). 
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Fig. 4.1.7 Time course of changes in Mean RR interval (A) and STD of RR intervals (B).  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. Time intervals before (B) and after 
(1-24h) isoprenaline administration 
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Fig. 4.1.8 Time course of changes in Mean HR (A) and HR STD (B), measurement.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Fig. 4.1.9 Time course of changes in MAX HR (A) and MIN HR (B) measurement.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.3.1 
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Fig. 4.1.10 Time course of changes of RMSSD (A), RR tri-index (B) and TINN (C) 
measurement.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Fig. 4.1.11 Time course of changes of pNN50 (A) and pNN50 (B) measurement.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Frequency domain HRV features 
 

 The log graph of VLF shows a decrease in VLF power during 1-4h upon isoprenaline 
administration especially pronounced in the 4h of recording, but fails to reach statistical 
significance (Fig. 4.1.12 A). The log graphs of LF and HF distribution in the ECG have the same 
overall pattern but also show no statistically significant change in any time point upon 
isoprenaline administration (Fig. 4.1.12 B-C). There was no significant difference measured 
between baseline condition and 24h upon isoprenaline administration in any of the frequency 
domain log graphs (Fig. 4.1.12 A-C). 

 The percentage of VLF an LF power showed no statistically significant differences in any 
time point upon isoprenaline administration (Fig. 4.1.13-B). The HF power distribution 
percentage graph in the ECG showed a moderate increase in the 1h and 2h upon isoprenaline 
administration but also fails to reach statistical significance in any time point upon isoprenaline 
administration. (Fig. 4.1.13 C).  There was no significant difference measured between baseline 
condition and 24h upon isoprenaline administration in any of the frequency band percentage 
(Fig. 4.3.13 A-C). 

 Total spectral power of the ECG RR intervals showed no statistically significant change 
in any time point upon isoprenaline administration and there were no significant differences in 
this parameter measured between baseline condition and 24h upon isoprenaline 
administration (Fig. 4.1.14 A). The LF/HF ratio showed a slump in the 1h and 2h that failed to 
reach statistically significance. No statistically significant changes were seen between baseline 
condition and 24h upon isoprenaline administration as well (Fig. 4.1.14 B). 
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Fig. 4.1.12. Time course of changes in frequency distribution VLF (A), LF (B) and HF (C) 
on logarithmic scale (log).  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Fig. 4.1.12. Time course of changes in VLF (A), LF (B) and HF (C) on percentage scale (%).  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Fig. 4.1.14. Time course of changes in Total power (A) as well as LF/HF ratio 
measurement.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Nonlinear HRV features  
 

 Fractal dimension was significantly increased in 1h (p<0.05), 2h (p<0.01), 3h (p<0.01) 
and 4h (p<0.001) upon isoprenaline administration compared to baseline values. Fractal 
dimension values were significantly higher in 3h and 4h compared to 24h upon isoprenaline 
administration (p<0.05). On the other hand, there was no significant difference in fractal 
dimension measured in baseline condition and 24h upon isoprenaline administration 
(Fig. 4.1.15) 

 

 

 

Fig. 4.1.15. Time course of Fractal Dimension measurement.  
Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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 Entropy as measured by the algorithm used in BIOS analyzer was significantly decreased 
in 1h (p<0.001), 2h (p<0.001), 3h (p<0.001) and 4h (p<0.001) upon isoprenaline 
administration compared to baseline values. Entropy values were significantly lower in 1h 
(p<0.05), 2h (p<0.01), 3h (p<0.01) and 4h (p<0.01) compared to 24h upon isoprenaline 
administration (p<0.05). On the other hand, there was no significant difference in entropy 
measured in baseline condition and 24h upon isoprenaline administration (Fig. 4.1.16 A). The 
same time course was observed in entropy bins measurement (Fig 4.1.16 B) 

 

 

Fig. 4.1.16. Time course of changes in entropy measurement.  
Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7  

 

 

 

B 1h 2h 3h 4h 24h

Time Interval

0

50

100

150

200

250

300

350

400

450
En

tr
op

y

***

***

##
##

# ##

******

B 1h 2h 3h 4h 24h

Time intervals

0

50

100

150

200

250

300

350

400

450

500

550

En
tr

op
y 

bi
ns

**
*** ***

**

##
##

#

50



 The two entropy measures calculated by Kubios software are approximate entropy and 
sample entropy. Approximate entropy was decreased in 1-4h  upon isoprenaline 
administration compared to baseline values, but the differences failed to achieve statistical 
significance (Fig. 4.1.17 A). On the other hand, sample entropy values were significantly lower 
in 1h (p<0.05), 2h (p<0.001), 3h (p<0.001) and 4h (p<0.001) compared to baseline and there 
was no significant difference in entropy measured in baseline condition and 24h upon 
isoprenaline administration (Fig. 4.1.17 B) 

 

 

