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EFFECTS OF THE FLYING START ON ESTIMATED SHORT SPRINT PROFILES USING 
TIMING GATES 
 
 
Abstract 
 
Short sprints are predominantly assessed using timing gates and analyzed through parameters 
of the mono-exponential equation, including estimated maximal sprinting speed (MSS) and 
relative acceleration (TAU), and derived maximum acceleration (MAC) and relative propulsive 
maximal power (PMAX), further referred to as the No Correction model. However, the 
frequently recommended flying start technique introduces a bias during parameter 
estimation.  To correct this, two additional models (Estimated TC and Estimated FD) were 
proposed, and a two-part study was conducted to estimate model precision and sensitivity. In 
the first part, simulation was used to compare estimated and actual parameters under different 
flying start conditions. In the second part, 31 basketball players executed 30-meter sprints. 
Parameters were estimated using a laser gun, representing the criterion measure, and five 
different timing gate models, representing the practical measures. The simulation study 
demonstrated that the two proposed models provided more precise estimates using the percent 
difference (%𝐷𝑖𝑓𝑓) estimator (median %𝐷𝑖𝑓𝑓 across all flying distances and parameters 
between -3 and 3%). Surprisingly, the No Correction model provided higher sensitivity, 
estimated using the minimum detectable change estimator (%MDC95) for MAC and TAU 
parameters (%MDC95 <5%). In the second study, only the MSS parameter demonstrated high 
agreement between laser gun and timing gate estimates, using the percent mean absolute 
difference (%MAD) estimator (%MAD < 10%). The MSS parameter also showed the highest 
sensitivity, with %MDC95 <17%. Interestingly, sensitivity was the highest for the No Correction 
model (%MDC95 <7%.). All other parameters and models demonstrated an unsatisfying level of 
sensitivity. Practitioners should be wary of using timing gates to estimate maximum 
acceleration indices and changes in their respective levels. 
 
 
Keywords: sprint profiling, acceleration-velocity profile, timing-gates, laser gun, 
measurement, sport 
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UTICAJ LETEĆEG STARTA NA PROCENU PROFILA KRATKIH SPRINTEVA PRIMENOM 
FOTO ĆELIJA 
 
 
Sažetak 
 
Kratki sprintevi se pretežno procenjuju koristeći foto ćelije i analiziraju se putem parametara 
mono-eksponencijalne jednačine, uključujući procenjenu maksimalnu brzinu sprinta (MSS) i 
relativno ubrzanje (TAU), kao i izvedenu maksimalnu akceleraciju (MAC) i relativnu propulzivnu 
maksimalnu snagu (PMAX), dalje nazvanih model „Bez Korekcije“. Međutim, često preporučena 
tehnika letećeg starta uvodi grešku tokom procene parametara. Da bi se ovo ispravilo, 
predložena su dva dodatna modela („Procenjeni TC“ i „Procenjeni FD“), a sprovedena je 
dvodelna studija radi procene preciznosti i osetljivosti modela. U prvom delu, simulacija je 
korišćena za poređenje procenjenih i stvarnih parametara pod različitim uslovima letećeg 
starta. U drugom delu, 31 košarkaša su izveli sprinteve na 30 metara. Parametri su procenjeni 
korišćenjem laserskog pištolja kao kriterijumske mere i pet različitih modela foto ćelija kao 
praktičnih mera. Studija simulacije je pokazala da su dva predložena modela pružila preciznije 
procene koristeći estimator procentualne razlike (%𝐷𝑖𝑓𝑓) (medijana %𝐷𝑖𝑓𝑓 za sve udaljenosti 
letećeg starta i parametre iznosila je između -3 i 3%). Iznenadjujuće, model „Bez Korekcije“ je 
pružio veću osetljivost, procenjenu koristeći estimator minimalne detektabilne promene 
(%MDC95) za parametre MAC i TAU (%MDC95 <5%). U drugoj studiji, samo parametar MSS je 
pokazao visoku saglasnost između procene laserskim pištoljem i procene foto ćelijama, 
koristeći estimator procentualne srednje apsolutne razlike (%MAD) (%MAD < 10%). Parametar 
MSS je takođe pokazao najveću osetljivost, sa %MDC95 <17%. Interesantno, osetljivost je bila 
najviša za model „Bez Korekcije“ (%MDC95 <7%). Svi ostali parametri i modeli su pokazali 
nezadovoljavajući nivo osetljivosti. Praktičari bi trebalo da budu oprezni prilikom korišćenja 
foto ćelija za procenu maksimalne akceleracije i njene promene. 
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1 INTRODUCTION 

 

The physical attribute of sprint speed is widely recognized and esteemed in sports. Short 
sprints in most team sports, such as soccer, basketball, field hockey, and handball, are 
characterized by maximal sprinting from a stationary position over a distance that does not 
lead to deceleration upon completion. According to Mangine et al. (2014), the highest level of 
anaerobic power is achieved within the initial five seconds of maximal exertion. Nevertheless, 
the ability to achieve maximum sprint velocity varies depending on the athlete and the sport. 
As per the research conducted by Ward-Smith (2001), it has been observed that sprinters in 
track and field tend to attain their maximum speed towards the end of the race, specifically 
between 50-60 meters. On the other hand, Brown et al. (2004) suggest that team sports 
athletes reach their maximum speed much earlier in the race, typically between 30-40 meters. 
The assessment of short sprint performance is commonly incorporated into a battery of 
physical fitness assessments for a diverse range of sports, irrespective of the dissimilarities in 
kinematics among athletes. 

Force plates and 3D cameras are widely considered the gold-standard method for evaluating 
the mechanical characteristics of sprinting. However, obtaining a complete sprint profile 
poses practical and financial challenges (Morin et al., 2019; Samozino et al., 2016). The 
utilization of laboratory-grade methods, such as radar and laser technology, is a common 
practice in various studies (Buchheit et al., 2014; Edwards et al., 2020; Jiménez-Reyes et al., 
2018; Marcote-Pequeño et al., 2019). However, these methods are generally not accessible to 
sports practitioners. 

Undoubtedly, timing gates are the most commonly utilized approach for assessing sprint 
performance. It is common practice to position several gates at varying intervals to record 
split times, such as 10, 20, 30, and 40 meters. These split times can be integrated into 
calculating sprint mechanical characteristics, as Morin et al. (2019) and Samozino et al. 
(2016) proposed. The utilization of estimated sprint mechanical characteristics by 
practitioners can serve the purpose of elucidating individual differences, quantifying the 
impact of training interventions, and enhancing comprehension of the constraining factors of 
performance, thereby conferring a benefit upon this approach. 

 

 

1.1 Mathematical model 

The mono-exponential equation for velocity as a function of time has been employed in 
modeling short sprints. The concept was initially introduced by Furusawa et al. (1927) and 
subsequently gained wider recognition through the works of Samozino et al. (2016) and Clark 
et al. (2017). Equation 1 is utilized to determine the instantaneous horizontal velocity 
denoted as 𝑣, which is dependent on the time variable denoted as 𝑡, as well as two distinct 
model parameters. 

𝑣(𝑡) = 𝑀𝑆𝑆 × (1 − 𝑒−
𝑡

𝑇𝐴𝑈)  (1) 

The parameters of Equation 1 are the Maximum Sprinting Speed (𝑀𝑆𝑆), which is measured in 
meters per second (𝑚𝑠−1), and the Relative Acceleration (𝑇𝐴𝑈), which is measured in seconds 
(𝑠). The parameter 𝑇𝐴𝑈 denotes the quotient obtained by dividing the 𝑀𝑆𝑆 by the initial 
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Maximum Acceleration (𝑀𝐴𝐶), which is expressed in units of meters per second squared 
(𝑚𝑠−2) and can be represented by Equation 2. It should be noted that 𝑇𝐴𝑈 represents the 
duration needed to attain a velocity equivalent to 63.2% of the 𝑀𝑆𝑆, as determined by the 
given Equation 1. 

𝑀𝐴𝐶 =
𝑀𝑆𝑆

𝑇𝐴𝑈
  (2) 

While 𝑇𝐴𝑈 is a parameter employed in the equations and subsequently estimated, it is 
advisable to employ and report 𝑀𝐴𝐶 as it is more straightforward to comprehend, 
particularly for professionals and trainers. 

The equation pertaining to the horizontal acceleration, as denoted by Equation 3, can be 
obtained through the derivation of Equation 1. 

𝑎(𝑡) =
𝑀𝑆𝑆

𝑇𝐴𝑈
× 𝑒−

𝑡
𝑇𝐴𝑈  (3) 

The equation for distance covered (Equation 4) can be derived by means of integrating 
Equation 1. 

𝑑(𝑡) = 𝑀𝑆𝑆 × (𝑡 + 𝑇𝐴𝑈 × 𝑒−
𝑡

𝑇𝐴𝑈) −𝑀𝑆𝑆 × 𝑇𝐴𝑈  (4) 

Figure 1 presents a visual representation of the sprint kinematics of four hypothetical athletes 
who possess varying values of 𝑀𝑆𝑆 and 𝑀𝐴𝐶 parameters. When velocity is plotted against 
acceleration for the four hypothetical athletes, given Equation 1, a linear relationship can be 
observed, as illustrated in Figure 2. This model’s feature facilitates the process of 
simplification, which involves generating an aggregated summary of the short sprint 
kinematics through the utilization of two descriptive parameters, namely, 𝑀𝑆𝑆 and 𝑀𝐴𝐶. The 
nomenclature employed to describe the aforementioned relationship (Figure 2) is known as 
the Acceleration-Velocity Profile (AVP). 

The Acceleration-Velocity Profile (i.e., the 𝑀𝑆𝑆 and 𝑀𝐴𝐶 parameters), can thus serve as a 
model or representation of two of the three prevalent phenomenological characteristics in 
sprinting (Debaere et al., 2013; T. Haugen et al., 2019; Healy et al., 2022; Mero et al., 1992; 
Ross et al., 2001; Volkov & Lapin, 1979). These include (1) the ability to achieve maximum 
forward acceleration (represented with the 𝑀𝐴𝐶 parameter), (2) the ability to attain 
maximum speed (represented with the 𝑀𝑆𝑆 parameter), and (3) ability to sustain speed while 
resisting the onset of fatigue (which is not a factor in short sprint performance as there is no 
deceleration involved). 
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Figure 1. Four athletes with different maximum sprinting speed (𝑀𝑆𝑆) and maximum 
acceleration (𝑀𝐴𝐶) parameters. 

  

 

 

Figure 2. The linear relationship between velocity and acceleration, given the mono-exponential 
Equation 1, for four hypothetical athletes. This descriptive profile is termed the Acceleration-

Velocity Profile (AVP). 
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1.2 Model parameters estimation using laser/radar gun 

The problem related to estimating model parameters using a laser/radar gun could be 
illustrated through a simple example. The data presented in Figure 3 pertains to the velocity 
of a standing start 30 𝑚 short sprint over time. The data was collected using a laser gun 
(CMP3 Distance Sensor, Noptel Oy, Oulu, Finland) and was sampled at a rate of 2.56 𝐾𝐻𝑧. A 
polynomial function modeling the relationship between distance and time was employed and 
subsequently resampled at a frequency of 1,000 𝐻𝑧 using Musclelab™ v10.232.107.5298, a 
software developed by Ergotest Technology AS located in Langesund, Norway. As illustrated 
in Figure 3, Musclelab™ provides measurements for both unprocessed velocity (Raw velocity 
in Figure 3), and processed velocity (Smoothed velocity in Figure 3). The specific technique 
used for filtering and smoothing is confidential information of Ergotest Technology AS). 

 

 

Figure 3. Sample laser gun (Musclelab™ LaserSpeed, Ergotest Technology AS, Langesund, 
Norway) output during 30 𝑚 sprint. The grey line indicates raw velocity (sampled at 1,000 𝐻𝑧). 
The blue line indicates smoothed velocity (the exact filtering/smoothing method is a proprietary 

secret of the Ergotest Technology AS) 

 

As evidenced by the data presented in Figure 3, the initiation of the sprint does not occur at 
the onset of the time interval (𝑡 = 0 𝑠). Therefore, it is crucial to trim the data that comes 
before the sprint itself. One possible approach is to apply a filter to the velocity data, 
specifically targeting values that exceed a predetermined threshold, such as 0.5 𝑚𝑠−1. 
Furthermore, it is imperative to adjust Equation 1 by introducing an additional parameter for 
estimation, namely time-correction (𝑇𝐶) (Equation 5). The 𝑇𝐶 parameter functions as an 
intercept in the model, enabling it to make adjustments in both directions and to make 
predictions regarding the onset of sprinting. 

𝑣(𝑡) = 𝑀𝑆𝑆 × (1 − 𝑒−
𝑡+𝑇𝐶
𝑇𝐴𝑈 )  (5) 
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The process of determining parameters, specifically 𝑀𝑆𝑆, 𝑇𝐴𝑈, and 𝑇𝐶, as denoted in 
Equation 5, is accomplished through the utilization of non-linear least squares regression. 
Researchers, coaches, and sports scientists have utilized the built-in solver function of 
Microsoft Excel (Microsoft Corporation, Redmond, Washington, United States) to conduct 
short sprint modeling (Clark et al., 2017; Morin, 2017; Morin et al., 2019; Morin & Samozino, 
2019; Samozino et al., 2016; Stenroth et al., 2020; Stenroth & Vartiainen, 2020). The open-
source package {shorts} for R-language (R Core Team, 2022), has recently incorporated 
various functionalities, along with supplementary features (Jovanović, 2023; Jovanović & 
Vescovi, 2022). The package employs the nlsLM() function from the {minpack.lm} package 
(Elzhov et al., 2023) for estimating model parameters using non-linear least squares 
regression. In contrast to the solver function integrated within Microsoft Excel, the {shorts} 
package offers a more feature-rich, flexible, transparent, and reproducible environment 
framework for constructing models of short sprints. Accordingly, this study will employ the 
{shorts} package to compute model parameters. 

