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Title of the doctoral dissertation:

MACHINE LEARNING ALGORITHMS IN FORENSIC EXPERTISE:
ASSESSING  NOOSE  KNOT'S  POSITION IN  SUICIDAL  HANGINGS
THROUGH FRACTURE PATTERNS OF THE THYROHYOID COMPLEX
AND THE CERVICAL SPINE

Abstract

Background and Aim: In hanging, a noose can be formed with the knot located on the
posterior side of the neck (typical hanging), anterior, or lateral side (atypical hangings).
Upon neck compression, characteristic but nonspecific injuries of hard neck structures
occur, particularly the hyoid bone's greater horns, the thyroid cartilage's superior horns,
and the cervical spine. In the evaluation of deaths by hanging, it can be important to
determine the position of the knot in a noose. This is particularly useful if the ligature is not
found, or a ligature mark is subtle or absent. However, previous research failed to clearly
determine if the distribution of fractures of the neck hard tissue structures that occur in
hanging directly relates to the noose's knot position and if there are distinct patterns of these
injuries that would correspond to the localization and direction of a force applied to the
neck by the noose. Also, the subject's age, body height, and weight could impact the
occurrence of these fractures. The hemorrhages at the origin of the sternocleidomastoid
muscles at the clavicles could also aid in the knot position assessment. So far, machine
learning models have not been used to associate the fracture distribution patterns with the
knot position and thus supplement standard statistical analyses. Machine learning
algorithms, capable of detecting complex and non-obvious associations between variables,
might help in these cases. So, this research aimed to analyze the characteristics and
distribution of neck's hard structure fractures with regards to the knot in a noose position
in suicidal hangings and to determine the performance of machine learning models in
assessing the knot position based on the presence of the fractures and their distribution, as
well as to consider the significance of subjects' body weight and height, and presence of
sternocleidomastoid muscle's origin hemorrhage in the knot position assessment.

Material and Methods: The research comprised of three separate parts. In all three parts,
retrospectively obtained single-institution autopsy data on subjects' sex, age, and
distribution of greater hyoid bone’s horns (GHH), superior thyroid cartilage’s horns (STH),
and cervical spine (cS) fractures in suicidal hangings with a short drop or without a drop
were analyzed. In the first part of the study, which included 1235 cases of suicidal hanging,
the mentioned variables were analyzed by standard statistical and machine learning-based
analyses in a stepwise manner to discriminate between a) typical (posterior) and atypical
(anterior and lateral) hangings, b) anterior and lateral hangings, and c) left and right lateral
hangings. The study's second part, which included 368 cases, comprised the subset with
additional data on body weight and body height. To assess the contribution of body weight
and height in knot position-related fracture patterns (in addition to standard statistical
analyses), two analogous machine learning models (MLm), one considering these
anthropometric characteristics and one without this data, were developed. The machine
learning analysis was performed to discriminate between the typical and atypical knot
positions. The third part of the study, which included 126 cases of suicidal hangings,
comprised a subset with data on hemorrhage of the sternocleidomastoid muscle's (SCMm)



origin at the clavicles. As in the previous step, analogous MLm models were developed to
discriminate between the typical and atypical knot position, one considering data on SCMm
origin hemorrhages and analogous model not considering it. In all three study parts, the
following machine learning algorithms were used: Genetic Algorithm-optimized Artificial
Neural Network (GA-ANN) developed in MATLAB, and algorithms developed in SPSS -
Multilayer Perceptron-ANN (MLP-ANN), Decision Tree (DT), k Nearest Neighbors (kNN),
and Naive Bayes (NB).