Fig. 4.1.17. Time course of changes in sample entropy (A), and approximate entropy (B) 
measurements.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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 Serial isometry was significantly increased in 2h (p<0.05), 3h (p<0.05) and even more 
signifcantly in the 4h (p<0.001 upon isoprenaline administration compared to baseline values 
and compared to 24h upon isoprenaline administration. On the other hand, there was no 
significant difference in isometry measured in baseline condition and 24h upon isoprenaline 
administration (Fig. 4.1.18 A). Shuffled consecutive isometry showed the opposite pattern 
being significantly decreased in 1h (p<0.01), 2h (p<0.001), 3h (p<0.01) and 4h (p<0.001) upon 
isoprenaline administration compared to baseline values and compared to 24h upon 
isoprenaline administration (Fig. 4.1.18 B). A similar pattern is present in shuffled isometry 
where there is statistically significant decrease only in 1h (p<0.05) and 2h (p<0.05) which 
disappears afterwards in the 3h and 4h as well 24 hours after isoprenaline administration (Fig. 
4.1.18 C).  

 Radial Isometry was significantly increased in 1h (p<0.05) and even more so in 2h 
(p<0.01), 3h (p<0.001) and 4h (p<0.001) upon isoprenaline administration compared to 
baseline values and compared to 24h upon isoprenaline administration. On the other hand, 
there was no significant difference in isometry measured in baseline condition and 24h upon 
isoprenaline administration (Fig 4.1.19 C). Radial consecutive isometry exibits the same 
pattern as Radial isometry but gains statistical significance only in the 3h (p<0.05) and 4h 
(p<0.01) hour upon isoprenaline administration with no significant decrease after 24h 
compared to baseline (Fig. 4.1.19 B).  Isometry radius shows an opposite pattern being 
significantly decreased in the 1h (p<0.001), 2h (p<0.001), 3h (p<0.001) and 4h (p<0.001) upon 
isoprenaline administration (Fig. 4.1.19 A).  

 Series Isometry was significantly increased in 3h (p<0.001) and 4h (p<0.01) upon 
isoprenaline administration compared to baseline values and compared to 24h upon 
isoprenaline administration (Fig. 4.1.20 A). Series consecutive isometry was also significantly 
increased only in the 3h (p<0.05) and 4h (p<0.05) (Fig. 4.1.20 B). In both cases there was no 
significant difference in series isometry measured in baseline condition and 24h upon 
isoprenaline administration (Fig. 4.1.20 A-B) 
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Fig. 4.1.18. Time course of changes in Serial Isometry (A), Consecutive Isometry (B) and 
Shuffled Isometry (C) measurements.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7  
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Fig. 4.1.19. Time course of changes in Isometry radius (A), Radial consecutive Isometry 
(B) and Radial isometry measurements  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Fig. 4.1.20 Time course of changes in Series Isometry (A), and Series consecutive 
isometry (B) measurements.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7  
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Series local diversification was significantly decreased in the 3h (p<0.05) and 4h 
(p<0.05) upon isoprenaline administration compared to baseline values and compared to 24h 
upon isoprenaline administration (Fig. 4.1.21 A). Shuffled local diversification was also 
significantly decreased in the 3h (p<0.01) and 4h (p<0.01) but also in the 2h (p<0.05) compared 
to baseline values and to 24h upon isoprenaline administration (Fig. 4.1.21 B) In both cases 
there was no significant difference measured in baseline condition and 24h upon isoprenaline 
administration (Fig. 4.1.21 A-B) 

              

Fig. 4.1.21 Time course of changes in Series local diversification (A), and Shuffled local 
diversification (B) measurements.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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 The novelty showed a significant decrease in 2h (p<0.05), 3h (p<0.01) and 4h (p<0.05) 
upon isoprenaline administration compared to baseline values and compared to 24h upon 
isoprenaline administration (Fig. 4.1.22 A). The Arrangement showed a highly significant 
decrease in all hours after isoprenaline administration: 1h (p<0.001), 2h(p<0.001), 3h 
(p<0.001) and 4h (p<0.001) (Fig. 4.1.22 B) In both cases, there was no significant difference 
measured in baseline condition and 24h upon isoprenaline administration (Fig. 4.1.22 A-B) 

 

           

Fig. 4.1.22. Time course of changes in Novelty (A) and Arrangement (B) measurements  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 

 

 

 

 

B 1h 2h 3h 4h 24h

Time Interval

0

50

100

150

200

250

300

350

400

450

500

550

N
ov

el
ty

**
*

#

#

#

*

B 1h 2h 3h 4h 24h

Time interval

-100

0

100

200

300

400

500

600

700

800

900

A
rr

an
ge

m
en

t

***

***
***

***

###
###

###

###

A

B

57



 Poincare plots (SD1 and SD2) measure of the ECG RR intervals showed no statistically 
significant change in any of the time points upon isoprenaline administration and there was no 
significant difference measured between baseline condition and 24h upon isoprenaline 
administration (Fig. 4.1.23 A and B). The SD2/SD1 ratio showed no statistically significant 
changes as well (4.1.23 C). 