The estimated values of 𝑀𝑆𝑆, 𝑇𝐴𝑈, 𝑀𝐴𝐶, and 𝑇𝐶 parameters were obtained from the sample 
provided in Figure 3. The estimated values for 𝑀𝑆𝑆, 𝑇𝐴𝑈, 𝑀𝐴𝐶, and 𝑇𝐶 were found to be 8.16 
𝑚𝑠−1, 1.03 𝑠, 7.9 𝑚𝑠−2, and -0.92 𝑠, respectively. Figure 4 illustrates the adjusted mono-
exponential model’s (represented by Equation 5) predictions (indicated by the red line) in 
comparison to the data collected from the laser gun. 

 

 

 

Figure 4. Modified mono-exponential model (Equation 5) applied to the raw velocity of the 
sample Laser gun sample (Figure 3). The grey line indicates raw velocity (sampled at 1,000 𝐻𝑧). 
The blue line indicates smoothed velocity (the exact filtering/smoothing method is a proprietary 

secret of the Ergotest Technology AS). The red line represents the mono-exponential model 
prediction 
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The computation of acceleration can be achieved through the utilization of both smoothed and 

model-predicted velocity, employing the 𝑎‾ =
𝛥𝑣

𝛥𝑡
 methodology. Figure 5 depicts the relationship 

between velocity and acceleration through the utilization of both smoothed and model-
predicted velocity. Figure 5 illustrates a notable inconsistency between the smoothed and 
model-predicted data. This discrepancy arises due to the assumption made by the mono-
exponential model, which considers the maximum acceleration to occur when the velocity is 
zero. The utilization of a standing start instead of a block start is the likely reason for the 
deviation from the aforementioned assumption in the method that employs smoothed 
observed velocity. 

 

 

Figure 5. Acceleration-Velocity trace using smoothed and model-predicted velocities from 

Figure 4. Acceleration for every sample is estimated using 𝑎‾ =
𝛥𝑣

𝛥𝑡
. Estimated maximum sprinting 

speed (𝑀𝑆𝑆) and maximum acceleration (𝑀𝐴𝐶) parameters are written close to the x- and y-
axes 

 

It is important to emphasize that all three velocities (i.e., raw, smoothed, and model-predicted) 
represent approximations of much more complex short sprint performance 1. Raw velocity is 
the velocity estimated from the body point closest to the laser gun, and that is often the low 
back of the athlete since the laser was positioned approximately 1 𝑚 from the ground. As 
previously stated in the Introduction, force plates, and 3D cameras are widely recognized as 
the preferred methods for evaluating the mechanical characteristics of sprinting, specifically 

 

1 The distinction between the Small World models and Large World. The concept of the Small 
world refers to the self-contained and internally consistent world of a given model, whereas 
the Large world pertains to the wider context in which the model is applied (Binmore, 2011; 
Gigerenzer et al., 2015; McElreath, 2020; Savage, 1972; Volz & Gigerenzer, 2012). 
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in terms of estimating the velocity of the center-of-mass (COM). Therefore, radar and laser 
may be regarded as the silver standard, while the raw velocity can be seen as the most 
accurate estimate of the COM velocity. 

The velocity that has been smoothed refers to the velocity that has been averaged over steps 
(i.e., step-averaged velocity), without taking into account the acceleration and deceleration 
that is evident in the raw velocity as depicted in Figure 3. The purpose of this smoothing is to 
simplify the analysis of kinematics. The mono-exponential model, encompassing both 
Equation 1 and Equation 5, provides a simplified approach to analyzing short sprint kinematic 
performance. This model utilizes two variables, namely 𝑀𝑆𝑆 and 𝑀𝐴𝐶, to describe and 
consolidate the short sprint performance. The simplification in question is highly practical, as 
it facilitates the comparison of athletes and enables the monitoring of changes in training 
interventions. However, it is important to note that this approach may yield misleading 
results, as illustrated in Figure 5, due to potential disparities between the smoothed velocity 
and model predictions. 

 

 

1.3 Estimation of model parameters using timing gate split times 

The dataset in Table 1 includes a sample of split times that were recorded during a sprint 
performance of 40 meters. The split timings were measured using timing gates placed at a 
distance of 5, 10, 20, 30, and 40 meters. 

 

Table 1. Measured split times over 40 meters sprint utilizing timing gates positioned at 5, 10, 20, 
30, and 40 𝑚 

Distance (m) Split time (s) 

5 1.40 

10 2.13 

20 3.35 

30 4.46 

40 5.54 

 

The procedure for estimating model parameters using split times entails employing distance 
as an independent variable (i.e., predictor) and time as the dependent variable (i.e., outcome). 
As a result, Equation 4 is structured in the form of Equation 6. 

𝑡(𝑑) = 𝑇𝐴𝑈 ×𝑊(−𝑒
−𝑑

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝑑

𝑀𝑆𝑆
+ 𝑇𝐴𝑈  (6) 

The symbol 𝑊 appearing in Equation 6 denotes the mathematical function known as 
Lambert’s W function. This function is characterized as the inverse of the multivalued function 
𝑓(𝑤) = 𝑤𝑒𝑤 (Corless et al., 1996; Goerg, 2022). The use of Equation 4, where time serves as 
the independent variable and distance as the dependent variable, is a prevalent practice in 
academic research (Morin, 2017; Morin & Samozino, 2019; Stenroth & Vartiainen, 2020). It is 
advisable to refrain from utilizing this approach as it has the potential to generate bias in the 
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estimated parameters (Motulsky, 2018, p. 341). While the bias in question may not have 
practical significance when it comes to profiling short sprints, it is a flawed statistical practice 
and should be eschewed. Therefore, it is advisable to employ statistically accurate Equation 6 
for the estimation of model 𝑀𝑆𝑆 and 𝑇𝐴𝑈 parameters. 

Based on the split times provided in Table 1, the estimated values for 𝑀𝑆𝑆, 𝑇𝐴𝑈, and 𝑀𝐴𝐶 
parameters are 9.54 𝑚𝑠−1, 1.37 𝑠, and 6.96 𝑚𝑠−2, respectively. Figure 6 illustrates the 
predictions of Equation 6 model. 

 

 

Figure 6. Split time predictions using Equation 6 model (depicted as a line) and observed timing 
gate split times from Table 1 (depicted as points) 

 

The parameter known as maximal relative power (𝑃𝑀𝐴𝑋), which is expressed in units of 
Watts per kilogram (𝑊/𝑘𝑔), is frequently calculated and documented in academic literature 
(Morin et al., 2019; Samozino et al., 2016). The calculation of 𝑃𝑀𝐴𝑋 is performed utilizing 
Equation 7. The approach employed for 𝑃𝑀𝐴𝑋 estimation in this context does not take into 
account the impact of air resistance, thereby indicating the net or relative propulsive power. 
The 𝑃𝑀𝐴𝑋 value was computed by utilizing the estimated 𝑀𝑆𝑆 and 𝑀𝐴𝐶 parameters, 
resulting in a value of 16.6 𝑊/𝑘𝑔. 

𝑃𝑀𝐴𝑋 =
𝑀𝑆𝑆 ×𝑀𝐴𝐶

4
  (7) 
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1.4 Inaccuracies in estimated parameters using timing gates due to the 
flying start and reaction time 

To get accurate estimates of the short sprint parameters, it is crucial to synchronize the 
initiation of force generation with the commencement of the sprint timing, usually known as 
the “first movement” trigger. This has been highlighted in various studies (Haugen et al., 2012; 
Haugen et al., 2019, 2020c, 2020a; T. Haugen & Buchheit, 2016a; Samozino et al., 2016). The 
acquisition of sprint data through timing gates poses a challenge that can significantly affect 
the estimated parameters. 

In order to illustrate the effect, consider a hypothetical scenario involving three triplet 
siblings, Andrew, Ben, and Cole, who possess identical characteristics for short sprints, 
including 𝑀𝑆𝑆 of 9.5 𝑚𝑠−1, 𝑇𝐴𝑈 of 1.36 𝑠, 𝑀𝐴𝐶 of 7 𝑚𝑠−2, and 𝑃𝑀𝐴𝑋 of 16.62 𝑊/𝑘𝑔 (which 
are indicative of authentic or true short sprint parameters). All three triplet siblings executed 
a sprint of 40 meters from a stationary position, with timing gates placed at distances of 5, 10, 
20, 30, and 40 𝑚. Andrew and Ben activate the timing system when they cross the beam at the 
beginning of the sprint (i.e., 𝑑 = 0 𝑚). For Cole, the timing system is activated after the 
gunfire. 

Andrew embodies the theoretical framework positing that the commencement of force 
production and the initiation of timing are in complete synchrony. The split times belonging 
to Andrew have already been employed in Table 1. 

Conversely, Ben elects to displace himself marginally from the primary timing gate (i.e., for a 
flying distance of 0.5 meters) and employs body rocking to instigate the sprint 
commencement. To clarify, Ben employs a technique known as a flying start, frequently 
utilized when testing athletes in field sports. The utilization of a flying start distance is 
frequently suggested from a measurement standpoint to prevent untimely activation of the 
timing system caused by elevated knees or swinging arms. This recommendation is supported 
by various studies (Altmann et al., 2015, 2017, 2018; Haugen et al., 2020a; T. Haugen & 
Buchheit, 2016a). Flying start at the beginning of a short sprint can also be attributed to the 
act of body rocking during the initial standing start. It is evident that any commencement 
characterized by a disparity between the initial force production and the onset time has the 
potential to result in distorted estimated parameters. The difficulty in enhancing sprint 
characteristics coupled with inconsistent starts can potentially mask the impact of the 
training intervention or, in other words, reduce the sensitivity of the measurement to detect 
true changes. 

Cole’s start is set off by gunfire. Therefore, his split times include an extra response time of 0.2 
𝑠. This situation bears resemblance to a hypothetical circumstance in which an athlete 
inadvertently activates a timing mechanism by standing in close proximity to the initial timing 
gate. The data provided by Cole can be utilized to illustrate the impact of this situation on the 
estimated parameters. 

In this hypothetical scenario, utilized timing gates offer a high level of accuracy, with 
measurements being recorded up to two decimal places (specifically, the nearest ten 
milliseconds). However, it is essential to note that this precision also introduces a potential 
source of inaccuracy in the measurements obtained. The sprint splits are visually depicted in 
Figure 7. 
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Figure 7. Andrew, Ben, and Cole recorded their respective split timings while running 40 meters. 
The sprint performances of the three brothers are indistinguishable, although they employ 

distinct sprint beginnings, leading to variations in their split timings. 

 

The outcomes presented in Table 2 indicate that the estimated short sprint parameters for 
each of the three siblings deviate from the true parameters employed to produce the data, 
which represent their genuine short sprint characteristics. The estimated parameters of all 
three siblings are subject to bias owing to the precision of timing gates, which is limited to two 
decimal places (i.e., 10 𝑚𝑠). The presence of bias in the estimated parameters for Ben can be 
attributed to the inclusion of a flying start, whereas for Cole, the bias can be attributed to the 
involvement of reaction time in the split times. 

 

Table 2. Estimated sprint parameters for Andrew, Ben, and Cole. All three siblings exhibit 
equivalent sprint performance. However, they employ distinct sprint initiation techniques, 

leading to variations in split durations and, thus, divergent estimations of sprint parameters. The 
precision of the timing gates, which is accurate to two decimal places (i.e., 10 𝑚𝑠), resulting in 

estimated parameters for Andrew that deviate from the true values. Note. MSS – maximum 
sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – 

maximum acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 
𝑊𝑘𝑔−1) 

Athlete MSS TAU MAC PMAX 

True 9.50 1.36 7.00 16.62 

 

Andrew (theoretical) 9.54 1.37 6.96 16.60 

Ben (flying start) 8.90 0.73 12.15 27.02 

Cole (gunfire) 10.36 1.96 5.27 13.66 
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1.5 How to overcome bias in estimated parameters when using timing 
gates? 

According to existing literature, a feasible approach to convert to “first movement” triggering 
while employing the suggested 0.5 𝑚 flying distance behind the initial timing gate is to apply a 
correction factor of +0.5 𝑠 (i.e., the addition of +0.5 𝑠 to split times) (Haugen et al., 2012; 
Haugen et al., 2019, 2020c; T. Haugen & Buchheit, 2016a). The study conducted by Haugen et 
al. (2012) revealed a noteworthy finding that the mean disparity in the 40-meter sprint time 
between the standing start initiated by a photocell trigger and a block start to gunfire was 
0.27 seconds. As a result, it is imperative to incorporate a timing correction factor to avoid any 
additional imprecision in the evaluation of mechanical parameters. However, if the correction 
factor is too large or small, it may also lead to imprecision in mechanical parameters. 

1.5.1 Estimated time correction model 

Rather than relying on apriori time correction values from existing literature, it is possible to 
estimate this parameter by utilizing the provided data in conjunction with 𝑀𝑆𝑆 and 𝑇𝐴𝑈. 
Stenroth et al. (2020) study on sprint profiling in ice hockey suggests utilizing a comparable 
methodology, referred to as the time shift method, and an estimated parameter termed the 
time shift parameter. Consistent with existing literature and utilizing the adjusted mono-
exponential equation employed for laser gun data modeling (refer to Equation 5), the present 
study designates this parameter as time correction (𝑇𝐶). 

Implementing the 𝑇𝐶 parameter in the original Equation 6 now yields the new Equation 8. 

𝑡(𝑑) = 𝑇𝐴𝑈 ×𝑊 (−𝑒
−𝑑

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝑑

𝑀𝑆𝑆
+ 𝑇𝐴𝑈 − 𝑇𝐶  (8) 

Equation 8 is utilized as the model definition in the Estimated time correction (Estimated TC) 
model. The model using Equation 6 is termed the No Correction model throughout this study. 
Models in which 𝑇𝐶 is constant (i.e., by simply adding predefined 𝑇𝐶 to split times) are 
termed Fixed time correction (Fixed TC) models. 

From a regression standpoint, the 𝑇𝐶 parameter can be interpreted as an intercept. Assuming 
a fixed time shift is present, such as in the case of reaction time or premature triggering of 
timing equipment, 𝑇𝐶 parameter can be beneficial in unbiasing estimated parameters (i.e., 
𝑀𝑆𝑆 and 𝑇𝐴𝑈). Comparing Andrew and Cole as presented in Figure 7, it can be observed that 
the lines representing their respective split times exhibit a parallel relationship. The 
utilization of the Estimated TC model in this particular scenario has the potential to mitigate 
bias that may exist between Andrew and Cole. In Ben’s case, the utilization of the Estimated TC 
model has the potential to alleviate bias in estimated parameters as well. However, upon 
closer examination of Figure 7, it becomes apparent that the lines representing Ben and 
Andrew are non-parallel. The non-constant time shift is attributed to the pre-existing velocity 
at the triggering of the initial timing gate. Thus, the inclusion of the 𝑇𝐶 parameter will not 
completely remove the bias involved in Ben’s case. 