Results: The accuracy of machine learning models in the first step (discrimination between
the typical and atypical hangings) was very modest (c. 60%) but increased subsequently in
discriminating between atypical and lateral hangings, and particularly in distinguishing
between left lateral from right lateral knot position: ANNs and k-NN models performed
excellently in this step, with overall classification accuracies above 90%. Age was a
statistically significant predictor of GHH and ¢S fractures but not STH fractures. Body
weight was a statistically significant predictor only of STH fracture and SCMm origin
hemorrhage occurrence. However, input on body weight, height, and SCMm origin
hemorrhage presence and distribution did not improve MLm's performance in
discriminating between the hangings with typical and atypical knot positions. In the second
part of the study, the developed MLm that considered body height and weight did not
perform statistically better than analogous MLm that did not consider them, on the ROC
curve analysis. The same holds for the third part of the study - the developed MLm that
considered SCMm origin hemorrhages did not perform statistically better than analogous
MLm that did not consider this variable. Supplemented by conventional statistical analysis,
the entire research showed that cervical spine and unilateral GHH fractures were
independently associated with atypical knot position compared to hangings with typical
knot position. In lateral hangings, the knot position was associated with ipsilateral GHH
fracture and ipsilateral SCMm hemorrhage, as well as with the contralateral STH fracture.

Conclusion: Valid machine learning models can be developed to determine the noose knot
position in hangings with a short drop or without a drop by thyrohyoid complex and
cervical spine fracture patterns. This contributes to a better understanding of biomechanical
processes in hanging. While the subject's age should be considered, this study indicated that
body weight and height are of no detrimental value in assessing the thyrohyoid and cervical
spine fracture patterns in suicidal hangings. The most apparent fracture distribution
patterns observed were significantly more frequent unilateral fracture of the hyoid bone's
greater horn and the cervical spine fracture in atypical hangings. When comparing only
lateral hangings, the greater hyoid bone's horn fracture on the side of the knot and thyroid
cartilage's superior horn fracture contralateral to it were significantly more frequent. The
SCMm origin hemorrhages tend to occur more often on the side of the knot if it is placed on
the lateral side of the neck.

Keywords: Forensic Pathology, Expertise, Autopsy, Hanging, Suicide, Machine Learning,
Thyrohyoid Complex, Cervical Spine, Fracture, Pattern.

Scientific field: Medicine
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Haca06 doxkmopcie oucepmauuje:

AJITOPUTMIT  MAIIVMHCKOI'  VYYEBA 'V @OOPEH3MYKOJ] EKCITEPTUM3:
ITPOLEHA TIOJIOKAJA YBOPA OMYE YV CAMOYBIWIAYKVIM BEHIABGVIMA
HA OCHOBY PACIIOPEOA IIPEJIOMA TWPEOXVMOVIHOI' KOMIUIEKCA
V1 BPATHE KITYME