 

 

Fig. 4.1.23 Time course of changes in Poincare plot parameters SD1 (A), SD2 (B) and 
SD2/SD1 measurements.  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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Alpha 1 measure of DFA was decreased in 1-4h upon isoprenaline administration 
compared to baseline values, but the difference failed to achieve statistical significance (Fig. 
4.1.24 A). On the other hand, alpha 2 values were significantly lower in 2h (p<0.001), 3h 
(p<0.001), and 4h (p<0.05) compared to baseline. (Fig. 4.1.24 B). There was no significant 
difference in alpha 1 or alpha 2 measured in baseline condition and 24h upon isoprenaline 
administration (Fig. 4.1.24 A and B). 

There were no statistically significant differences in time course of any of the examined 
linear and nonlinear ECG-derived HRV parameters in the control group upon saline 
administration.  

 

                  

Fig. 4.1.24 Time course of changes in Detrended fluctuation analysis (DFA) alpha 1 (A) 
and alpha 2 (B) measurements  

Values are means ± SE, *p<0.05, **p<0.01, ***p<0.001 vs B; #p<0.05 vs. 24h. For details see Fig. 4.1.7 
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4.2. Lindane induced epilepsy model 
 

 The control (saline administered) group exhibited no behavioral changes. In the 
experimental group, all rats developed grand mal tonic clonic seizures 30 minutes after 
Lindane administration with characteristic EEG spike wave complexes (as seen in Fig 4.2.1). 
Mean duration of an ictal period was 7.34 ± 1.56 s, while the peak frequency was 5.12 ± 0.18 Hz. 
Total density of spectral power in these epochs was 6042.41 + 674.42 μV2/Hz . 

 

 

Fig. 4.2.1 Representative ictal EEG 

 

4.2.1 Linear EEG signal characteristics during lindane induced epilepsy model 
 

 FFT analysis results show that, theta rhythm dominates during ictal EEG activity. 
Furthermore, statistical significance was obtained between each of the four standard frequency 
bands (delta, theta, alpha, beta), compared to all other rhythm pattern, reflecting the significant 
stratification of EEG activity during the ictal periods (see also statistical report matrix table to 
Figure 4.2.2).  

 Statistical significances of variation in PSD were determined by one-way ANOVA 
followed by Fischer’s LSD test and results are presented in statistical matrix table. An amplitude 
histogram (Figure 4.2.3) was used to represent analysis of the 50 μV-bean intervals between 
100 and 500 μV. We can perceive that most of the spikes were in lower amplitude ranges 
(especially 100-150 μV and 150-200 μV intervals), while 350-400 μV interval and above were 
infrequently observed. Comparison between individual intervals with statistical analyses is 
also shown in Table 4.2.1.  
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Fig. 4.2.2. Individual frequency band spectral power densities (relative, PSD, %) in ictal periods 
as a percent of total. (). 

 

 

Fig. 4.2.3. Number of spikes in lindane induced ictal periods represented as 50 µV-size 
amplitude bins. Spikes from the extracted EEG epochs were differentiated in 50 µV-bin 
intervals using NeuroSciLaBG program Amplitude Histogram Feature Function. Only spikes of 
voltage 100 µV and higher were analyzed. 
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Table 4.2.1 Statistical analysis and comparison of individual intervals illustrated in Fig 4.4.3.   

 

 

 

4.2.2 Seizure recognition using neural networks in lindane induced epilepsy model. 
 

 The results of the HRV based seizure prediction algorithm were expressed as NN and LR 
values of accuracy, precision, sensitivity and specificity. For LR, metrics were as follows: 
Accuracy was 86.81±8.87%; Precision was 96.3±8.28%, Sensitivity was 94.44± 12.42& and F1- 
score was 89.42±7.05%. The results of NN values were as follows: Accuracy was 66.3±22.97; 
Precision was 77.86±17.83; Sensitivity was 69.92±23.79; Specificity was 56.67±36.26; and F1-
score was 72.55±19.02. The comparison of HRV-based seizure prediction results using LR and 
NN are presented in Table 4.2.2 

Table 4.2.2. Classification results using NN and LR. 

Classifier Accuracy 
[%] 

Precision 
[%] 

Sensitivity 
[%] 

Specificity 
[%] 

F1-score [%] 

LR 86.81±8.87 96.3±8.28 83.95±8.69 94.44±12.42 89.42±7.05 
NN 66.3±22.97 77.86±17.83 69.92±23.79 56.67±36.26 72.55±19.02 

 

 The results of EEG biotic feature based seizure detection algorithm obtained after neural 
network training are as follows: during the training there was a total of 4.2% missclasiffied 
signal segments. For the training set data the eror was 5.2% while for the testing set the error 
was 5.6% and in the validation set it was 2.8 %. The Confusion matrix constructed is presented 
in Fig. 4.2.4.  The best performance was achieved in the epoch 21. The total performance of the 
neural network was 92.9%.  The neural network performance is represented by Fig 4.2.5. 
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Fig. 4.2.4 Confusion matrix constructed during neural network training 

 

Fig. 4.2.5. Neural network perfomance during training: blue line-training set, green line-
validation set, red line- testing set. Black circle represents the epoch with best detection 
probability. 
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5. DISCUSSION 
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 We used the Isoprenaline intraperitoneal injection to model myocardial infarction. The 
onset of myocardial infarction was confirmed by visual analysis of ECG (ST segment elevation).  
The method used to confirm necrosis of the heart muscle and development of infarction was 
histopathology with HE staining. The isoprenaline model of acute myocardial infarction is a 
robust and reproducible model that has excellent construct validity. [Filho L et al 2011]. 