The aforementioned models, namely the Fixed TC models with values of +0.3 and +0.5 𝑠, as 
well as the Estimated TC model, were utilized to analyze the split times of Andrew, Ben, and 
Cole. The model parameters that were estimated can be located in Table 3, alongside the 
parameter values that were previously estimated using the No Correction model. As evidenced 
by the data presented in Table 3, the inclusion of a +0.3 𝑠 value yielded favorable results for 
Ben in terms of approximating the true parameter values. Conversely, the incorporation of a 
+0.5 𝑠 value had an adverse effect on the unbiased estimation of parameters. 
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The Estimated TC model demonstrated efficacy in mitigating bias in parameter estimates 
across all three brothers. The estimated 𝑇𝐶 parameter for Cole exhibited a high degree of 
proximity to the actual reaction time of 0.2 𝑠. 

1.5.2 Estimated flying distance model 

The Estimated TC model demonstrated favorable performance in Ben’s case (sibling involving 
a flying start). However, rather than relying on the assumption of constant time shift to 
mitigate bias in the estimates, an alternative approach involves incorporating the flying start 
distance (𝐹𝐷) into the model definition as an additional parameter. Incorporating 𝐹𝐷 
parameter to Equation 6 yields Equation 9. 

𝑡(𝑑) = (𝑇𝐴𝑈 ×𝑊 (−𝑒
−𝑑+𝐹𝐷

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝑑 + 𝐹𝐷

𝑀𝑆𝑆
+ 𝑇𝐴𝑈)

 −(𝑇𝐴𝑈 ×𝑊(−𝑒
𝐹𝐷

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝐹𝐷

𝑀𝑆𝑆
+ 𝑇𝐴𝑈)

  (9) 

Similar to the Fixed TC and Estimated TC models, the 𝐹𝐷 parameter has the option to either be 
estimated or fixed. If the flying start distance is a known value (e.g., 0.5 𝑚), it can be utilized as 
a constant parameter. Models that utilize fixed 𝑇𝐶 parameter value are denoted as Fixed flying 
star distance (Fixed FD) models. On the other hand, the model in which the 𝐹𝐷 parameter is 
estimated together with 𝑀𝑆𝑆 and 𝑇𝐴𝑈 parameters is denoted as the Estimated flying star 
distance (Estimated FD) model. 

Table 3 encompasses the complete set of model estimates for a trio of siblings, comprising 
both the Fixed 0.5m FD and Estimated FD models. A visual depiction in the form of Figure 8 
accompanies Table 3. In order to standardize the comparison of estimates, the absolute 
percent difference from the true parameter value is employed. A visual anchor is employed in 
the form of a fixed 5% absolute percent difference, represented by a dotted horizontal line in 
Figure 8, to facilitate visual comparison among the models. 

The No Correction model generated parameters that were biased toward Ben and Cole. The 
Fixed +0.3s TC model produced unbiased parameters for Ben, but resulted in a greater degree 
of parameter bias for Andrew and Cole. The introduction of a fixed time correction of 0.5 
seconds in the Fixed +0.3s TC model has resulted in a significant bias for all three siblings. The 
Estimated TC and Estimated FD models exhibited minimal bias for Andrew, whereas they 
effectively rectified the model parameters for Ben and Cole. The estimation of the parameters 
using the Estimated FD model for Cole, a brother who starts at gunfire and has additional 
reaction time involved in his split times, was unsuccessful. The reason for this is that the 
Estimated FD model is ill-defined in that particular case and is incapable of producing a 
negative flying distance. The model parameters for Ben were successfully adjusted to 
eliminate bias using the Fixed 0.5m FD model. However, this result in a significant bias for 
Andrew and Cole. In general, the parameter that exhibited the least amount of bias was 𝑀𝑆𝑆. 
This suggests that, in the context of this uncomplicated simulation, 𝑀𝑆𝑆 is the most resilient 
parameter among the four. 

It is important to acknowledge that every model definition incorporates a specific assumption 
regarding the mechanism of data generation (i.e., data-generating process, or DGP). The No 
Correction model postulates the ideal alignment of sprint initiation with the commencement 
of timing. The Estimated TC model incorporates a basic intercept that can facilitate the 
estimation of parameters in situations where a time shift is presumed to be present and 
constant, such as when reaction time is a factor or when the initial timing gate is triggered 
prematurely. The utilization of the Estimated TC model is also applicable in scenarios where 
“flying start” is employed. However, it presupposes a constant time shift, which is not the case 
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in such situations due to the velocity already acquired at the start. The Fixed FD and Estimated 
FD models presuppose the presence of a flying sprint in the data-generating process. As 
evidenced by the estimates presented in Table 3, these models may be ill-defined in cases 
where there is no flying distance component, but a temporal displacement is present. Each of 
the three models postulates that athletes undergo acceleration in accordance with Equation 1. 
As demonstrated in Figure 5, this is not necessarily the case. 

The No Correction model is a widely utilized approach for estimating short sprint parameters, 
whereas the Estimated TC and Estimated FD models are novel model definitions that require 
additional scientific validation for their application. 
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Table 3. Estimated sprint parameters for Andrew, Ben, and Cole using (1) No Correction, (2) 
Fixed +0.3s time correction (Fixed +0.3s TC), (3) Fixed +0.5s time correction (Fixed +0.5s TC), (4) 
Estimated time correction (Estimated TC), (5) Fixed 0.5m flying start distance (Fixed 0.5m FD), 

and (6) Estimated flying start distance (Estimated FD) models. Numbers in the brackets indicate 
the absolute percent difference from the true parameter value. For easier visual comprehension, 
absolute percent differences are depicted separately in Figure 8. Note. MSS – maximum sprinting 
speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum 
acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1); TC - 

time correction; FD - flying distance 

Model Athlete MSS TAU MAC PMAX TC FD 

True 9.50 
 

1.36 
 

7.00 
 

16.62 
 

  

 

 

No correction 

Andrew (theoretical) 9.54 
(0.4%) 

1.37 
(1.0%) 

6.96 
(0.6%) 

16.6 
(0.2%) 

  

Ben (flying start) 8.90 
(6.3%) 

0.73 
(46.0%) 

12.15 
(73.5%) 

27.02 
(62.5%) 

  

Cole (gunfire) 10.36 
(9.0%) 

1.96 
(44.8%) 

5.27 
(24.7%) 

13.66 
(17.9%) 

 

  

 

 

Fixed +0.3s TC 

Andrew (theoretical) 10.97 
(15.5%) 

2.37 
(74.3%) 

4.64 
(33.7%) 

12.72 
(23.5%) 

  

Ben (flying start) 9.51 
(0.1%) 

1.31 
(3.2%) 

7.24 
(3.5%) 

17.22 
(3.6%) 

  

Cole (gunfire) 12.92 
(36%) 

3.55 
(161.4%) 

3.64 
(48%) 

11.76 
(29.2%) 

 

  

 

 

Fixed +0.5s TC 

Andrew (theoretical) 12.92 
(36.0%) 

3.55 
(161.4%) 

3.64 
(48.0%) 

11.76 
(29.2%) 

  

Ben (flying start) 10.29 
(8.3%) 

1.88 
(38.8%) 

5.46 
(22.0%) 

14.05 
(15.5%) 

  

Cole (gunfire) 16.99 
(78.8%) 

5.85 
(331.1%) 

2.90 
(58.5%) 

12.33 
(25.8%) 

 

  

 

 

Estimated TC 

Andrew (theoretical) 9.56 
(0.6%) 

1.38 
(2.0%) 

6.90 
(1.4%) 

16.50 
(0.8%) 

0.01  

Ben (flying start) 9.50 
(0.0%) 

1.30 
(4.1%) 

7.30 
(4.3%) 

17.33 
(4.2%) 

0.30  

Cole (gunfire) 9.56 
(0.6%) 

1.38 
(2.0%) 

6.90 
(1.4%) 

16.50 
(0.8%) 

 

-0.19  

 

 

Fixed 0.5m FD 

Andrew (theoretical) 11.75 
(23.7%) 

2.96 
(118.2%) 

3.97 
(43.3%) 

11.66 
(29.8%) 

 0.50 

Ben (flying start) 9.52 
(0.2%) 

1.36 
(0.5%) 

6.98 
(0.3%) 

16.61 
(0.1%) 

 0.50 

Cole (gunfire) 15.83 
(66.7%) 

5.41 
(299%) 

2.92 
(58.2%) 

11.58 
(30.4%) 

 

 0.50 

 

 

Estimated FD 

Andrew (theoretical) 9.56 
(0.6%) 

1.38 
(2.0%) 

6.90 
(1.4%) 

16.50 
(0.8%) 

 0.00 

Ben (flying start) 9.56 
(0.6%) 

1.40 
(3.1%) 

6.83 
(2.4%) 

16.31 
(1.9%) 

 0.54 

Cole (gunfire)       
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Figure 8. Estimated sprint parameters for Andrew, Ben, and Cole using (1) No Correction, (2) 
Fixed +0.3s time correction (Fixed +0.3s TC), (3) Fixed +0.5s time correction (Fixed +0.5s TC), (4) 
Estimated time correction (Estimated TC), (5) Fixed 0.5m flying start distance (Fixed 0.5m FD), 

and (6) Estimated flying start distance (Estimated FD) models expressed as absolute percent 
difference from the true parameter value. Dotted horizontal lines represent a 5% absolute 

difference used as a visual anchor. Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); 
TAU – relative acceleration (expressed in seconds); MAC – maximum acceleration (expressed in 
𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1); dotted horizontal line - visual 
anchor using fixed 5% absolute percent difference, used for easier visual comparison between 

models. 
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2 PROBLEM, SCOPE, AND AIM OF THE STUDY 

 

The effect of starting position on the short sprint modeling using timing gates represents a 
practical problem for practitioners and researchers. Elimination of the bias in estimated 
parameters introduced due to the flying start is imperative to enhance the validity of short 
sprint profiles and to improve their sensitivity to intervention changes. The current study 
aims to examine the aforementioned bias and investigate the impact of various mono-
exponential models on the validity and sensitivity of brief sprint profiling. 

The scope of the study was exploration, evaluation, and validation of the No Correction, Fixed 
TC, Estimated TC, Fixed FD, and Estimated FD mono-exponential models for estimating short 
sprints parameters (i.e., 𝑀𝑆𝑆, 𝑇𝐴𝑈, 𝑀𝐴𝐶, and 𝑃𝑀𝐴𝑋) using timing gates under different flying 
start conditions. The aim of this study was to explore the behavior of these models and to 
evaluate their ability to estimate short sprint parameters, as well as to estimate their 
sensitivity to short sprint parameter changes due to the training interventions. 

The proposed models were subjected to exploration, evaluation, and validation through two 
methods: (1) simulation and (2) athlete-based validation against the criterion measurement 
(i.e., the laser gun). These two methods were employed in two distinctive, yet complementary, 
parts of this study. 

 

2.1 Specific aims of the first part of the study 

The objective of the first part of the study was to investigate the behavior of No Correction, 
Estimated TC, and Estimated FD mono-exponential models under simulated and known 
conditions. This was necessary to provide a theoretical comprehension of the short sprints 
modeling’s limitations and expected errors. 

In addition to estimating the agreement between true and estimated parameter values (i.e., 
precision), practitioners are frequently interested in whether estimated measures can be used 
to trace changes in true measures. Consequently, the second objective of the first part of the 
study was to assess the sensitivity of the models to detect changes in simulated scenarios. 

 

2.2 Specific aims of the second part of the study 

The second part of the study aimed to validate the models against the criterion measure (i.e., 
the laser gun) involving athletes. In the first part of the study (i.e., simulation study), the 
precision and sensitivity to change of the models were evaluated against the true (i.e., 
simulated) values across different flying start distances. In the second part of the study, the 
precision and sensitivity to change were evaluated against the criterion measure, serving as 
the proxy to the true measure. 
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3 THE HYPOTHESIS OF THE STUDY 

 

The following hypotheses were used for this study: 

1. When estimated using the No Correction model using timing gates, flying start induces 
bias in short sprint parameters, 

2. Estimated TC and Estimated FD models alleviate this bias and improve the sensitivity of 
short sprint profiling to detect true change in individual sprint characteristics. 
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4 POTENTIAL BENEFITS OF THE STUDY 

 

Sprint profiling is utilized in sports with three aims: (1) to compare individuals and groups, 
(2) to estimate training intervention effects on both individuals and groups, and (3) to use 
profiles to individualize training (Morin & Samozino, 2016). Improving the precision and 
sensitivity of the profiles will benefit practitioners when pursuing those tasks by increasing 
confidence in differences, changes, and decisions, respectively. 

If proven to alleviate bias associated with flying sprint during timing gates measurement and 
improve profiling sensitivity, then Estimated TC and Estimated FD models might replace the 
No Correction model with practitioners and become standardized estimation models. 
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5 THE FIRST PART OF THE STUDY 

 

The primary objective of this part of the study is to investigate the behavior of the No 
Correction, Estimated TC, and Estimated FD mono-exponential models under both simulated 
and known settings. The inclusion of this component within the study was necessary in order 
to establish a theoretical comprehension of the constraints and anticipated inaccuracies 
associated with the modeling of short sprints. This theoretical foundation then guided the 
implementation of a more pragmatic second part of the study, which involved athletes. 

 

5.1 Methods 

5.1.1 Simulation design 

In this part of the study, timing gate split times were generated using true short sprint 
parameters: (1) 𝑀𝑆𝑆 (ranging from 7 to 11 𝑚𝑠−1, in increments of 0.05 𝑚𝑠−1, resulting in a 
total of 81 unique values), (2) 𝑀𝐴𝐶 (ranging from 7 to 11 𝑚𝑠−2, in increments of 0.05 𝑚𝑠−2, 
resulting in a total of 81 unique values), and (3) flying distance (𝐹𝐷) (ranging from 0 to 0.5 𝑚, 
in increments of 0.01 𝑚, resulting in a total of 51 unique values). Each flying sprint distance 
consists of 6,561 𝑀𝑆𝑆 and 𝑀𝐴𝐶 combinations. 