Caxxemax

YBoa u nnsb: [Ipu Bemarmy oM4ya MOXe J1a ce TIOCTaBM TaKo Jia ce YBOp Hajla3y Ha 3a/11b0j
CTpaHM BpaTa (TMIIMYHA Belllaka), IIPeArb0j WIN JlaTepa/lHOj (aTMIIMYHA Belllawka). [1pu
cTe3amby Bpara, [J0j1a3y A0 KapaKTepUCTUUHMX, aJIit He U cllelMUHMX [IOBpeIa YBPCTIX
CTPyKTypa BpaTa M TO BEJIMKMX PpOroBa XMOVIHE KOCTU ¥ TOPHWX POropa TUpeOowgHe
XpcKaBulle, ajIn 1 BpaTHe Kyame. [Tpy aHammism cMpTu yoier Belllarba MOXKe 01TV 3HavyajHO
[la ce yTBPAY MeCTO 4Bopa omde. To je Hapo4unTo KOPVCHO YKOJIMKO oM4Ya Hije HabeHa Ha
JIAITy MecTa WM je Tpar cTe3ama CJ1a00 mM3paeH MM He HOCTOju yoramre. MebyTim,
Aocajialliiba MCTpaXuBara HUCY jacHO yTBpAWIa Ja JIM je paclopel] IpejioMa UBPCTUX
CTPYKTypa BpaTa HacTa/IMX TOKOM aKTa Belllaiba y AVPEKTHOj Be3u ca MO3WUIIMjOM YBOpa
oMm4e 1 fia JIV IIOCTOj¥ HApOUUT pacIioper, OHOCHO AVUCTpUOYyIIMja IIpejioMa y OJHOCY Ha
IpaBall] 1 MecTO [IejcTBa Cwile KOjOM oM4Ya ITpuTMCKa Bpar. IIpuToM, Ha HacTaHakK OBMX
IpejioMa MoIIv Ou Ja yTU4dy CcTapocT ocole, HeHa BUCHHA U TexXXyHa. Ha mosoxaj usopa
oMYe TOKOM Belllarba, MOIJIa O1 Ja yKaXXy 1 KpBapera IIpuIloja CTepHOKJIEMIOMAaCTOVITHMIX
vummha (SCMm) 3a wiaBukyse. Jlo caja, Mopmeny MallMHCKOr ydema (MLm) Hucy
KopumrheHN 7a OTKpWjy HoBe3aHOCT M3Meby pacrmopena mpesioMa 4UBpPCTHX CTPYKTypa
Bpara ¥ IIO3MIIVje YBOpa ¥ Ha Taj HauMH Oydy AONyHa CTaHAAPOHMM CTaTUCTUYKVM
aHaJM3aMa. AJITOPUTMI MAIIMHCKOT y4era, CIIOCOOHM [a OTKPUjy cJIoXeHe Bese m3Meby
OBVIX BapwjaliIn, Koje HICY OUmMIJIe[IHe, MOIIV Ou f1a OyZy KOPUCHM Yy OBUM CJIy4ajeBuMa.
Crora, 0BO MCTpaXuBame je MMaJIo 3a Wb [la aHaJM3Mpa KapaKTepucTHKe 1 pacIioper]
IpeJjioMa YBPCTUX CTPYKTYypa BpaTa y OJHOCY Ha MeCTO YBOpa oMue KOfj, caMOyOmIaukmx
Belllarba ¥ Ja YTBpAu IlepdopMaHce Mofesla MaIIMHCKOI y4Yera Yy HpOLleHM I10JI0XKaja
4BOpa Ha OCHOBY I10CTOjarka OBYMX ITpeJIoMa M EbMXOBOT paclopesia, Kao 1 fa MCIIUTa 3Ha4aj
TeXXVHe VI BUCVHe BelllaHVKa 1 KpBapekba IIPpuIloja CTepHOK/IenaoMacTonaHX Muiirha 3a
KJIaBMKYJIe y IIPOLIeHM I10JI0XKaja YBopa oMye.

Martepwujan n Metope: VicTpaxnBarbe je CIIpoBefieHO y Tpy 3acebHa feita. Y cBa Tpu Heina,
aHaIV3MPAHN Cy PEeTPOCIEKTMBHO IIPUKYIUBEHM IIOHAIlM O IIOJIY, CTapOCT, PacIopeny
IpesioMa BeJIMKuX porosa xuougHe Koctu (GHH), Topmux porosa TUpeouIHe XpcKaBulile
(STH) n BpaTtHe KuuMme (cS) y obmykoBaHMX ocoba Koje Cy WM3BpIIWIe caMOyOucTBO
BelllarbeM ca KpaTKMM 3aMaxoM win 0e3 mera. Y IpBoM ey cTyauje, Koju je o0yXBaTuo
1235 ciyuajeBa, HaBefleHe BapwjaOile aHaJIM3MpaHe Cy CTaHOAPAHMM CTaTUCTUYKUM
MeToflaMa ¥ MeToflaMa MaIlIVHCKOT y4erha, IIOCTYITHOM aHa/IM30M, paiy AUCKpUMMHAIIje
usMeby: a) TuIuHe (3a1be) 1 aTUIIYHe (IIpefibe 11 O0uHe) IO3MIIMje YBopa, 0) Impernbe 1
OouHe 1o3uMIIVje YBOpa U B) JieBe U JlecHe OOYHe ITO3MIIVje YBopa. Y OPYyroM ey CcTyauje
VICOIUTUBAHO je 368 cilydajeBa ca IOHATHMUM MHoAallviMa O TeXVHM VI BUCVHM BelllaHuKa. [a
Ou ce IIpolleHNO 3HaYaj TeXXMHe 1 BUCVHEe y OJHOCY Ha pacIiope] IIpejioMa 1 MecTo 4Bopa
(Y3 cTaHzapaHe aHajIM3e) HalpaB/beHa cy aBa MLm-a, jeqaH Koju y oO3up y31Ma oBe [IBe
Bapujaliie ¥ Apyry, aHaJIOTHM, KOjUI VX He aHaIM3Mpa. AHajm3a MAaIIVHCKOT yderba
KopuitheHa je 3a AMCKPMMMHAIIMjy M3MeDy cilydajeBa ca TMIWMYHOM M Ca aTUIIMYHOM