  We recorded cortical EEG signals in the mPFC before and after isoprenaline 
administration and demonstrated following results: 1)  Spectral power in the beta band was 
significantly increased  during the first hour (H1) recording as well as in the second to fourth 
hours (D1);  2) Spectral power in the theta band was significantly increased during the first 
hour (H1); 3) Spectral power in the аlpha band was significantly increased between the second 
and fourth recording hours;  4) Spectral power changes in all bands reversed to baseline levels 
in the recording made after 24 hours.   

The medial PFC plays an important role among executive cortical areas in charge of 
regulating emotion, cognition and executive function [Miller EK, 2006; Miller EK et al 2001 
Kane MJ et al 2002; Etkin A et al 2011]. Indeed, studies in rodents have pointed to the medial 
PFC as a key region for regulation of the stress response as well as development of anxiety 
states [Padilla-Coreano N et al 2016].  

 Furthermore, the medial PFC lies at the crux of neural pathways involved in visceral 
function regulation and has even earned the moniker "visceral motor cortex" [Neafsey EJ, 
1990]. Detailed studies involving lesioning/stimulating of sub regions in the medial PFC have 
gone far in working out the finer points in autonomic regulation evoked from this region:  both 
cardiovascular (arterial pressure and heart rate) and metabolic rate as well as respiratory 
frequency (aka phrenic nerve discharge frequency) are areas significantly affected by medial 
PFC manipulation.  The aforementioned studies go far in positioning the medial PFC as an 
integrative “command” center connecting affective and emotional states with autonomic 
control and executive functions [Owens NC & Verberne AJ, 2001: Resstel LB & Correa FM, 2006: 
Hassan SF et al 2013]. 

 Epidemiological studies have further shown that even a mild decrease in cardiac output 
can lead to deterioration of executive functions and that atherosclerosis, atrial fibrillation and 
heart failure worsen the risk profile of patients for development of dementia [Ritz K et al, 2013: 
Jefferson AL et al, 2013]. 

 Given the tentative position of the medial PFC at the core of multiple physiological 
control systems presented in aforementioned studies we posit that the spectral power changes 
shown in our study might further elucidate the influence medial PFC function has at least when 
it comes to the heart-brain axis.  

 During states of arousal, higher frequency activity, such as beta frequency, dominates 
the EEG spectrum [Foster PS & Harrisson DW, 2001; Vazquez Marrufo M et al, 2002]. 
Furthermore, increases in beta power are also perceived in states of impaired emotional 
control and increased anxiety [Adhikari A et al 2017; Li H et al 2017]. It was shown that 
behavioral patterns akin to anxiety with a heightened stress response can be elicited in a model 
of AMI and that pathohistological studies show structural remodeling of neuronal networks in 
the medial PFC in a rodent model of induced stress [Banozic A et al, 2014]. When it comes to 
structural effects, histopathological studies of medial PFC have demonstrated remodeling of 
cortical networks affected by stress [Holmes A & Wellman CL, 2009].  
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 Our results show that there is an increase in beta band power during the first hour (H1) 
that extended during the entire four hours (D1) after isoprenaline administration. Taking into 
account the demonstrated correlations between behavioral changes (anxiety and stress 
response), AMI and structural changes in medial PFC innervation, we can hypothesize that the 
increase in beta frequency power detected in our study could be the signature of psychological 
and behavioral effects of necrosis/pain that occurs during AMI. 

 Several studies in rodents have focused on pain related EEG changes. For example, it 
was shown that acute neuropathic and inflammatory forms of pain have a significant effect on 
PFC EEG signal [LeBlanc BW et al, 2016]. In fact, an increase in EEG spectral power was noted 
over the PFC in all forms of pain studied [LeBlanc BW et al, 2014] while, acute somatosensory 
pain led to an increase in theta band EEG power. There is also a report of a significant increase 
in PFC theta band power on a rat model of chronic neuropathic pain where the rats were also 
exposed to anxiogenic stimuli [Sang K et al, 2018].  Importantly cardiac pain, such as occurs 
during AMI is a form of acute visceral pain known to produce high levels of anxiety.  