Split times were generated assuming timing gates positioned at 5, 10, 20, 30, and 40 meters, 
with the rounding to the closest 10 𝑚𝑠. In total, there were 334,611 sprints simulated. 

5.1.2 Statistical analyses 

For each stimulated sprint, 𝑀𝑆𝑆, 𝑀𝐴𝐶, 𝑇𝐴𝑈, and 𝑃𝑀𝐴𝑋 were estimated using the (1) No 
Correction, (2) Estimated TC, and (3) Estimated FD models. Percent difference (%𝐷𝑖𝑓𝑓) 
(Equation 10) estimator was used to evaluate the agreement between true and estimated 
parameter values. 

%𝐷𝑖𝑓𝑓 = 100 ×
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑡𝑟𝑢𝑒

𝑡𝑟𝑢𝑒
  (10) 

𝑀𝑒𝑑𝑖𝑎𝑛 and 95% highest-density continuous interval (𝐻𝐷𝐶𝐼) (Kruschke, 2015, 2018; Kruschke 
& Liddell, 2018a, 2018b; Makowski et al., 2019) were used to summarize the %𝐷𝑖𝑓𝑓 
distribution across simulated sprints. 

Region of practical equivalence (𝑅𝑂𝑃𝐸), as well as the proportion of the simulations that lie 
within 𝑅𝑂𝑃𝐸 (𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸; expressed as a percentage) (Jovanović, 2020a; Kruschke, 2015, 
2018; Kruschke & Liddell, 2018a, 2018b; Makowski et al., 2019) were calculated to provide a 
magnitude interpretation of the %𝐷𝑖𝑓𝑓 distribution. For the purpose of this part of the study, 
𝑅𝑂𝑃𝐸 was assumed to be equal to 95% 𝐻𝐷𝐶𝐼 of the %𝐷𝑖𝑓𝑓 using the No Correction model and 
no flying distance. This value denotes the minimum level of inaccuracy, indicating the highest 
level of agreement that may be attained. The determination is only based on the precision of 
the timing gates measurement (i.e., rounding to the closest 10 𝑚𝑠) as well as the parameters 
used in the simulation. 

Practitioners are frequently concerned about whether they may utilize estimated parameter 
values to monitor changes in the true parameters in addition to estimating agreement 
between them. Thus, an estimate of the sensitivity represents a piece of crucial information to 
decide whether a given measure can be practically used to monitor changes. A minimal 
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detectable change estimator with 95% confidence (%𝑀𝐷𝐶95) (Furlan & Sterr, 2018; Jovanović, 
2020a) was utilized to estimate this sensitivity. The %𝑀𝐷𝐶95 value might be regarded as the 
minimum amount of change that needs to be observed in the estimated parameter for it to be 
considered a true change. 

Percent residual standard error (%𝑅𝑆𝐸) of the linear regression between true (predictor) and 
estimated parameter values (outcome) (Equation 11) was utilized to calculate %𝑀𝐷𝐶95 
(Equation 12). Since simulated data with the known true values were utilized, %𝑅𝑆𝐸 
represents the percent standard error of the measurement (%𝑆𝐸𝑀) in the estimated 
parameters. 

%𝑅𝑆𝐸 =
√∑ (100 ×

𝑦𝑖 − 𝑦�̂�
𝑦�̂�

)
2

𝑁
𝑖=1

𝑁 − 2
  (11) 

%𝑀𝐷𝐶95 = %𝑅𝑆𝐸 × √2 × 1.96  (12) 

In addition to providing %𝑀𝐷𝐶95 for the estimated parameters, the lowest %𝑀𝐷𝐶95 was 
estimated using the No Correction model and no flying distance (%𝑀𝐷𝐶95

𝑙𝑜𝑤𝑒𝑠𝑡). Theoretically, 
%𝑀𝐷𝐶95

𝑙𝑜𝑤𝑒𝑠𝑡 represents the lowest %𝑀𝐷𝐶95 that can be achieved, and it is limited purely by 
the timing gates measurement precision (i.e., rounding to the closest 10 𝑚𝑠) and simulated 
parameters. %𝑀𝐷𝐶95

𝑙𝑜𝑤𝑒𝑠𝑡 is used only as a reference to evaluate estimated parameters’ 
%𝑀𝐷𝐶95. 

The analyses were conducted on split times that were pooled together, meaning that all flying 
distances were taken into account. Additionally, the analyses were also done across each 
individual flying distance. The hypothesis posited that the Estimated FD model would yield the 
greatest estimates for 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 and the lowest estimates for %𝑀𝐷𝐶95. 

The open-source shorts package (Jovanović, 2023; Jovanović & Vescovi, 2022) created in R 
4.2.1 language (R Core Team, 2022) was used, together with RStudio (version 
2023.06.1+524), to perform statistical analyses and graph construction. 

 

 

5.2 Results 

5.2.1 Model fitting 

The Estimated FD model failed to be fitted for certain parameter combinations in the 
simulated data, which can be found in Table 4. The probable cause for the unsuccessful model 
fittings is the amalgamation of a very small flying distance and the precision of the timing 
gates’ measurements, resulting in Estimated FD being an ill-defined model that cannot be 
fitted. These sprints were disregarded from further analysis. 
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Table 4. Failures in the estimation of the Estimated flying start distance (Estimated FD) model 

Flying distance (m) Not fitted Total Not fitted (%) 

0.00 1765 6561 26.90 

0.01 12 6561 0.18 

0.02 16 6561 0.24 

0.03 10 6561 0.15 

0.04 4 6561 0.06 

0.05 1 6561 0.02 

 

5.2.2 Percent difference 

5.2.2.1 Region of practical equivalence 

The estimated Region of Practical Equivalence (ROPE) values for 𝑀𝑆𝑆, 𝑀𝐴𝐶, 𝑇𝐴𝑈, and 𝑃𝑀𝐴𝑋 
are equal to -0.30 to 0.33%, -0.73 to 0.74%, -1.03 to 1.00%, and -0.50 to 0.50%, respectively, 
as presented in Table 5. These values are also visually represented by the grey horizontal bars 
in Figure 9 and Figure 10. A noteworthy discovery indicates that when considering simulation 
parameters, specifically the accuracy of timing gates to the nearest 10 𝑚𝑠, 𝑀𝑆𝑆 exhibits the 
smallest 𝑅𝑂𝑃𝐸 in comparison to other short sprint parameters. Given the theoretical 
simulation, it can be inferred that the parameter with the highest degree of precision in 
estimation is the 𝑀𝑆𝑆, as it is represented by the lowest estimation error denoted by 𝑅𝑂𝑃𝐸. 
On the contrary, the estimations of 𝑇𝐴𝑈 and 𝑀𝐴𝐶 exhibit the lowest degree of precision. 

5.2.2.2 Pooled analysis 

The analysis was conducted by pooling all flying distances together. The pooled analysis 
serves as a comprehensive evaluation of the concordance between the actual (i.e., true) and 
estimated parameter values under various simulated scenarios. 

The distribution of the pooled percent difference (%𝐷𝑖𝑓𝑓) is illustrated in Figure 9. As 
anticipated, the Estimated FD model exhibited the greatest 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 parameter values 
(from 20 to 72%), with the narrowest 95% 𝐻𝐷𝐶𝐼s (from -5 to 5%) and was devoid of any 
bias. 

Conversely, the No Correction model exhibited suboptimal performance, as evidenced by its 
lowest values for the 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 parameter (from 2 to 2%), the widest 95% 𝐻𝐷𝐶𝐼s (from -
46 to 80%), and the apparent bias indicated by the 𝑚𝑒𝑑𝑖𝑎𝑛 parameter values falling outside 
of 𝑅𝑂𝑃𝐸 (from -35 to 49%). Furthermore, upon conducting a visual examination of Figure 9, it 
was observed that the estimated %𝐷𝑖𝑓𝑓 parameter values exhibit a non-normal distribution, 
thereby necessitating additional analysis across varying flying distance values. 

The Estimated TC model exhibited comparable performance to the Estimated FD model, albeit 
with a slightly lower value for the 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 parameter (from 9 to 67%). Additionally, the 
Estimated TC model displayed wider 95% 𝐻𝐷𝐶𝐼s, and demonstrated a discernible bias, albeit 
significantly smaller than the bias observed in the No Correction model (from -3 to 3%). 

The summary of the pooled analysis results for each model and short sprint parameter can be 
found in Table 5. 
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Figure 9. Pooled distribution of the percent difference (%𝐷𝑖𝑓𝑓) for (1) No Correction (blue), (2) 
Estimated time correction (Estimated TC) (green), and (3) Estimated flying start distance 
(Estimated FD) (orange) models. Error bars represent the distribution 𝑚𝑒𝑑𝑖𝑎𝑛 and 95% 

highest-density continuous interval (95% 𝐻𝐷𝐶𝐼). A grey area represents the parameter region of 
practical equivalence (ROPE) (assumed to be equal to 95% 𝐻𝐷𝐶𝐼 of the %𝐷𝑖𝑓𝑓 using the No 

Correction model and no flying distance). Note. MSS – maximum sprinting speed (expressed in 
𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum acceleration 

(expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1) 
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Table 5. Region of practical equivalence (𝑅𝑂𝑃𝐸), a summary of percent difference (%𝐷𝑖𝑓𝑓) 
distribution, and percentage of the simulations that lie within the region of practical equivalence 
(𝑖𝑛𝑠𝑖𝑑𝑒; 𝑅𝑂𝑃𝐸) estimated using pooled simulation dataset for (1) No Correction, (2) Estimated 
time correction (Estimated TC), and (3) Estimated flying start distance (Estimated FD) models. 
Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration 
(expressed in seconds); MAC – maximum acceleration (expressed in 𝑚𝑠−2); PMAX – maximal 
relative power (expressed in 𝑊𝑘𝑔−1); HDCI – highest-density continuous interval 

Parameter ROPE (%) Model % Diff Inside ROPE (%) 

 

MSS 

 

-0.30 to 0.33% 

No correction median -3%, 95% HDCI [-7 to 0%] 2% 

Estimated TC median 0%, 95% HDCI [-1 to 0%] 67% 

Estimated FD median 0%, 95% HDCI [-1 to 1%] 72% 

 

 

MAC 

 

 

-0.73 to 0.74% 

 

No correction median 49%, 95% HDCI [11 to 80%] 2% 

Estimated TC median 3%, 95% HDCI [-2 to 8%] 12% 

Estimated FD median 0%, 95% HDCI [-4 to 4%] 25% 

 

 

TAU 

 

-1.03 to 1.00% 

 

No correction median -35%, 95% HDCI [-46 to -11%] 2% 

Estimated TC median -3%, 95% HDCI [-9 to 2%] 16% 

Estimated FD median 0%, 95% HDCI [-5 to 5%] 31% 

 

 

PMAX 

 

-0.50 to 0.50% 

 

No correction median 44%, 95% HDCI [6 to 73%] 2% 

Estimated TC median 3%, 95% HDCI [-2 to 8%] 9% 

Estimated FD median 0%, 95% HDCI [-4 to 4%] 20% 

 

5.2.2.3 Analysis across flying distances 

The analysis results for each flying distance in the simulation are depicted in Figure 10. 
Computed 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 estimates are illustrated in Figure 11. 

As anticipated, the No Correction model exhibited a growing bias as the flying distance 
increased (from -46 to 76%). This was evidenced by the broadest 95% 𝐻𝐷𝐶𝐼s (from -47 to 
84%) and the most minimal estimated parameter values that were within the Region of 
Practical Equivalence (from 0 to 95%). 

The analysis revealed that the Estimated TC model exhibited a small bias trend across flying 
distances (from -6 to 6%), resulting in decreasing 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 performance (from 0 to 75%; 
see Figure 11). However, it is noteworthy that the model’s 95% 𝐻𝐷𝐶𝐼s (from -10 to 11%) 
were much smaller than those of the No Correction model. 

The Estimated FD model exhibited no bias and demonstrated consistent 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 across 
various flying distances. The graphical representation of this observation can be found in 
Figure 11. Additionally, the Estimated FD displayed narrow 95% 𝐻𝐷𝐶𝐼s (from -5 to 6%). 
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Figure 10. Distribution of the percent difference (%𝐷𝑖𝑓𝑓) across every flying distance in the 
simulation for (1) No Correction (blue), (2) Estimated time correction (Estimated TC) (green), 
and (3) Estimated flying start distance (Estimated FD) (orange) models. Error bars represent 

the distribution 𝑚𝑒𝑑𝑖𝑎𝑛 and 95% highest-density continuous interval (95% 𝐻𝐷𝐶𝐼). A grey area 
represents the parameter region of practical equivalence (𝑅𝑂𝑃𝐸) (assumed to be equal to 95% 
𝐻𝐷𝐶𝐼 of the %𝐷𝑖𝑓𝑓 using the No Correction model and no flying distance). For the less crowded 
visualization, flying distance in increments of 0.05 𝑚 is plotted. Note. MSS – maximum sprinting 
speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum 

acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1) 
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Figure 11. Percentage of the simulations that lie within the region of practical equivalence 
(𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸) estimated across every flying distance in the simulation for (1) No Correction 
(blue), (2) Estimated time correction (Estimated TC) (green), and (3) Estimated flying start 

distance (Estimated FD) (orange) models. Note. MSS – maximum sprinting speed (expressed in 
𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum acceleration 

(expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1) 

 

5.2.3 Minimal detectable change 

5.2.3.1 Lowest Minimum Detectable Change 

The estimated lowest minimum detectable change (%𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡) is presented in Table 6 and 

visualized as dashed grey horizontal lines in Figure 12. The values for 𝑀𝑆𝑆, 𝑀𝐴𝐶, 𝑇𝐴𝑈, and 
𝑃𝑀𝐴𝑋 are 0.45%, 1.06%, 1.47%, and 0.70%, respectively. The dashed grey horizontal lines in 
Figure 12 indicate these values. A noteworthy discovery indicates that, given simulation 
parameters (particularly the precision of the timing gates to the closest 10 𝑚𝑠), 𝑀𝑆𝑆 exhibits 
the least %𝑀𝐷𝐶𝑠95

𝑙𝑜𝑤𝑒𝑠𝑡  in comparison to other short sprint parameters. In contrast, the 
estimations of 𝑇𝐴𝑈 and 𝑀𝐴𝐶 changes exhibit the least precision. 