no3uiMjoM 4usBopa. Y Tpehu pmeo cryamje yxbydeHo je 126 ciryuajeBa ca Iogalmma o
KpBapemMa Ipurioja SCMm 3a Ki1aBuKkyJie. Kao n y mpeTxogHOM KOpaKy, HallpaB/beHU CY
aHaJIOTHM MOJIeJIN 3a IVICKpUMMHaIV]y M3Meby cilydajeBa ca TUIIMYHOM M ca aTUIIMYHOM
MO3UIIVOM YBOpa, jefaH Koju y 003Mp y3MMa IofaTKe O IIOCTOjalby M pacHopeny OBUX
KpBapema ¥ Jpyru Koju He aHaJIM3upa oBe Bapujabiie. Y cBa Tpu [elia McTpaXuBarba
kopuitheHn cy ciegehnt Mozesv MamMHCKOT yuesba: Genetic Algorithm-optimized Artificial
Neural Network (GA-ANN) Hanpasben y MATLAB-y n Mofenu HanpasbeH y SPSS-y -
Multilayer Perceptron-ANN (MLP-ANN), Decision Tree (DT), k Nearest Neighbors (kNN), n
Naive Bayes (NB).

Pesyaratn: IlpenmsHocT xiacudukaiyje Moiela MalIVHCKOT y4era y IIPBOM KOpaKy
(muickpyMmHaLyja n3Meby THUIIMYHe 1 aTUIMYHe II03MLIVje YBopa) Owla je BpJIo yMepeHa
(oxo 60%), aimn ce motom nosehaita: ANN u k-NN MLm ojIiaHO Cy pas3/IMKOBaJIV JIEBY Of
JlecHe Io3uIMje uBopa, y3 npenmsHoctu sehe o 90%. Crapoct ocobe 6wiia je 3Ha4ajaH
npeaukTop Hacranka GHH u ¢S mpesioMa, avt He 11 HactaHKa rpestoma STH. Texxuna ocobe
Owta je 3Ha4ajaH mpenuKTop camo mpentoma STH u kpBapewa npuroja SCMm. MebyTtim,
rojlali 0 TeXWHM ocobe M IOCTOjarby U pacropeny KpBapema Iipurnoja SCMm Hucy
nobospmaym nepdopmance MLm y OucKpyMMHaUMjM m3MeDy TuIMYHe 1 aTUIINYHE
rosuIIvje uBopa. Y ApyroM Jielly UcTpakmpara, MLm Koju cy y 003up y3umasIu rojaTke o
TeXXVHY 1 BUCVHM BelllaHMKa HUCY OMIM CTaTUCTUYKM 3HadajHO O0JbY, Ha OCHOBY aHasIu3e
ROC xpuse. Vlctu pesynraT gobujeH je u y Tpehem ety mcrpaxmsara — MLm Koju ¢y y
o03up y3umam KpBapema Ipunoja SCMm Hucy Owin CTaTUCTUYKM 3Ha4dajHO OObU Y
OIIHOCY Ha Mojlesle KOju y 003Mp HUCY y3uMasIi OoBe BapujaOsie. Y3 KOHBEHIIVIOHaJIHY
CTaTUCTUYKY aHaJIN3y, pe3yJITaTy LeJIOKYITHOT MCTpaKMBarba II0Ka3aIv Cy Jia Cy IIPeIoM
BpaTHe KnuMme U jeqHocTpaHM mpeioMy GHH Ovv He3aBMCHO IHOBe3aHM Ca IPedHOM Y
OTHOCY Ha 3afliby mo3uItijy usopa. Ko GouHmx mosmiiija 4yBopa, IocTojasia je IIoBe3aHoCT
CTpaHe uYBOpa ca IIpejiloMoM wuncwiaTepanHor GHH w  xpBapemeM mpwmiioja
vmcwiaTepaaHor SCMm, Kao v ca IpeJiloMoM KOHTpastaTepaiHor STH.