 While there is a significant number of studies implicating visceral pain in causing anxiety 
states [Finn DP, Leonard BE, 2015] The EEG signal changes caused by visceral pain remain 
underexplored. The increase of theta band power we recorded could thus be the 
electroencephalographic representation of pain perception and anxiety whose development 
has already been demonstrated in AMI. This explanation is further supported by the existence 
of heart afferents creating the structural connection to the PFC and providing the pathway to 
facilitate EEG changes in theta band power as well as other EEG power spectrum changes 
observed. Thus, our results may imply a connection between EEG spectral changes and the 
perception of visceral pain, and together with increased beta power, increased anxiety 
occurring during isoprenaline induced AMI.  

 Increases in cortical alpha power were correlated in previous studies with cognitive 
effort as well as mental states of focused internal attention [Benedek M et al, 2014]. Basic 
(attention, memory) as well as more complex cognitive functions (divergent and convergent 
and thinking) have been associated with heightened alpha activity [Klimesch W, 2012; Fink A, 
Benedek M, 2013; Benedek M et al, 2011].  The D1 period was marked by an increase of alpha 
band power that may represent cognitive activation and higher levels of focus. We can 
hypothesize that neural signaling from intrinsic myocardial afferents stimulated by necrosis 
during isoprenaline-induced AMI is leading to an increase in focused attention- an 
advantageous state for mounting a response to imminent danger. 

 The changes in power spectrum we observed also correlate with peak ST- segment 
elevation. Necrosis associated with AMI leads to loss of cell membrane function in the ischemic 
myocardium that creates a potential difference between the ischemic and non-ischemic 
myocardial segments. This process is represented by ST elevation in the ECG. [Etkin A et al, 
2011].  

 Because of its correlation to the degree of myocardial necrosis, magnitude of ST 
elevation is used as a marker for the extent of myocardial infarction [Kane MJ & Engle RW 
2002]. We posit that there are two main mechanisms that can possibly account for the 
correlation of ST segment elevation amplitude and spectral power changes we observed: neural 
and humoral mechanisms. Neural mechanisms are the favored mechanism due to the velocity 
of EEG power spectrum changes we observed following ischemia onset but humoral factors 
cannot be excluded.  

 An important consideration lies in the knowledge that afferent inputs from cardiac 
neural circuits have been known to modulate CNS functions even under physiologic conditions 
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[Armour JA; 2008]. When physiologic and especially pathologic stimuli arise in the myocardium 
weather in the form of hormonal or mechanical stimuli, the information is transformed into 
nerve impulses. This takes place within sensory neurons of the heart [McCraty R, 2011] 
Information is further transported to the mPFC via the vagus nerve and dorsal columns 
[Siddiqui MA et al, 2016].  

 Thus the correlation of ST elevation with EEG changes found in our study can be 
explained by the connection of myocardial infarction size with ST elevation magnitude as well 
as the number of myocardial sensory neurons involved in afferent signaling. The anatomical 
connections described constitute a possible direct heart-brain axis neural link potentially 
explaining the EEG changes we observed. 

 In our study we observed an increase in Mean HR after isoprenaline administration as 
compared to the baseline with a concomitant decrease in mean RR interval length (these 
parameters are inversely correlated). An increase in Max HR was also noted albeit not with the 
same robustness. The statistical time domain parameters: standard deviation of RR intervals, 
standard deviation of HR, root mean square of the successive difference in RR intervals, RR 
triangular index and NNx50and pNN50 showed no significant changes.  

 Therefore, our results demonstrate that Isoprenaline administration has significant 
effects on heart rate that begins immediately after administration, extends at least four hours 
after administration, and subsides in the measurement after 24 hours. The instantaneous effect 
we observed is in line with previous studies into isoprenaline effects on heart beta receptors 
[Overgaard & Dzavík 2008; Ali A et al., 2020]. On the other hand, as Isoprenaline metabolism is 
very fast, practically instantaneous, and the effects on heart rate we observed have extended 
through the fourth hour after isoprenaline administration we can conclude that the effects on 
heart rate increase we observed cannot be explained only by direct effects of Isoprenaline. The 
extended tachycardia is rather, more probably, explained by AMI development.  

 There was no significant change in distribution of VLFH, LFH or HF before and after 
isoprenaline administration. Additionally, total power and LF/HF ratio were also not 
significantly different before and after isoprenaline administration. Taking into account the 
high correlation between RMSSD, pNN50and HF changes it makes sense that statistical time 
domain and frequency domain parameters concomitantly demonstrate lack of significance in 
our study [Shaffer and Ginsberg 2017]. This finding is unusual in that Isoprenaline being a 
sympathomimetic and AMI being a state of increased sympathetic stimulation we would expect 
a lowering in HF and increase in LF/HF ratio as well as lowering of RMSSD. 

 Fractal dimension showed a robust statistically significant increase compared to 
baseline in all four hours after isoprenaline administration with a tendency of rising 
significance and level during hours 1-4 and reverting to baseline after 24 hours. Previously, 
studies have posited that fractal dimension may be positively correlated with parasympathetic 
activity, represented by correlation with the classic HRV parameters such as HF and RMSSD 
[Butler GC et al., 1994]. Newer studies have reported that patients with chronic heart failure 
have increased FD during the day as well as in nighttime [Beckers F et al., 2006]. 