5.2.3.2 Pooled analysis 

The pooled minimum detectable changes (%𝑀𝐷𝐶𝑠95) signifies a projection of the sensitivity 
to identify authentic alterations with a confidence level of 95% when the flying start distance 
is not standardized. This projection is made within the simulation parameter limits, which 
range from 0 to 0.5 meters distance of the flying start. As anticipated, the No Correction model 
exhibited the greatest %𝑀𝐷𝐶𝑠95 (from 3 to 44%). Conversely, Estimated TC and Estimated FD 
models demonstrated notably smaller %𝑀𝐷𝐶𝑠95, with values of from 1 to 8% and from 1 to 
7%, respectively (refer to Table 6). 

A noteworthy observation is that the 𝑀𝑆𝑆 parameter exhibited considerably low %𝑀𝐷𝐶𝑠95 
across all models (from 1 to 3%), including the No Correction model. The findings suggest that 
the No Correction model can be utilized to monitor modifications in 𝑀𝑆𝑆, even in cases where 
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short sprints are employed without standardized flying distance, based on simulation 
parameters. In contrast, the 𝑇𝐴𝑈, 𝑀𝐴𝐶, and 𝑃𝑀𝐴𝑋 parameters require a significantly greater 
amount of change that needs to be observed for them to be considered a true change. The 
respective values for the %𝑀𝐷𝐶𝑠95 are from 7 to 44%, from 6 to 37%, and from 6 to 36%. 

 

Table 6. Minimal detectable change using 95% confidence level (%𝑀𝐷𝐶𝑠95) estimated using 
pooled simulation dataset for (1) No Correction, (2) Estimated time correction (Estimated TC), 
and (3) Estimated flying start distance (Estimated FD) models. Note. MSS – maximum sprinting 
speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum 

acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1) 

Parameter %𝑴𝑫𝑪𝒔𝟗𝟓
𝒍𝒐𝒘𝒆𝒔𝒕 No correction Estimated TC Estimated FD 

MSS 0.45 % 3 % 1 % 1 % 

MAC 1.06 % 37 % 7 % 6 % 

TAU 1.47 % 44 % 8 % 7 % 

PMAX 0.70 % 36 % 7 % 6 % 

 

5.2.3.3 Analysis across flying distances 

The analysis of %𝑀𝐷𝐶𝑠95 across various flying distances reveals intriguing and unexpected 
trends, as depicted in Figure 12. In relation to each short sprint parameter, the Estimated TC 
model exhibited consistent and reduced values of minimum detectable change (%𝑀𝐷𝐶𝑠95) in 
comparison to the Estimated FD (from 1 to 6% and from 1 to 8%, respectively). These results 
are unexpected because, in contrast to Estimated FD, Estimated TC may be more sensitive in 
detecting changes given the simulation parameters, despite showing bias in approximating 
short sprint parameters (please refer to the results section on Percent difference, particularly 
Figure 11). 

An additional noteworthy discovery is that the No Correction model, despite displaying a 
significant inclination towards biased estimations of short sprint parameters (please refer to 
the results section on Percent difference, particularly Figure 10), exhibited the least %𝑀𝐷𝐶𝑠95 
for the 𝑀𝐴𝐶 and 𝑇𝐴𝑈 parameters (from 1 to 5% and from 1 to 3%, respectively). The 
aforementioned observation suggests that by standardizing short sprint measurement, 
wherein athletes execute the activity at an identical flying start distance, and considering the 
simulation parameters, the No Correction model may exhibit the highest level of sensitivity in 
identifying changes in 𝑀𝐴𝐶 and 𝑇𝐴𝑈 parameters. Unfortunately, this is not the case for 𝑀𝑆𝑆 
and 𝑃𝑀𝐴𝑋 parameters (from 0 to 3% and from 1 to 9%, respectively). 

In the context of assessing changes in short sprint parameters, the parameter that exhibits the 
highest degree of sensitivity for detection is the 𝑀𝑆𝑆, as indicated by %𝑀𝐷𝐶𝑠95 values 
ranging from 0 to 3%, in comparison to 𝑀𝐴𝐶 (from 1 to 7%), 𝑇𝐴𝑈 (from 1 to 8%), and 𝑃𝑀𝐴𝑋 
(from 1 to 9%). 
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Figure 12. Estimated minimal detectable change using 95% confidence level (%𝑀𝐷𝐶𝑠95) across 
every flying distance in the simulation for (1) No Correction, (2) Estimated time correction 

(Estimated TC), and (3) Estimated flying start distance (Estimated FD) models. The dashed line 
represents the lowest %𝑀𝐷𝐶𝑠95 estimated using the No Correction model and no flying distance 

(%𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡). Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – relative 

acceleration (expressed in seconds); MAC – maximum acceleration (expressed in 𝑚𝑠−2); PMAX – 
maximal relative power (expressed in 𝑊𝑘𝑔−1) 

 

5.3 Discussion 

The simulation utilized in the first part of the study exhibited both anticipated and 
unanticipated theoretical discoveries. The anticipated results include three main outcomes. 
First, the No Correction model was expected to exhibit bias and low performance in estimating 
short sprint parameters, particularly in relation to the 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 metric. Second, the 
Estimated TC model was predicted to demonstrate less bias and a higher level of performance 
within the 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 metric. Lastly, the Estimated FD model was expected to exhibit no 
bias and the highest level of performance within the 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 metric. These three 
outcomes were all confirmed with the results of the simulation analysis. 

The first part of the study yielded an unforeseen outcome, namely, the superior performance 
of the No Correction model in accurately estimating the change sensitivity of the 𝑀𝐴𝐶 and 
𝑇𝐴𝑈 parameters, surpassing the performance of the other two models. 

When making estimations of short sprint parameters across models based on simulation 
parameters, it is observed that the 𝑀𝑆𝑆 parameter and its change can be estimated with 
greater precision in comparison to the parameters of 𝑇𝐴𝑈, 𝑀𝐴𝐶, and 𝑃𝑀𝐴𝑋, as well as their 
respective changes. 

This part of the study presented the 𝑅𝑂𝑃𝐸s and %𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡 , in addition to evaluating 

model performances. These findings have the potential to contribute to the advancement of 
validity and reliability studies that assess the performance of short sprint models among 
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actual athletes, utilizing timing gates that are positioned at precise distances and with exact 
rounding utilized in the simulation. 

The key point for practitioners is that in addition to standardizing the sprint starting 
technique for short sprint performance monitoring, it would be prudent to employ and 
monitor the outcomes of all three models. The Estimated FD model is capable of providing 
unbiased estimations of present performance, whereas the No Correction model may exhibit 
greater sensitivity in identifying changes in 𝑇𝐴𝑈 and 𝑀𝐴𝐶 parameters. 

It is advisable to exercise prudence when considering this pragmatic inference, as it is 
founded upon the outcomes of this theoretical simulation. Further research is required to 
assess the efficacy of these three models by utilizing actual athletes, as demonstrated in the 
second part of the study. 
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6 THE SECOND PART OF THE STUDY 

 

Second part of the study involves the assessment of athletes’ sprinting performance over a 
distance of 30 meters, commencing from a stationary position. The measurement of their 
performance was conducted through the use of a laser gun and timing gates. Since the true 
individual parameters are unknown, laser gun estimates served as the criterion measure, used 
to compare and evaluate timing gates estimates. In addition to estimating the agreement of 
the timing gates and laser gun, the sensitivity of the measures to detect changes in parameters 
was also established. 

 

6.1 Methods 

6.1.1 Participants 

This part of the study involved the participation of 31 basketball players, comprising of 23 
males (age of 16.1 ± 1.0 years, height of 188.3 ± 7.5 𝑐𝑚, and body mass of 69.5 ± 10.8 𝑘𝑔) and 
8 females (age of 16.1 ± 1.4 years, height of 170.5 ± 7.5 𝑐𝑚, and body mass of 60.9 ± 7.6 𝑘𝑔). 
These players were selected from the highest youth level of Hungary. The participants were 
duly apprised of the potential hazards and advantages of their involvement in the study, and a 
written authorization was procured from both the participants and their parents. The 
research adhered to the ethical guidelines approved by the Faculty of Sport and Physical 
Education at the University of Belgrade, Serbia (02-877/23-2, 9th May, 2023), and was 
conducted in accordance with the most recent version of the Declaration of Helsinki. 

6.1.2 Procedure 

Prior to evaluating sprint performance, a standardized warm-up protocol lasting 15 minutes 
was executed. The warm-up involved a series of mobility and running exercises performed 
repeatedly within a 20-meter distance, culminating in three incremental sub-maximal sprints 
covering a distance of 30 meters. Following the warm-up, the participants executed two trials 
of maximal sprints covering a distance of 30 𝑚, with a minimum rest period of 3 minutes 
between each trial. If equipment failure occurred, an additional sprint was executed as 
necessary. The sprint times were recorded using a set of five wireless photocell pairs 
(WittyGATE™ v1.5.34, Microgate S.r.l, Bolzano, Italy) positioned at the start line, as well as at 
distances of 5, 10, 20, and 30 𝑚 (Figure 13). The accuracy of the timing measurements was 
0.01 𝑠. At the beginning of each sprint, the participants assumed a split stance with their lead 
foot positioned behind a line affixed to the floor at a distance of 0.5 𝑚 from the initial pair of 
photocells. The photocells were situated at a height of 1 𝑚 to prevent premature interruption 
of the beam by the upper body during the starting position. The velocity measurements were 
continuously recorded for each attempt utilizing a laser gun (CMP3 Distance Sensor, Noptel 
Oy, Oulu, Finland) at a sampling rate of 2.56 KHz. A polynomial function was utilized to model 
the relationship between distance and time, which was subsequently resampled at a 
frequency of 1,000 Hz through the use of Musclelab™ v10.232.107.5298 (Ergotest Technology 
AS, Langesund, Norway). The laser gun was situated at a distance of roughly 3 𝑚 from the 
initial timing gate, while the reference point (i.e., zero distance) was established at a distance 
of 1 𝑚 behind the initial timing gate (Figure 13). The entirety of the sprints were executed 
within the confines of an indoor basketball facility. 
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Figure 13. Laser gun and timing gates setup. 

 

To compare the short sprint mechanical parameters: (1) the maximal sprinting speed (𝑀𝑆𝑆), 
(2) the relative acceleration (𝑇𝐴𝑈), (3) the maximal acceleration (𝑀𝐴𝐶), and (4) the net 
relative propulsive power (𝑃𝑀𝐴𝑋) were calculated based upon the sprint times at 5, 10, 20, 
and 30 𝑚 measured with the timing gates and with the laser system by using open-source 
{shorts} package (Jovanović, 2023; Jovanović & Vescovi, 2022). The mechanical parameters 
for the timing gates were estimated through five different models: (1) No Correction, (2) Fixed 
+0.3 𝑠 time correction (Fixed +0.3s TC), (3) Estimated time correction (Estimated TC), (4) 
Fixed 0.5 𝑚 flying start distance (Fixed 0.5m FD), and (5) Estimated flying start distance 
(Estimated FD) models explained previously. Sprint mechanical parameters for the laser gun 
were estimated using the raw velocity-time signal and time correction polynomial model 
(Equation 5), after filtering out velocities below 0.5 𝑚𝑠−1 using smoothed velocity provided by 
the Musclelab™ software. 

The inclusion criteria for the sprint trials encompassed both timing gates and laser gun data. 
The study excluded trials that exhibited deceleration in timing gate split times, wherein the 
mean velocity of a particular split was slower than that of the preceding split. Furthermore, 
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laser gun trials that exhibited a trace length of less than 29 meters were excluded from 
subsequent analysis. 

6.1.3 Statistical analyses 

6.1.3.1 Descriptive analysis 

Simple descriptive analysis was performed on (1) trial split times and average split velocities, 
(2) trial short sprint parameters estimated using laser gun and timing gates, (3) pooled (i.e., 
Trial 1 and Trial 2) relationship between first and last average split velocity using timing 
gates, (4) pooled relationship between 𝑀𝑆𝑆 estimates and 20-30 𝑚 average split velocity, and 
(5) pooled relationship between 𝑀𝐴𝐶 estimates and 0-5 𝑚 average split velocity. 

For descriptive analyses (1-2), in addition to providing descriptive summary using 𝑚𝑒𝑑𝑖𝑎𝑛 
and 25th and 75th quantiles (i.e., interquartile range) for the split times, average split 
velocities, and estimated short sprint parameters, percent difference between trials (%𝐷𝑖𝑓𝑓; 
Equation 13) and percent coefficient of variation (%𝐶𝑉; Equation 14) were calculated for each 
individual athlete and summarized using the aforementioned method. 

%𝐷𝑖𝑓𝑓 = 100 ×
(𝑇𝑟𝑖𝑎𝑙2 − 𝑇𝑟𝑖𝑎𝑙1)

𝑇𝑟𝑖𝑎𝑙1
  (13) 

%𝐶𝑉 = 100 ×
√1
𝑁
∑ (𝑇𝑟𝑖𝑎𝑙𝑖 − 𝑇𝑟𝑖𝑎𝑙)

2
𝑁
𝑖=1

𝑇𝑟𝑖𝑎𝑙
  (14) 

For descriptive analyses (3-5), simple linear regression has been fitted with variance 
explained (𝑅2) and p-value provided. Statistical significance is set at 𝑝 < 0.05. 

6.1.3.2 Agreement between laser gun and timing gates 

Agreement between short sprint parameter estimates using laser gun and timing gates were 
estimated using percent difference (%𝐷𝑖𝑓𝑓) estimator (Equation 15), which was calculated for 
every athlete and trial. These were summarized using 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th quantiles 
(i.e., interquartile range; 𝐼𝑄𝑅). 