3axspyuak: Moryhe je HanpaBuUTM BajIMIHe MOJesle MAIIVTHCKOT y4dea 3a ofpebuBarse
HIo3uIIMje YBOpa OMde KOJI Belllarba ca KPaTKMM 3aMaxOM WM Oe3 Fera, a Ha OCHOBY
IpeJioMa YBPCTUX CTPYKTypa BpaTa. CBe o0BO pgompmHOCH OobeM pasyMeBamy
OvoMexaHMUKNIX Ipolieca TOKOM aKTa Belllarba. Pe3yITaTit OBOT MCTpakMBarba yKasyjy Aa
TeJIeCHA BVICVHA VI TeXXVHA HWCY OfI IIpecyJHOT 3HaJaja Kof, IIpolleHe II0JI0XKaja YBopa Ha
OCHOBY pacIiopesia IIpesIoMa, JOK CTapocT ocobe Tpeba y3mmaTyt y 003mp. Hajounrnemamji
youeHu obpaciiy IpesioMa OwiIv Cy yHWIaTepaIHV IIPeJIOM BeJIVIKOT pora XMOVIHe KOCTI
U IIpeJIOM BpaTHe K1dMe, Kojui cy demrhu Kof aTuIIMIHe rosuimje ysopa. [Ipu mopebemy
JlaTepaJIHMX Belllarba, IIPeJIOM BeJIVIKOT pora XWMOWIHe KOCTV Ha CTpaHM YBOpa U
KOHTpaJIaTepaIHOT TOPE-el pora THUpPeOuIHe XpcCKaBulile OWwIM Cy 3HadajHO derrhi.
KpBapeme npurioja crepHokIengoMacTonaHX Muiinha derithe je Ovi1o Ha cTpaHM YBOpa,
YKOJIVIKO je UBOp OO IocTaB/beH Ha OOYHOj cTpaHM Bparta.

KrpyuHe peun: popeHsndKa 1aTojioruja, ekcreprimsa, ooayKiiyja, Belllarme, caMoyOncTBo,
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1. INTRODUCTION

1.1. Asphyxia

Etymological roots of the coined term asphyxia stem from two Greek words: -a (without)
and -sphuxis (a pulse), meaning “pulseless” or “absence of pulsation” [1-3]. Under the
umbrella term “asphyxia” are, however, considered various conditions of natural and
violent causes that result in the inability of cells to receive or utilize the oxygen (Oz) [2, 4, 5]
- this impairment can be a consequence of the reduced amount of available (atmospheric)
oxygen, blockage and obstruction of various segments of the respiratory system, restriction
of respiratory movements, diseases of the lung and thorax (e.g., pneumonia), reduced
cardiac function, reduced oxygen transport capacity (e.g., severe anemia or bleeding), direct
blockage of oxygen utilization by cells (cellular respiration) [2, 3].
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Figure 1.1. Classification of asphyxiation. In: Madea B, Keil W, Lunetta P, Kettner M. Asphyxiation. In:
Madea B (Ed). Handbook of Forensic Medicine, 2 ed. Hoboken, NJ: Wiley, 2022, p. 510. [2]
Reproduced with permission from John Wiley & Sons (not part of the governing CC license).