 Entropy, on the other hand, has shown a decisive and statistically highly significant 
decrease after isoprenaline administration that also spans the entire four-hour interval and 
reverts to normal after 24h. Entropy is essentially a measure of irregularity within the signal, 
and our results would imply an increase in signal regularity post isoprenaline administration. 
When it comes to biological signal it has been postulated that increased regularity is a sign of 
pathology [Henriques T et al., 2020]. Indeed, it was shown that HRV entropy decreases in 
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various pathologic states such as chronic obstructive disease (COPD), sleep apnea, and 
coronary artery disease [Jin Y et al., 2017; Liang X et al., 2021; Acharya UR et al., 2018]. 

 Biotic parameters are designed to be analyzed in their totality in order to give precise 
insight in to the nature of a signal. Here, we will summarize our and offer our interpretation. 
Isometry parameters showed a statistically significant decrease in shuffled consecutive as well 
as shuffled isometry with an increase in series isometry.  Furthermore, isometry radius was 
increased while radial isometry and radial consecutive isometry were statistically significantly 
decreased. Diversification and shuffled diversification were both statistically significantly 
decreased as were novelty and arrangement, with arrangement exhibiting a higher level of 
significance. Bios was developed as a method of measuring and describing system complexity. 
The first signals that bios was developed and used on were ECG HRV time series [Sabelli & 
Lawandow 2010]. It was further shown that physiologic biological signals exhibit a high level 
of nonrandom complexity, diversification and autocorrelation as a result of bipolar feedback. 
Also, one of the hallmarks of pathological states is loss or suppression of these inherent 
biological signal characteristics [Sabelli H et al., 2011]. It has been shown that pathologic states 
such as psychosis and depression are marked by less diversification, less novelty and more 
consecutive isometry. Although AMI represents a much different pathology, the results of biotic 
parameters in our study are in line with previous findings in other pathological states and show 
promise as a possible avenue of further research in heart disease. 

 Poincare plot parameters, both in SD1, SD2 as well as SD1/SD2 showed no statistically 
significant changes after isoprenaline administration compared to baseline as well as after 24 
hours. Previous studies have shown a connection between Poincare plot parameters and 
autonomic regulation especially when it comes to sympathetic nervous system cardiac control 
[Naranjo Orellana J et al., 2015; Toichi M et al., 1997; Tulppo MP et al., 1996]. In fact, different 
Poincare parameters have been associated with different autonomic control aspects: SD1 as a 
measure parasympathetic activity and SD2 with SD1/SD2 as a proxy of sympathetic activity 
[Kamen PW et al., 1996; Tulppo MP et al., 1996]. Since significant correlations were also found 
between Poincare plot parameters and time and frequency domain parameters especially 
RMSSD [Carrasco S et al., 2001; Guzik P et al., 2007; Hoshi RA et al., 2013] our findings are 
consistent in that neither parameter shows statistically significant differences. 

 Detrended fluctuation analysis showed a decline in both alpha 1 and alpha 2 parameters 
after isoprenaline administration compared to baseline with only alpha 2 reaching statistical 
significance. The effects in alpha 1 reverted to baseline after 24h while the alpha 2 parameter 
remained depressed albeit not significantly. Detrended fluctuation analysis alpha 1 represents 
aspects of beat-to-beat fractal correlation over short time frames while alpha 2 represents the 
same correlation properties over longer time frames although there is naturally cross reference 
between the two [Peng CK et al., 1995]. DFA has shown superior predictive power to traditional 
HRV parameters in many cardiovascular pathologies [Ho YL et al., 2011, Tsai CH et al 2020]. 
Furthermore, it was reported that alpha 2 is significantly decreased after inferior myocardial 
infarction which is in line with our results but the depressed alpha 2 was also present during 
long term follow up. [Tang SY et al., 2023].  

 Considering that increased spectral energy correlates with increased spectral density, 
spectral density values could provide significant information in to severity and extent of 
pathological brain functioning, the mechanistic basis of epileptic activity. Major drawback of 
FFT in this respect is a lack of time resolution.  

 Although FFT provides important detail about signal frequencies, the inability to 
precisely determine the moment when a specific series occurs in the EEG, emphasizes the need 
to complete other quantitative analysis algorithms. FFT analysis relies on the assumption of 
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signal stationarity whereas biological signals such as the EEG, are inherently non-stationary. 
Nevertheless, as many linear analysis methods have the same problem this is most commonly 
overcome via study design.     

 Importantly, FFT is described as a bidirectional analysis. Bidirectionality is a term 
denoting the ability to restore the original signal ideally with no loss of data during the process. 
Further, the mean duration of ictal epoch we used was of 7.34 ± 1.56 s which helps alleviate the 
problem of temporal resolution sufficiently to enable the application of FFT, which previous 
research has confirmed (Stam CJ, 2005; Campbell, 2009).  