%𝐷𝑖𝑓𝑓 = 100 ×
(𝑇𝑖𝑚𝑖𝑛𝑔 𝐺𝑎𝑡𝑒𝑠 − 𝐿𝑎𝑠𝑒𝑟)

𝐿𝑎𝑠𝑒𝑟
  (15) 

Using individual percent difference scores, percent bias (%𝐵𝑖𝑎𝑠, or mean percent difference; 
Equation 16) and percent mean absolute difference (%𝑀𝐴𝐷; Equation 17) were calculated. 

%𝐵𝑖𝑎𝑠 =
1

𝑁
∑(%𝐷𝑖𝑓𝑓)

𝑁

𝑖=1

  (16) 

%𝑀𝐴𝐷 =
∑ |%𝐷𝑖𝑓𝑓𝑖 −%𝐷𝑖𝑓𝑓|𝑁
1

𝑁
  (17) 

Statistical inference for %𝐵𝑖𝑎𝑠 and %𝑀𝐴𝐷 estimators were provided using the 2,000 
resamples bootstrap and 95% bias-corrected and accelerated (BCa) confidence intervals 
(Canty & Ripley, 2017; Davison & Hinkley, 1997; Efron & Hastie, 2016; Jovanović, 2020b). 
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6.1.3.3 Minimal detectable change 

Practitioners are frequently concerned about whether they may utilize estimated parameter 
values to monitor changes in the true parameters in addition to estimating agreement 
between them. Thus, an estimate of the sensitivity represents a crucial information to decide 
whether a given measure can be practically used to monitor changes. A minimal detectable 
change estimator with 95% confidence (%𝑀𝐷𝐶95) (Furlan & Sterr, 2018; Jovanović, 2020a) 
was utilized to estimate this sensitivity. The %𝑀𝐷𝐶95 value might be regarded as the 
minimum amount of change that needs to be observed in the estimated parameter for it to be 
considered a true change. 

Two methods for estimating %𝑀𝐷𝐶95 were utilized. The first method utilizes pooled (i.e., 
Trial 1 and Trial 2) agreement between laser gun and timing gates, while the second method 
utilizes the differences between trials. 

6.1.3.3.1 MDC using an agreement with Laser 

The sensitivity of the timing gates to detect change in parameters, estimated using agreement 
with the laser gun, assumes that there is no random error in laser gun estimates. In other 
words, this method assumes that the laser gun estimates represent the true parameter value. 

Percent residual standard error (%𝑅𝑆𝐸) of the pooled (i.e., Trial 1 and Trial 2) linear 
regression between laser gun (predictor) and timing gates (outcome) (Equation 18) was 
utilized to calculate %𝑀𝐷𝐶95 (Equation 19) for short sprint parameters. Assuming no random 
error involved in laser gun estimates, %𝑅𝑆𝐸 represents the percent standard error of the 
measurement (%𝑆𝐸𝑀) in the timing gates estimates. 

%𝑅𝑆𝐸 =
√∑ (100 ×

𝑦𝑖 − 𝑦�̂�
𝑦�̂�

)
2

𝑁
𝑖=1

𝑁 − 2
  (18) 

%𝑀𝐷𝐶95 = %𝑅𝑆𝐸 × √2 × 1.96  (19) 

6.1.3.3.2 MDC using Trials 

Another method utilized to estimate minimum-detectable change involves using Trial 1 and 
Trial 2. Percent residual standard error (%𝑅𝑆𝐸) of the linear regression between Trial 1 
(predictor) and Trial 2 (outcome) (Equation 18) was utilized to calculate %𝑀𝐷𝐶95 
(Equation 19) for split times and average split velocities, as well as for short sprint estimates 
using both laser gun and timing gates. 

This method of minimum-detectable change estimation combines inherent biological 
variability between trials with random error of the measures involved. 

Statistical inference for %𝑀𝐷𝐶95 estimators were provided using the 2,000 resamples 
bootstrap and 95% bias-corrected and accelerated (BCa) confidence intervals (Canty & Ripley, 
2017; Davison & Hinkley, 1997; Efron & Hastie, 2016; Jovanović, 2020b). 
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6.2 Results 

6.2.1 Model fitting 

The dataset in Table 7 comprises the total count of trials that were subjected to subsequent 
analysis following the exclusion of trials that did not satisfy the established inclusion criteria. 
The Estimated FD model could not be fitted for specific athletes in Trial 1, as denoted in 
Table 7. 

 

Table 7. Final number of athletes in each trial used in the analysis for (1) Laser, (2) No 
Correction, (3) Fixed +0.3s time correction (Fixed +0.3s TC), (4) Estimated time correction 

(Estimated TC), (5) Fixed 0.5m flying start distance (Fixed 0.5m FD), and (6) Estimated flying 
start distance (Estimated FD) models. 

model Trial 1 Trial 2 Trial 2-1 

Laser 27 15 15 

No correction 27 15 15 

Fixed +0.3s TC 27 15 15 

Estimated TC 27 15 15 

Fixed 0.5m FD 27 15 15 

Estimated FD 25 15 15 

 

 

6.2.2 Descriptive Analysis 

6.2.2.1 Timing gate split times and average split velocities 

Measured timing gate split times for 5, 10, 20, and 30-meter marks ranged from 0.9 to 1.41, 
1.58 to 2.26, 2.78 to 3.69, and 3.95 to 5.11 seconds, respectively. Calculated average split 
velocities for 0-5 𝑚 ranged from 3.55 to 5.56, for 5-10 𝑚 from 3.55 to 5.56, for 10-20 𝑚 from 
3.55 to 5.56, and for 20-30 𝑚 from 3.55 to 5.56 𝑚𝑠−1. These observations are illustrated in 
Figure 14 and summarized using 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th quantiles for every trial. 
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Figure 14. Timing gate split times (expressed in 𝑠; left panel) and average split velocities 
(expressed in 𝑚𝑠−1; right panel) for Trial 1 (blue ●) and Trial 2 (purple ▲). Error bars represent 

𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th quantiles (i.e., interquartile range). 

 

 

Calculated individual percent differences (%𝐷𝑖𝑓𝑓) between Trial 1 and Trial 2 for 5, 10, 20, 
and 30-meter marks ranged from -11.76 to 20.00%, -7.06 to 10.30%, -6.08 to 7.30%, and -
4.42 to 4.90% respectively, while for the average split velocities ranged from -16.67 to 
13.30%, -7.79 to 10.00%, -3.55 to 5.00%, -4.00 to 11.2% for 0-5, 5-10, 10-20, and 20-30 𝑚 
respectively (Figure 15). Visual inspection of Figure 15 indicates that the 20 and 30-meter 
split times, as well as the average velocity for the 10-20 and 20-30-meter splits, demonstrated 
the lowest spread of the individual %𝐷𝑖𝑓𝑓 values. 
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Figure 15. Percent difference (%𝐷𝑖𝑓𝑓) between Trial 2 and Trial 1 for timing gate split times 
(expressed in 𝑠; left panel) and average split velocities (expressed in 𝑚𝑠−1; right panel). Grey 
bars represent ±5 and ±10% difference used as a visual anchor. Error bars represent 𝑚𝑒𝑑𝑖𝑎𝑛 

and 25th and 75th quantiles (i.e., interquartile range). 

 

 

Calculated individual percent coefficients of variation (%𝐶𝑉) between trials for 5, 10, 20, and 
30 meter marks ranged from 0.45 to 9.10%, 0 to 4.90%, 0 to 3.5%, and 0.00 to 2.40% 
respectively, while for the average split velocities ranged from 0.45 to 9.10%, 0.00 to 4.80%, 
0.00 to 2.40%, 0.00 to 5.30% for 0-5, 5-10, 10-20, and 20-30 𝑚 respectively (Figure 16). 
Besides 5-meter split time and 0-5-meter average velocity, all other individual performance 
indicators demonstrated %𝐶𝑉 of less than 5%. 
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Figure 16. Percent coefficient of variation (%𝐶𝑉) of timing gate split times (expressed in 𝑠; left 
panel) and average split velocities (expressed in 𝑚𝑠−1; right panel). Grey bars represent 5 and 

10% difference used as a visual anchor. Error bars represent 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th 
quantiles (i.e., interquartile range). 

 

 

Figure 17 depicts relationship between first (0-5 𝑚) and last (20-30 𝑚) average split 
velocities using pooled Trial 1 and Trial 2. There was a statistically significant relationship 
(𝑝 = 0.002) between average velocity in the last split and average velocity in the initial split, 
although not strong (𝑅2 = 22%). 

 

 



 41 

 

Figure 17. Relationship between first (0-5 𝑚) and last (20-30 𝑚) average split velocities using 
pooled Trial 1 (blue ●) and Trial 2 (purple ▲). Shaded area represents 95% confidence interval. 

Note. 𝑅2 - variance explained; P - 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 

 

6.2.2.2 Laser and timing gates short sprint estimates 

Estimated individual parameter values across Trail 1 and Trial 2 for the laser gun, No 
Correction, Fixed +0.3s TC, Estimated TC, Fixed 0.5m FD, and Estimated FD models ranged from 
6.60 to 9.68 𝑚𝑠−1 for 𝑀𝑆𝑆, from 0.36 to 2.13 seconds for 𝑇𝐴𝑈, from 4.18 to 23.17 𝑚𝑠−2 for 
𝑀𝐴𝐶, and from 8.49 to 48.2 𝑊𝑘𝑔−1 for 𝑃𝑀𝐴𝑋 parameter. Figure 18 illustrates these 
individual parameter values together with their summaries using 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th 
quantiles depicted as horizontal error bars. Visual inspection of Figure 18 indicated that 
parameter estimates of the No Correction demonstrated different values, particularly for the 
𝑇𝐴𝑈, 𝑀𝐴𝐶, and 𝑃𝑀𝐴𝑋 parameters. 
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Figure 18. Short sprint parameter values for Trial 1 (blue ●) and Trial 2 (purple ▲) estimated 
using (1) Laser, (2) No Correction, (3) Fixed +0.3s time correction (Fixed +0.3s TC), (4) Estimated 

time correction (Estimated TC), (5) Fixed 0.5m flying start distance (Fixed 0.5m FD), and (6) 
Estimated flying start distance (Estimated FD) models. Error bars represent 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th 
and 75th quantiles (i.e., interquartile range). Note. MSS – maximum sprinting speed (expressed 

in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum acceleration 
(expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1) 

 

 

Estimated individual percent differences (%𝐷𝑖𝑓𝑓) between trials for the laser gun, No 
Correction, Fixed +0.3s TC, Estimated TC, Fixed 0.5m FD, and Estimated FD models ranged from 
-8.46 to 17.00% for 𝑀𝑆𝑆; from -44.07 to 75.90% for 𝑇𝐴𝑈; from -38.78 to 64.20% for 𝑀𝐴𝐶; 
and from -35.71 to 50.90% for 𝑃𝑀𝐴𝑋 parameter. These individual percent difference values 
are illustrated in Figure 19 together with their summaries using 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th 
quantiles depicted as horizontal error bars. Visual inspection of Figure 19 indicated that 
individual %𝐷𝑖𝑓𝑓 values for only the 𝑀𝑆𝑆 parameter were within -10 and 10% across all 
models, as well as for all parameters estimated using the laser gun. 
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(a) Facets organized using short sprint parameters 
 

 

(b) Facets organized using models 
 

Figure 19. Short sprint parameters percent difference (%𝐷𝑖𝑓𝑓) between Trial 2 and Trial 1 
estimated using (1) Laser, (2) No Correction, (3) Fixed +0.3s time correction (Fixed +0.3s TC), (4) 
Estimated time correction (Estimated TC), (5) Fixed 0.5m flying start distance (Fixed 0.5m FD), 

and (6) Estimated flying start distance (Estimated FD) models. Grey bars represent ±5 and ±10% 
difference used as a visual anchor. Error bars represent 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th quantiles 
(i.e., interquartile range). Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – 

relative acceleration (expressed in seconds); MAC – maximum acceleration (expressed in 𝑚𝑠−2); 
PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1) 
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Estimated individual percent coefficients of variation (%𝐶𝑉) for the laser gun, No Correction, 
Fixed +0.3s TC, Estimated TC, Fixed 0.5m FD, and Estimated FD models ranged from 0.03 to 
7.80% for 𝑀𝑆𝑆; from 0.06 to 28.30% for 𝑇𝐴𝑈; from 0.01 to 24.30% for 𝑀𝐴𝐶; and from 0.04 to 
21.70% for 𝑃𝑀𝐴𝑋 parameter. Figure 20 illustrates individual %𝐶𝑉 values together with their 
summaries using 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th quantiles depicted as horizontal error bars. 
Visual inspection of Figure 20 indicated that individual %𝐶𝑉 values for only the 𝑀𝑆𝑆 
parameter were lower than 5% across all models, as well as for all parameters estimated 
using the laser gun. 

 

 

 

 

(a) Facets organized using short sprint parameters 

(Figure continued on the next page) 
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(Figure continued from the previous page) 
 

 

(b) Facets organized using models 
 

Figure 20. Short sprint parameters percent coefficient of variation (%𝐶𝑉) between Trial 1 and 
Trial 2 estimated using (1) Laser, (2) No Correction, (3) Fixed +0.3s time correction (Fixed +0.3s 

TC), (4) Estimated time correction (Estimated TC), (5) Fixed 0.5m flying start distance (Fixed 
0.5m FD), and (6) Estimated flying start distance (Estimated FD) models. Grey bars represent 5 

and 10% difference used as a visual anchor. Error bars represent 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th 
quantiles (i.e., interquartile range). Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); 
TAU – relative acceleration (expressed in seconds); MAC – maximum acceleration (expressed in 

𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊𝑘𝑔−1) 
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Figure 21 depicts the relationship between estimated 𝑀𝑆𝑆 and 𝑀𝐴𝐶 parameters using pooled 
Trial 1 and Trial 2. There was a statistically significant relationship (𝑝 < 0.001) between 
estimated 𝑀𝑆𝑆 and 𝑀𝐴𝐶 parameters only for the laser gun, although not strong (𝑅2 = 29%). 