https://doi.org/10.1002/9781119648628.ch22
https://doi.org/10.1002/9781119648628.ch22

But, apart from the severe destructive head and brain injuries, it is easy to claim that
practically every fatal condition is eventually accompanied by a hypoxic-ischemic brain
death [2]. In the context of forensic medicine and pathology, under the broadest terms,
asphyxia and asphyxiation refer to the state of oxygen deficiency caused by specific traumas
that directly result in hypoxic-ischemic brain injury and death. So, these conditions, in a
stricter term, stem from the injury, are of violent manners (Latin, asphyxia violenta), and can
be caused by physical (e.g., electrocution, lightning strike), chemical (e.g., cyanide or
strychnine poisoning) or mechanical means [2, 6].

Although violent asphyxia deaths have always been widespread in forensic medicine,
up to date, even many primary reference textbooks provided different classifications of
asphyxiation [2, 3, 7-11]. One of these, a comprehensive classification used by Madea et al.
[2] is shown in Figure 1.1. The most significant issue was to form a single and uniform,
standardized classification system of the violent asphyxia caused by mechanical means - due
to simple differences in didactics, different approaches to injury pathophysiology
understanding, or a non-uniform English-language use. The best overview of the problem
was probably given by Sauvageau and Boghossian in 2010, where a new classification
system was proposed, which was presented in 2011 as the “INFOR (International Network
for Forensic Research) classification” [4, 12]. This classification system of “Asphyxia in
forensic context” is shown in Figure 1.2 and accompanying Table 1.1. So, violent asphyxia
caused by mechanical means where external pressure is applied to the neck are strangulations
[4, 12]. Depending on the origin of the external constricting force, three separate entities are
recognized: hanging, ligature strangulation, and manual strangulation (Table 1.1) [4, 12].

1.2. Hanging

Hanging (suspension, Latin, suspensio) is a form of ligature strangulation in which the force
applied to the neck is derived from the gravitational drag of the weight of the body or part of the body

3].

The majority of the hanging cases are suicidal [2, 3, 7, 9]. It is one of the most common
suicide methods worldwide [13-18]. The World Health Organization (WHO) ranks it
among the three most common causes of suicide in general [13]. This suicide method is
tavored by males [2]. Rarely, hangings can be accidental - in autoerotic asphyxia (a typical
subject is a young or middle-aged male) [3, 12], and in children playing hazardous “hanging
games” or in a child who accidentally entangled in a rope, or, for example, in a pacifier cord
[3, 9]. Homicides are extremely rare, and a more common situation than this for a
perpetrator is to hang the dead body of a previously strangled person to conceal foul play
[3, 9, 19]. Judicial hangings have been quite a common practice throughout history and are
nowadays almost entirely abandoned [3, 20].
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Table 1.1. Definitions of terms in the INFOR classification

Term
Suffocation

Smothering
Choking

Confined spaces/
entrapment /
vitiated atmosphere

Strangulation

Hanging

Ligature strangulation
Manual strangulation

Positional or postural

asphyxia

Traumatic asphyxia

Drowning

Definition

A broad term encompassing different types of asphyxia, such as
vitiated atmosphere and smothering, associated with deprivation of
oxygen

Asphyxia by obstruction of the air passages above the epiglottis,
including the nose, mouth, and pharynx

Asphyxia by obstruction of the air passages below the epiglottis
Asphyxia in an inadequate atmosphere by reduction of oxygen,
displacement of oxygen by other gases, or by gases causing chemical
interference with the oxygen uptake and utilization

Asphyxia by closure of the blood vessels and/or air passages of the neck
as a result of external pressure on the neck

A form of strangulation in which the pressure on the neck is applied by
a constricting band tightened by the gravitational weight of the body or
part of the body