 Our results show that there was significant slowing of EEG signal frequency spectrum 
during ictal periods. This led to an increase of power in theta and delta band spectrums 
compared to alpha and beta waves. FFT derived spectral densities calculated showed that theta 
band was the dominant frequency while beta frequency was least represented. 

 There have previously been three distinct patterns of ictal EEG spectral signatures 
reported: 1) high frequency waves arising before clinically apparent ictal behavior, 2) low 
frequency wave activity and 3) desynchronized of electrical discharges Honda R et al 2015). 
This representation is in line with our results, which show a significant increase in low 
frequency waves during ictal periods.  

 Delta waves on the other hand, are usually understood to be a manifestation of neural 
plasticity and NREM sleep –related memory consolidation [Tononi G, 2012; Assenza G, 2015]. 
Brain plasticity is often pronounced during and after structural brain damage. Delta wave 
activity is both correlated to the size of the organic lesion, as well as the recovery chances 
[Assenza G et al 2009; Finnigan SP et al 2015]. Delta wave spectral power shown by the FFT in 
this study could be a predictor of epileptic activity in terms of it extent and severity, although 
more research is needed to derive definitive conclusions.  

 Theta waves in the human brain are normally found in two locations: the hippocampus 
(known as hippocampal oscillatory rhythm), and the cortex (known as cortical theta rhythm). 
Theta wave function is not completely explored. However, it is usually elaborated as important 
player in arousal (Green JD et al, 1954) and memory creation (Greenberg JA et al 2015). As the 
latter study shows, the single most consistent alteration during memory formation is drop in 
theta power. As theta waves were consistently the dominant fraction for the majority, if not all 
of the ictal periods analyzed in our study, it can be argued that the rise in spectral power of 
theta waves is an EEG signature of impairment in consciousness. This impairment is correlated 
with a degree of amnesia regarding the seizure itself, as is generally known with patients 
suffering from seizures.  

 Relatively lower power in high-frequency part of the spectrum can be a contributing 
aspect in the development of memory associated problems (Scholz S et al 2017). Studies that 
focus on spectral power in EEG, as well as individual frequency density bands are also a part of 
Azheimer’s disease and generalized anxiety disorder research (Dadashi M et al 2015; Wang R 
et al 2015).  

 Alzheimer’s disease research has showed an amplification of low frequency band power 
with a concomitant decrease of high-frequency power, which is in accordance with results of 
our study. The explanation for the changes in power spectrum we observed is not 
straightforward. An adequate explanation may be that lower power in the high-frequency band 
results in a momentary perturbation in connection between cortical areas, while increased low-
frequency power may arise from a perturbation in cholinergic signaling from subcortical 
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regions. This have already been studies presenting similar theories on Alzheimer’s disease 
patients [Jeong J, 2004; Moretti DV et al 2009].  

 The importance of ictal period characterization in the frequency domain may be in the 
potential to exploit these characteristics through advanced signal analysis.  This may further 
enable the creation of systems for automated seizure detection as well as prediction. We also 
made a categorization of spike EEG activity using voltage as the main criterion. The 100 to 
200 μV category contained the greatest number of spikes while the 200 to 350 μV category 
contained a lower number and the 350 to 500 μV category had very few. It is not yet clear 
whether or not the characterization and sorting of spikes in to categories based on voltage has 
merit as an estimate of seizure severity, or if it may be of use as a variable in therapeutic 
approaches to epilepsy. 

 The holy grail of epilepsy research has always been automatic seizure detection or 
prediction. Recently there have been many systems developed in attempt to reach this goal. An 
attractive solution would involve integration of seizure detection and prediction algorithms 
into a warning device that could allow for minimization of injuries and also lower anxiety levels 
connected to lack of control and unpredictability of epileptic seizures [Ramgopal, S. et al 2014]. 
Ideally, these systems would have automated communication systems to alert emergency 
services before seizure onset, ensuring prompt reaction and treatment.  

 Although all patients would benefit from such development, patients suffering from 
drug-resistant (or medically intractable) epilepsy (DRE) are at the highest risk. DRE, as of today, 
cannot be controlled using conventional treatments. Knowing that these patients represent 
about 30% [Li S et al 2012; Bou Assi E et al 2017; Kuhlmann L et al 2017] of all patients with 
epilepsy only serves to stress how necessary for us it is to focus on creating new seizure-
controlling methodologies. 

 In our study, we used bios analyzer software to extract nonlinear, biotic features of 
preictal and postictal EEG signals in order to train an ANN. The goal was to create an automated 
ANN system for ictal EEG detection. We reached a total performance in seizure detection of 
92.9%.  