 

 

Figure 21. Relationship between maximum sprinting speed (MSS; expressed in 𝑚𝑠−1) and 
maximum acceleration (MAC; expressed in 𝑚𝑠−2) estimated using (1) Laser, (2) No Correction, 
(3) Fixed +0.3s time correction (Fixed +0.3s TC), (4) Estimated time correction (Estimated TC), 

(5) Fixed 0.5m flying start distance (Fixed 0.5m FD), and (6) Estimated flying start distance 
(Estimated FD) models for pooled Trial 1 (blue ●) and Trial 2 (purple ▲). Shaded areas 

represent 95% confidence interval. Dotted line represents indentity line (i.e., slope equal to 1). 
Note. 𝑅2 - variance explained; P - 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 

 

6.2.2.3 Relationship between MSS estimates and average 20-30m split velocity 

Figure 22 illustrates relationship between estimated 𝑀𝑆𝑆 parameter and last (20-30 𝑚) 
average split velocity using pooled Trial 1 and Trial 2. There was a statistically significant 
relationship (𝑝 < 0.001) between estimated 𝑀𝑆𝑆 parameter and last average split velocity for 
all models, with 𝑅2 ranging from 62 to 93%. 
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Figure 22. Relationship between last (20-30 𝑚) average split velocity and maximum sprinting 
speed parameter (MSS; expressed in 𝑚𝑠−1) estimated using (1) Laser, (2) No Correction, (3) 

Fixed +0.3s time correction (Fixed +0.3s TC), (4) Estimated time correction (Estimated TC), (5) 
Fixed 0.5m flying start distance (Fixed 0.5m FD), and (6) Estimated flying start distance 
(Estimated FD) models for pooled Trial 1 (blue ●) and Trial 2 (purple ▲). Shaded areas 

represent 95% confidence interval. Dotted line represents indentity line (i.e., slope equal to 1). 
Note. 𝑅2 - variance explained; P - 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 

 

6.2.2.4 Relationship between MAC estimates and average 0-5m split velocity 

Figure 23 illustrates relationship between estimated 𝑀𝐴𝐶 parameter and first (0-5 𝑚) 
average split velocity using pooled Trial 1 and Trial 2. There was a statistically significant 
relationship (𝑝 < 0.05) between estimated 𝑀𝐴𝐶 parameter and the first average split velocity 
for all models except for Estimated TC and Estimated FD models. For models with statistically 
significant relationship, 𝑅2 ranged from 15 to 96%. 
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Figure 23. Relationship between first (0-5 𝑚) average split velocity and maximum acceleration 
parameter (MAC; expressed in 𝑚𝑠−2) estimated using (1) Laser, (2) No Correction, (3) Fixed 

+0.3s time correction (Fixed +0.3s TC), (4) Estimated time correction (Estimated TC), (5) Fixed 
0.5m flying start distance (Fixed 0.5m FD), and (6) Estimated flying start distance (Estimated 

FD) models for pooled Trial 1 (blue ●) and Trial 2 (purple ▲). Shaded areas represent 95% 
confidence interval. Dotted line represents indentity line (i.e., slope equal to 1). Note. 𝑅2 - 

variance explained; P - 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 

 

6.2.3 Agreement between Laser and Timing Gates models 

6.2.3.1 Individual agreement using percent difference 

Pooled (i.e., Trial 1 and Trial 2 combined) individual parameter agreement using percent 
difference (%𝐷𝑖𝑓𝑓) between laser gun and timing gates estimates for the No Correction model 
ranged from -69.0 to 196.3%, for the Fixed +0.3s TC model ranged from -34.2 to 66.2%, for the 
Estimated TC model ranged from -44.9 to 72.5%, for the Fixed 0.5m FD model ranged from -
41.6 to 91.3%, and for the Estimated FD model ranged from -41.3 to 85.4%. 

Figure 24 illustrates individual %𝐷𝑖𝑓𝑓 values together with their summaries using 𝑚𝑒𝑑𝑖𝑎𝑛 
and 25th and 75th quantiles depicted as horizontal error bars. Visual inspection of Figure 24 
indicated that 𝑀𝑆𝑆 parameter demonstrated the highest agreement with the laser across all 
timing gate models, ranging from -8.9 to 19.0%, while the 𝑀𝐴𝐶 parameter demonstrated the 
lowest agreement with the percent difference ranging from -41.6 to 196.3%. 
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(a) Facets organized using short sprint parameters 
 

 

(b) Facets organized using models 
 

Figure 24. Short sprint parameters agreement between Laser and (1) No Correction, (2) Fixed 
+0.3s time correction (Fixed +0.3s TC), (3) Estimated time correction (Estimated TC), (4) Fixed 
0.5m flying start distance (Fixed 0.5m FD), and (5) Estimated flying start distance (Estimated 
FD) models, estimated using percent difference (%𝐷𝑖𝑓𝑓). Pooled Trial 1 (blue ●) and Trial 2 

(purple ▲) data set were utilized. Grey bars represent ±5 and ±10% difference used as a visual 
anchor. Error bars represent 𝑚𝑒𝑑𝑖𝑎𝑛 and 25th and 75th quantiles (i.e., interquartile range). 

Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration 
(expressed in seconds); MAC – maximum acceleration (expressed in 𝑚𝑠−2); PMAX – maximal 

relative power (expressed in 𝑊𝑘𝑔−1) 
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6.2.3.2 Estimated bias 

Estimated mean percent difference (%𝐵𝑖𝑎𝑠) between laser gun and timing gates parameter 
estimates, using pooled Trial 1 and Trial 2, for the No Correction model ranged from -46.1 to 
88.5%, for the Fixed +0.3s TC model ranged from 0.9 to 3.2%, for the Estimated TC model 
ranged from -10.9 to 14.8%, for the Fixed 0.5m FD model ranged from 1.3 to 7.7%, and for the 
Estimated FD model ranged from -0.3 to 5.8%. 

𝑀𝑆𝑆 parameter demonstrated the lowest bias across all timing gate models, ranging from -5.4 
to 1.3%, while the 𝑀𝐴𝐶 parameter demonstrated the highest bias ranging from 1.3 to 88.5%. 

Figure 25 depicts the estimated %𝐵𝑖𝑎𝑠 and accompanying 95% confidence intervals as error 
bars. Visual inspection of Figure 25 demonstrated that (1) simulated timing gates and 
observed data confidence intervals overlap or touch for all models (apart from the Estimated 
TC model for the 𝑀𝐴𝐶 and 𝑃𝑀𝐴𝑋 parameters), (2) the No Correction model confidence 
intervals excluded zero line for all parameters, and (3) Estimated TC model confidence 
intervals excluded zero line for all parameters except 𝑀𝑆𝑆. 

 

 

 

(a) Facets organized using short sprint parameters 

(Figure continued on the next page) 
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(Figure continued from the previous page) 
 

 

(b) Facets organized using models 
 

Figure 25. Estimated short sprint parameters percent bias (i.e., mean difference) between Laser 
and (1) No Correction, (2) Fixed +0.3s time correction (Fixed +0.3s TC), (3) Estimated time 

correction (Estimated TC), (4) Fixed 0.5m flying start distance (Fixed 0.5m FD), and (5) 
Estimated flying start distance (Estimated FD) models, for both observed timing gate split times 

(black ●), and simulated timing gate split times (grey ◆). Simulated timing gate split times are 
generated using Laser estimates as a generative model, assuming 0.5m flying distance, and 0.01s 

time rounding. Simulated timing gates models thus represent expected bias, given theoretical 
assumptions. Pooled data set (i.e., Trial and Trial 2) were utilized. Grey bars represent ±5 and 

±10% difference used as visual anchors. Error bars represent 95% bias-corrected and 
accelerated (BCa) 2,000 resamples bootstrap confidence intervals. Note. MSS – maximum 

sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – 
maximum acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 

𝑊𝑘𝑔−1) 

 

6.2.3.3 Estimated mean absolute difference 

Estimated mean percent absolute difference (%𝑀𝐴𝐷) between laser gun and timing gates 
parameter estimates, using pooled Trial 1 and Trial 2, for the No Correction model ranged 
from 5.4 to 88.5%, for the Fixed +0.3s TC model ranged from 3.5 to 19.3%, for the Estimated 
TC model ranged from 2.7 to 19.9%, for the Fixed 0.5m FD model ranged from 4.5 to 26.2%, 
and for the Estimated FD model ranged from 3 to 22.3%. 

𝑀𝑆𝑆 parameter demonstrated the lowest %𝑀𝐴𝐷 across all timing gate models, ranging from 
2.7 to 5.4%, while the 𝑀𝐴𝐶 parameter demonstrated the highest %𝑀𝐴𝐷 ranging from 15.3 to 
88.5%. 
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Figure 26 depicts the estimated %𝑀𝐴𝐷 and accompanying 95% confidence intervals as error 
bars. Visual inspection of Figure 25 demonstrated that (1) only the No Correction model 
confidence intervals overlap for the simulated and observed data, while all other models 
demonstrated higher %𝑀𝐴𝐷 than expected by simulation, (2) only the 𝑀𝑆𝑆 parameter 
demonstrated %𝑀𝐴𝐷 below 5% for all models except for the No Correction and Fixed 0.5m FD 
models, while all other parameters demonstrated %𝑀𝐴𝐷 higher than 10%. 

 

 

 

(a) Facets organized using short sprint parameters 

(Figure continued on the next page) 
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(Figure continued from the previous page) 

 

(b) Facets organized using models 
 

Figure 26. Estimated short sprint parameters percent mean absolute difference (%𝑀𝐴𝐷) 
between Laser and (1) No Correction, (2) Fixed +0.3s time correction (Fixed +0.3s TC), (3) 

Estimated time correction (Estimated TC), (4) Fixed 0.5m flying start distance (Fixed 0.5m FD), 
and (5) Estimated flying start distance (Estimated FD) models, for both observed timing gate 

split times (black ●), and simulated timing gate split times (grey ◆). Simulated timing gate split 
times are generated using Laser estimates as a generative model, assuming 0.5m flying distance, 
and 0.01s time rounding. Simulated timing gates models thus represent expected %𝑀𝐴𝐷, given 

theoretical assumptions. Pooled data set (i.e., Trial and Trial 2) were utilized. Grey bars 
represent 5 and 10 %𝑀𝐴𝐷 used as a visual anchor. Error bars represent 95% bias-corrected and 

accelerated (BCa) 2,000 resamples bootstrap confidence intervals. Note. MSS – maximum 
sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – 

maximum acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 
𝑊𝑘𝑔−1) 

 

6.2.4 Minimal detectable change 

6.2.4.1 MDC using an agreement with Laser 

Estimated percent minimum detectable change (%𝑀𝐷𝐶95) using an agreement with the laser 
gun and pooled Trial 1 and Trial 2, for the No Correction model ranged from 6.9 to 77.9%, for 
the Fixed +0.3s TC model ranged from 12.9 to 64.0%, for the Estimated TC model ranged from 
9.2 to 56.8%, for the Fixed 0.5m FD model ranged from 16.9 to 87.0%, and for the Estimated 
FD model ranged from 11.2 to 80.1%. 
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𝑀𝑆𝑆 parameter demonstrated the lowest %𝑀𝐷𝐶95 across all timing gate models, ranging 
from 6.9 to 16.9%, while the 𝑇𝐴𝑈 parameter demonstrated the highest %𝑀𝐷𝐶95 ranging from 
56.8 to 87%. 

Figure 27 depicts the estimated %𝑀𝐷𝐶95 and accompanying 95% confidence intervals as 
error bars. Visual inspection of Figure 27 showed that (1) %𝑀𝐷𝐶95 was lowest for the 𝑀𝑆𝑆 
parameter, particularly the No Correction model, and that (2) all other parameters and models 
demonstrated %𝑀𝐷𝐶95 beyond what was expected by the simulated data set. 

 

 

(a) Facets organized using short sprint parameters 

(Figure continued on the next page) 
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(Figure continued from the previous page) 
 

 

(b) Facets organized using models 
 

Figure 27. Estimated short sprint parameters minimal detectable change using 95% confidence 
level (%𝑀𝐷𝐶𝑠95) for both observed timing gate split times (black ●), and simulated timing gate 

split times (grey ◆). Method for estimating %𝑀𝐷𝐶𝑠95 utilized pooled Trial 1 and Trial 2 linear 
regression percent residual standard error (%𝑅𝑆𝐸; Equation 11) between Laser and (1) No 
Correction, (2) Fixed +0.3s time correction (Fixed +0.3s TC), (3) Estimated time correction 

(Estimated TC), (4) Fixed 0.5m flying start distance (Fixed 0.5m FD), and (5) Estimated flying 
start distance (Estimated FD) models. Simulated timing gate split times are generated using 

Laser estimates as a generative model, assuming 0.5m flying distance, and 0.01s time rounding. 
Simulated timing gates models represent expected %𝑀𝐷𝐶𝑠95, given theoretical assumptions. 

Grey bars represent 5 and 10 %𝑀𝐷𝐶𝑠95 used as a visual anchor. Error bars represent 95% bias-
corrected and accelerated (BCa) 2,000 resamples bootstrap confidence intervals. Note. MSS – 

maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in 
seconds); MAC – maximum acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power 

(expressed in 𝑊𝑘𝑔−1) 

 

6.2.4.2 MDC using change scores 

Estimated percent minimum detectable change (%𝑀𝐷𝐶95) for the timing gate splits using the 
change between Trial 1 and Trial 2 ranged from 5.0 to 17.2%, with 5-meter split time 
demonstrating the highest value, and a 30-meter demonstrating the lowest value (Figure 28). 
Estimated %𝑀𝐷𝐶95 for the average split velocity ranged from 4.6 to 17.6%, with 0-5-meter 
split time demonstrating the highest value, and 10-20-meter split demonstrating the lowest 
value (Figure 28). Visual inspection of the 95% confidence intervals depicted in Figure 28 
showed all estimates, except for the average 20-30 and 10-20-meter split velocity, to be larger 
than expected by simulation. 
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Figure 28. Estimated minimal detectable change using 95% confidence level (%𝑀𝐷𝐶𝑠95) for 
split times (expressed in 𝑠; left panel) and average split velocities (expressed in 𝑚𝑠−1; right 

panel) for both observed timing gate split times (black ●), and simulated timing gate split times 

(grey ◆). Method for estimating %𝑀𝐷𝐶𝑠95 utilized linear regression percent residual standard 
error (%𝑅𝑆𝐸; Equation 11) between Trial 1 and Trial 2. Grey bars represent 5 and 10 %𝑀𝐷𝐶𝑠95 

used as a visual anchor. Error bars represent 95% bias-corrected and accelerated (BCa) 2,000 
resamples bootstrap confidence intervals. 