A form of strangulation in which the pressure on the neck is applied by
a constricting band tightened by a force other than the body weight
Manual strangulation A form of strangulation caused by an external
pressure

A type of asphyxia where the position of an individual compromises
the ability to breathe

A type of asphyxia caused by external chest compression by a heavy
object

Asphyxia by immersion in a liquid

From: Sauvageau A. Death by Hanging. In: Rutty G.N. (Ed). Essentials of Autopsy Practice. London:

Springer-Verlage,

2014, p. 25. [12]

Reproduced with permission from Springer Nature

(not part of the governing CC license).
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1.2.1. Circumstances and hanging scenarios
There are some distinct circumstances in hangings where the body can be found.

Complete and incomplete hangings: The suspension point in suicidal hangings is often not
high enough to suspend the entire body (without any contact of the body with the
floor/ground object/platform), and this is called a complete hanging [3, 6, 7, 9]. The entire
body weight loads the noose and contributes to neck compression - strangulation [6]. In this
scenario, there is a chair, ladder, or other climbing aid the subject uses to reach the formed
ligature. Alternatively, which is a more common scenario, the victims can be found in
standing, kneeling, sitting, or even lying positions, in which they successfully performed
suicide by an incomplete hanging (Figure 1.3) [2, 3, 6, 9]. In this case, the partial suspension
implies only the part of the body weight loads the ligature, and thus, the neck [12, 21].

A —

Figure 1.3. Positions in (incomplete) hanging. From: Neck Trauma. In: Dettmeyer R.B, Verhoff M.A, Shutz
H.F. Forensic Medicine Fundamentals and Perspectives. Heidelberg: Springer-Verlage, 2014, p. 171. [9]
Reproduced with permission from Springer Nature (not part of the governing CC license).

The proportion of the body weight that loads the ligature and the neck is reported to be
98% if a person stands and touches the ground only with toes, 66% if standing “feet-flat,”
64 - 74% if kneeling, 18 - 32% if sitting, and 10 - 18% of body weight if lying down [12, 21].

The typical and atypical hangings: With regards to the position of a ligature’s noose and
knot, the hanging can be typical when the ligature slants upwards and backward
symmetrically from the loop’s lowest position located at the anterior midline of the neck to
form the knot or the highest point (if there is no knot) at the posterior side of the head and
neck, typically in the occipital or nuchal region. In the case of any other ligature’s loop and
knot position, the hanging is considered to be atypical (Figure 1.4) [2, 3, 6, 9]. This atypical
position of the knot (or the ligature’s highest point if the knot is not formed) can be placed
in the anterior midline of the neck (the so-called anterior hangings) or on the lateral sides of
the head and neck (approximately around the earlobes, the so-called lateral hangings) [6, 9].

The ligature: The ligature can be formed by a rope or improvised by virtually any available
convenient material. For example, a necktie, cabled earphones, bedsheets, various clothes,
a belt, a scarf, shoelaces. It can be turned around the neck once, twice, or several more times.
When constructing a ligature, the noose can be formed by tying the fixed knot, creating a
slip noose, or by creating an open noose, in which two ends at the highest point remain
untangled and independently fixed [3, 6, 7, 9, 10].
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Figure 1.4. (a) Typical and (b, c) atypical hanging. From: Neck Trauma. In: Dettmeyer R.B, Verhoff M.A,
Shutz H.F. Forensic Medicine Fundamentals and Perspectives. Heidelberg: Springer-Verlage, 2014, p. 176.
[9] Reproduced with permission from Springer Nature (not part of the governing CC license).