 The research into EEG based automatic seizure detection is very extensive with the first 
studies being published in the 1990s [Petrosian AA et al., 1996]. A multitude of linear and non-
linear analysis techniques have previously been used. In fact, only listing and describing all the 
possible algorithms that have been studied to this effect would far surpass the scope of this 
thesis and an excellent review such as Nafea & Ismail, 2022 can offer the reader necessary 
overview of the field. We should note that nonlinear techniques have proven to be superior to 
linear analysis methods and many have been developed over the years. Some of the nonlinear 
techniques include fractal-based measures (fractal dimension, Hurst exponent etc), various 
entropy measures, discreet wavelet transform (DWT) and detrended fluctuation analysis 
[Silalahi DK et al.,2020; Kumar Y et al 2014; Yuan Q et al., 2011].  Non-linear mode 
decomposition (NMD) is another nonlinear method which was, along with Recurrence plots (a 
graphical nonlinear method) successfully used in seizure detection [Li M et al., 2020; Ravi S et 
al., 2022].  

 Despite multitudes of nonlinear techniques developed, the biotic features we used are a 
nonlinear analysis method that has, to our knowledge, never been attempted in seizure 
detection until now. Since our results are comparable to the results other studies have reported 
using nonlinear analysis techniques it can be concluded that biotic methods can successfully be 
used for automatic detection of seizure EEG signal and contribute to further improvements to 
this field of research.    
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 In our study, we used Kubios HRV Standard software to extract linear and nonlinear HRV 
features that were then used to train an ANN. We reached the accuracy (86.81±8.87) and 
precision (96.3±8.2896.3±8.28) with high sensitivity (83.95±8.69) and specificity 
(94.44±12.42).  

 When it comes to seizure prediction, EEG based studies represent the overwhelming 
majority of research [Ren Z et al.,2022]. On the other hand, the use of HRV in seizure detection 
has more recently gained ground although studies in to algorithms using HRV for seizure 
prediction are still limited.  An example of successfully applying HRV for seizure prediction can 
be found in a study by Fujiwara K et al. [ Fujiwara K et al 2016] which proposed an HRV-based 
seizure prediction algorithm based on technology using multivariate statistical process control. 
Multiple HRV features were extracted from the interictal and preictal RR periods. Applying 
their method to clinical data has shown the possibility of seizure detection at least 1 minute 
before seizure occurrence, which strengthened the probability of realizing a successful HRV-
based seizure prediction algorithm. A study by Behbahani et al. [Behbahani S et al 2016] used 
time and frequency domain HRV features. The features were extracted for consecutive time 
windows and an adaptive decision threshold method was applied. The algorithm achieved a 
sensitivity of 78.59% which was statistically significant.   

Multiple studies have used data classification and machine learning techniques, 
especially Support Vector Machines (SVMs) as well as ANNs for the detection and prediction of 
epileptic seizures, on EEG data [Park Y et al., 2011; Moghim N et al., 2016; Costa RP et al., 2008; 
Kharbouch A et al., 2011]. SVMs [Cortes C et al 1995] are classification tools that implement 
learning algorithms and analyze data in order to determine important patterns through the 
solution of non-convex optimization problems. An example of using SVMs and HRV for seizure 
prediction can be found in Pavei et al [ Pavei J et al., 2017].  Using SVMs they achieved a 
sensitivity of 94.1%.  

 There are even approaches that correlate wearable ECG based HRV recording to 
photoplethysmography (PPG) recording in attempt to predict seizure activity [Vandecasteele K 
et al 2017]. This algorithm classified seizures using HRV feature of HR increase. Respectively 
the sensitivity of the wearable ECG device and wearable PPG device was 70% and 32%. The 
underperformance of the PPG device underscored the value of conventional ECG monitoring. 

 Ultimately, the detection of preictal HRV patterns may provide adequate and reliable 
data for seizure prediction. The capability of seizure prediction may also lead to development 
of new avenues for therapeutic intervention, weather as on demand automated drug 
administration or closed-loop electrical stimulation. Our study results represent one more step 
in this direction and we hope that further research will enable us to reach the difficult goal of 
reliable and accurate seizure prediction.  
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6. CONCLUSIONS 
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1. EEG power registered during AMI development was s significantly increased in alpha, beta 
and theta bands four hours upon isoprenaline administration as compared to baseline values. 
These power spectrum changes reverted to baseline after 24 hours.  

2. ECG registration during AMI development showed that there were significant alterations in 
nonlinear, biotic and time domain HRV parameters in the first four hours upon isoprenaline 
administration. Time domain parameters showed a significant shortening of the RR interval 
and increase in heart rate. Nonlinear, entropy measures showed a significant drop in system 
iregullarity. Detrended fluctuation analysis alpha 2 has a significant drop and there is a 
significant increase in fractal dimension. When it comes to biotic parameters: novelty, 
arrangement, diversification and shuffled isometry measures all showed a significant drop 
while radial isometry, series and serial isometry measures have a significant increase.   

3. FFT analysis of the power spectrum was significantly increased in alpha, beta and gamma 
EEG bands during lindane-induced seizure activity with significant spike wave activity.  

4. Neural network trained on biotic parameters in the EEG signal reported favorable sensitivity 
and specificity in detecting ictal activity while the logistic regression trained on HRV 
parameters showed a significant result in seizure prediction. 
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