 

Estimated percent minimum detectable change (%𝑀𝐷𝐶95) using the change between Trial 1 
and Trial 2, for the laser gun ranged from 3.9 to 7.8%, for the No Correction model ranged 
from 5.3 to 50.3%, for the Fixed +0.3s TC model ranged from 8.6 to 37.5%, for the Estimated 
TC model ranged from 11.4 to 50.1%, for the Fixed 0.5m FD model ranged from 10.3 to 50.3%, 
and for the Estimated FD model ranged from 12.7 to 67.7%. 

𝑀𝑆𝑆 parameter demonstrated the lowest %𝑀𝐷𝐶95 across all timing gate models, ranging 
from 5.3 to 12.7%, while the 𝑇𝐴𝑈 parameter demonstrated the highest %𝑀𝐷𝐶95 ranging from 
37.5 to 67.7%. 

Figure 27 depicts the estimated %𝑀𝐷𝐶95 and accompanying 95% confidence intervals as 
error bars. Visual inspection of Figure 27 showed that (1) %𝑀𝐷𝐶95 was lowest for the 𝑀𝑆𝑆 
parameter, particularly the No Correction model, and that (2) all other parameters and models 
demonstrated %𝑀𝐷𝐶95 beyond what was expected by the simulated data set. 
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(a) Facets organized using short sprint parameters 

(Figure continued on the next page) 
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(Figure continued from the previous page) 
 

 

(b) Facets organized using models 
 

Figure 29. Estimated short sprint parameters minimal detectable change using 95% confidence 
level (%𝑀𝐷𝐶𝑠95) for both observed timing gate split times (black ●), and simulated timing gate 

split times (grey ◆) using (1) Laser, (2) No Correction, (3) Fixed +0.3s time correction (Fixed 
+0.3s TC), (4) Estimated time correction (Estimated TC), (5) Fixed 0.5m flying start distance 
(Fixed 0.5m FD), and (6) Estimated flying start distance (Estimated FD) models. Method for 

estimating %𝑀𝐷𝐶𝑠95 utilized linear regression percent residual standard error (%𝑅𝑆𝐸; 
Equation 11) between Trial 1 and Trial 2. Simulated timing gate split times are generated using 
Laser estimates as a generative model, assuming 0.5m flying distance and 0.01s time rounding. 
Simulated timing gates models represent expected %𝑀𝐷𝐶𝑠95, given theoretical assumptions. 

Grey bars represent 5 and 10 %𝑀𝐷𝐶𝑠95 used as a visual anchor. Error bars represent 95% bias-
corrected and accelerated (BCa) 2,000 resamples bootstrap confidence intervals. Note. MSS – 

maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in 
seconds); MAC – maximum acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power 

(expressed in 𝑊𝑘𝑔−1) 

 

Figure 30 depicts the combined estimated %𝑀𝐷𝐶95 using an agreement with a laser gun and 
change score analysis methods for easier interpretation. The left panel titled Acceleration in 
Figure 30 represents maximum acceleration indices and combines estimated %𝑀𝐷𝐶95 using 0-
5 meters average velocity for the splits and maximum-acceleration (𝑀𝐴𝐶) parameter for the 
other models. The right panel titled Max Speed in Figure 30 represents maximum speed indices 
and combines estimated %𝑀𝐷𝐶95 using 20-30 meters average velocity for the splits and 
maximum-sprinting-speed (𝑀𝑆𝑆) parameter for the other models. 
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Figure 30. Combined estimated percent minimal detectable change using 95% confidence level 
(%𝑀𝐷𝐶𝑠95) using the agreement with laser gun (black ●) and change scores between Trial 1 

and Trial 2 (grey ◆) for the (1) split times, (2) Laser, (3) No Correction, (4) Fixed +0.3s time 
correction (Fixed +0.3s TC), (5) Estimated time correction (Estimated TC), (6) Fixed 0.5m flying 
start distance (Fixed 0.5m FD), and (7) Estimated flying start distance (Estimated FD) models. 
The Acceleration panel depicts %𝑀𝐷𝐶𝑠95 using 0-5 meters average velocity for the splits and 
maximum-acceleration (𝑀𝐴𝐶) parameter for the other models. The Max Speed panel depicts 
%𝑀𝐷𝐶𝑠95 using 20-30 meters average velocity for the splits and maximum-sprinting-speed 

(𝑀𝑆𝑆) parameter for the other models. Grey bars represent 5 and 10 %𝑀𝐷𝐶𝑠95 used as a visual 
anchor. Error bars represent 95% bias-corrected and accelerated (BCa) 2,000 resamples 

bootstrap confidence intervals. 

 

 

6.3 Discussion 

6.3.1 Descriptive analysis 

Individual percent coefficient of variation (%𝐶𝑉) demonstrated higher variability and higher 
median value for the 5-meter split times compared to the 30-meter, as well as for the initial 
versus last average split velocity (Figure 16). This was also a pattern demonstrated in 
parameters’ %𝐶𝑉 across timing gates models, with 𝑀𝑆𝑆 parameter showing smaller median 
value as well as the interquartile range (𝐼𝑄𝑅) compared to the 𝑀𝐴𝐶 parameter (Figure 20). 
This suggests that there might be inherent issues in estimating sprint acceleration compared 
to the maximum sprinting speed traits. This was also reflected in estimating sensitivity to 
detect changes using the minimal detectable change estimator (%𝑀𝐷𝐶95), in which sprint 
acceleration trait had much lower sensitivity compared to maximum sprinting speed when 
estimated using timing gates models (Figure 30). 

Initial and last split average velocity (i.e., 0-5 and 20-30 𝑚) demonstrated a statistically 
significant relationship (𝑝 = 0.002), although with low variance explained (𝑅2 equal to 22%) 
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(Figure 17). Relationship between estimated 𝑀𝑆𝑆 and 𝑀𝐴𝐶 parameters was statistically 
significant only for the laser gun (𝑝 < 0.001), although with similar low variance explained 
(𝑅2 equal to 29%) (Figure 21). Given these findings, it can be concluded that athletes who are 
faster, also tend to be faster accelerators on average when estimated with laser and split 
times. 

The relationship between the estimated 𝑀𝑆𝑆 parameter and the 20-30 meter average split 
velocity demonstrated statistical significance for all models (𝑝 < 0.001). This relationship was 
highest for the Estimated TC model (𝑅2 equal to 93%) and lowest for the Fixed 0.5m FD model 
(𝑅2 equal to 62%) (Figure 22). 

Interestingly, the relationship between estimated 𝑀𝐴𝐶 parameter and the 0-5 meter average 
split velocity demonstrated statistical significance (𝑝 < 0.001) with large variance explained 
(𝑅2 over 95%) for the No Correction, Fixed +0.3s TC, and Fixed 0.5m FD models, which are 
models with two estimated parameters. Estimated TC and Estimated FD models didn’t 
demonstrate statistical significance. It might be speculated that this is due to three estimated 
parameters in these models. The laser gun model demonstrated a statistically significant 
relationship between 𝑀𝐴𝐶 parameter and the 0-5 meter average split velocity demonstrated 
(𝑃 = 0.01), but will low variance explained (𝑅2 equal to 15%) (Figure 23). It can be 
speculated that the higher variance explained in the relationship between 𝑀𝐴𝐶 and 0-5 meter 
average split velocity with No Correction, Fixed +0.3s TC, and Fixed 0.5m FD models compared 
to the laser gun is due to the fact that 𝑀𝐴𝐶 parameter is estimated from the split times 
themselves, while for the laser gun, 𝑀𝐴𝐶 is estimated using laser velocity-time trace. 

6.3.2 Agreement 

Agreement between laser gun and timing gates estimates using the percent bias (%𝐵𝑖𝑎𝑠, or 
percent mean difference) estimator demonstrated expected results, given the first part of the 
study implementing simulation. This was evident using the confidence intervals of the 
simulated timing gates and observed data being overlapping or touching for all models (apart 
from the Estimated TC model for the 𝑀𝐴𝐶 and 𝑃𝑀𝐴𝑋 parameters) (Figure 25). 

Using the confidence intervals to judge statistical significance (i.e., with confidence intervals 
not crossing zero line or other magnitude thresholds; Jovanović (2020b)), the No Correction 
model showed bias involved in all parameters when estimated using a laser gun as the 
criterion. The Estimated TC model also demonstrated statistically significant bias for all 
parameters except 𝑀𝑆𝑆. All other models did not demonstrate statistically significant bias 
involved when estimating parameters. 

Agreement estimated using the percent mean absolute difference (%𝑀𝐴𝐷) estimator 
demonstrated expected results for the No Correction model, with overlapping confidence 
intervals for the simulated and observed data. Every other model demonstrated a higher 
%𝑀𝐴𝐷 compared to expected values using the simulated data. Of all parameters, only 𝑀𝑆𝑆 
demonstrated high agreement between laser gun and timing gates estimates, using the 
%𝑀𝐴𝐷 estimator (below 5% for all models except for the No Correction and Fixed 0.5m FD 
models). All other parameters demonstrated unsatisfying agreement with the laser gun 
(%𝑀𝐴𝐷 > 10%) (Figure 26). 

6.3.3 Sensitivity 

Besides correctly estimating the current values of the short sprint parameters, practitioners 
are probably more interested in sensitivity to detect changes across time. Two different 
methods are utilized in this part of the study to estimate this sensitivity. The first method 
utilized the agreement with the laser gun (i.e., assuming laser gun estimates represent the 
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true scores), while the second method utilized the change between trials, essentially adding 
intra-session biological variability. 

When using the agreement with the laser gun, 𝑀𝑆𝑆 parameter showed the highest sensitivity 
(i.e., lowest %𝑀𝐷𝐶95), and interestingly, it was the highest for the No Correction model. All 
other parameters and models demonstrated an unsatisfying level of sensitivity, beyond what 
was expected by the simulated data set (Figure 27). The lowest %𝑀𝐷𝐶95 for the 𝑀𝑆𝑆 
parameter estimated with the No Correction model might be due to the simplest model 
utilized, and hence reduced variability in the estimated parameters. 

When estimated using the Trial 1 and Trial 2 differences, the highest sensitivity was 
demonstrated by the laser gun across all parameters, with the 𝑀𝑆𝑆 parameter showing the 
highest sensitivity across all models. All models demonstrated higher %𝑀𝐷𝐶95 than expected 
by the simulation (Figure 29). As explained previously, the split times also demonstrated the 
lowest sensitivity for the initial split times and average velocity (Figure 28) due to the highest 
%𝐶𝑉 (Figure 16). 

Overall, maximum sprinting speed indicators (i.e., 𝑀𝑆𝑆 parameter or 20-30-meter average 
split velocity) demonstrated higher sensitivity than the maximum acceleration indicators (i.e., 
𝑀𝐴𝐶 parameter or 0-5 meter average split velocity) (Figure 30). 
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7 GENERAL CONCLUSION 

Valid and reliable estimation of the short sprint performance is one of the most important 
athlete profiling components. Acceleration-velocity profile (i.e., 𝑀𝑆𝑆 and 𝑀𝐴𝐶 parameters) 
represents a simple model to describe the kinematic of the short sprint performance. As such, 
it is attractive to sports practitioners to compare, evaluate, track, and monitor athletes across 
time and training interventions. Most often, laboratory tools like 3D motion cameras, videos, 
or laser guns, are not readily available in all but a small number of elite sports teams. Thus, 
practitioners have been using split times measured using photocell timing gates to estimate 
maximum acceleration and maximum speed indicators. The recent development of the AVP 
model aimed to simplify this pursuit by consolidating various split time analyses into a simple 
and intuitive two-parameter model, where 𝑀𝐴𝐶 parameter represents indicator of maximum 
acceleration characteristics and 𝑀𝑆𝑆 parameter represents indicator of the maximum 
sprinting speed characteristic. 

The results of the current study question the validity, reliability, as well as sensitivity of the 
AVP, estimated using timing gates, even with the novel correction models that were 
introduced. Maximum acceleration indicators (i.e., 𝑀𝐴𝐶 and 0-5 𝑚 average split velocity) 
demonstrated low agreement when compared to the laser gun, as well as unsatisfactory 
sensitivity to detect changes. Maximum sprinting speed indicators (i.e., 𝑀𝑆𝑆 and 20-30 𝑚 
average split velocity) demonstrated much better agreement with the laser gun, and 
satisfactory sensitivity to detect changes. Interestingly, the results indicated that the simplest 
No Correction model demonstrated the highest sensitivity to detect changes in 𝑀𝑆𝑆 compared 
to all other timing gate models, although showing significant bias. 

Thus, practitioners should be wary of using timing gates to estimate maximum acceleration 
traits and changes in their respective levels. 

The main limit of the second part of the study involving athletes is utilizing only one starting 
distance (i.e., 0.5 𝑚 from the initial timing gate) and performing only two sprint trials in a 
single day. However, this method is ecologically valid, since it is the most common method of 
measuring short sprint performance by practitioners in team sports (Haugen et al., 2020d, 
2020b; T. Haugen & Buchheit, 2016b; Tillaar et al., 2022). 

Future work should involve a similar study done with multiple sprints performed with 
different starting distances (i.e., on line, 0.5 and 1 meter from the initial timing gate), positions 
(i.e., standing versus three-point or block start), triggering devices (foot pod, hand pod, etc.), 
types of timing gates, and different levels of athletes, performed against the laser gun or 3D 
motion capture system over multiple days. Of particular interest, which is lacking in the 
current study, would be the assessment of between-days minimum detectable change, where 
multiple sprints would be repeated on non-consecutive days. This work would provide more 
insight into the most valid, reliable, and sensitive method of estimating the acceleration-
velocity profile of the short sprints. 

In conclusion, given the results of this study, practitioners using timing gates to estimate short 
sprint acceleration-velocity profiles in general or maximum acceleration indices in particular 
should be wary of using the results in judging current state or performance improvement 
over time. Although maximum-sprinting speed indices demonstrated satisfactory agreement 
and sensitivity, if interested in measuring and tracking maximum acceleration indices, 
researchers and practitioners should be cautious when using timing gates and should 
probably invest in more precise and sensitive technology such as the laser gun. 
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