The short drop and the long drop hangings: One of the most important characteristics
regarding the case circumstances is distinguishing between the short drop hanging and the
long drop hanging. The former is characteristic of suicides and accidents. In a short drop, the
distance the hanged person’s body, or to be more exact - the person’s neck travels from the
moment the suspension is initiated until the noose is completely tightened and fixed around
the neck (that is, the final point of suspension) is no more than about one meter, or there is
no drop at all (N. B. the short drop hangings can be complete or incomplete) [2]. On the
other hand, long drop hangings are characteristic of executions and only rarely occur in the
context of suicide or accident [3, 6, 12, 22]. The executions by hanging were performed for
many centuries in an unstandardized manner with many flaws, and even with sentenced
persons surviving being hanged [20]. In fact, the drop was introduced in the early 19t
century, with the initially proposed length of about 0.3 - 0.45 meters [20]. In the following
decades, the long drop method was introduced, with some adjustments, to make hanging a
systematic, more efficient, and more humane execution method [12, 20]. Formulas and
tables were proposed to calculate the required drop for a given subject’s body weight. As
the name self-describes, the distance the hanged person’s neck travels are significantly
greater. According to the proposed calculations, for example, a person weighing c. 80 kg
would require a drop of at least c. 2.5 m [20]. In addition to the drop increase, the preferred
position of the knot was changed to be placed submental (i.e., anterior atypical hanging)
[20]. The proposals and conclusions were made after a better understanding of the
biomechanics and a principal injury caused by this long drop method - the severe injury of
the cervical spine resulting in instantaneous death, entirely different from the death
mechanism in suicidal hangings with the short drop, considered in the further text [6, 12,
20, 22].

1.2.2. Mechanism of death by short drop hangings

The understanding of death mechanisms in hangings lies in two groups of evidence. The
first is experimental data from the studies conducted around the end of the 19t and
throughout the 20t century [2, 7, 12, 23-29]. The other is a contemporary analysis of
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recorded videos of suicidal hangings initiated by Anny Sauvageau, who founded the
Working Group on Human Asphyxia in the year 2006 [12, 25, 30-33].

The proposed mechanism of airway constriction was soon challenged by the occlusion
of the large-caliber cervical blood vessels and eventually with the reflex cardiac arrest
through the carotid sinus reflex [2, 3, 6, 12, 25]. The three proposed mechanisms are not
considered mutually exclusive, and one could superimpose on others [3].

Airway occlusion: It was demonstrated that a weight load of about 15 kg is sufficient to
close the trachea [3, 23]. But, in hangings, the airway occlusion stems from the lifting of the
larynx by pushing the base of the tongue upwards and backward against the pharynx walls,
which results in the so-called tamponada oris [3, 6, 9] occludes the opening of larynx.

Occlusion of the large-caliber neck blood vessels: The internal jugular veins lie relatively
superficial, and the complete occlusion of their thin-walled lumens occurs with a load of as
much as 2 kg [3, 23, 25]. Once the blood outflow from the head (and brain) is impeded by
neck compression, the continuous blood inflow from the partially or wholly patent carotid
arteries leads to congestion above the level of the ligature [2, 3, 9]. This eventually prevents
the oxygenated blood from perfusing the brain and causes neuronal hypoxia [2]. This is a
reason why it is possible to perform an incomplete hanging in a lying down position - the
human head, on average, weighs about 5 kg [6]. To occlude the major neck arteries, a higher
weight load is required - experiments showed that the load for common carotid arteries is
at least 3.5 - 7.5 kg (often reported to be 5 kg), and for the vertebral arteries a much higher,
at least 16 - 35 kg (usually referenced at about 30 kg) [2, 3, 21, 23, 26-28]. These results
mainly refer to typical knot position, but it has been demonstrated that a force of about 30
kg is enough “to occlude at least two out of four arteries supplying the brain” in atypical
(lateral) hangings [2]. The complete occlusion of all arteries is not necessary for a rapid,
irreversible neuronal injury, as it occurs if the brain perfusion drops by 3 to 4 times from the
standard values [2].

The carotid sinus reflex: The direct mechanical trauma to the carotid sinus could trigger the
reflex cardiac arrest. The mechanical stimulation of baroreceptors and nerve endings in the
carotid sinus, located in the tunica adventitia of the internal carotid artery just distal from its
origin, triggers the cardioinhibitory reflex. From the sinus, the afferent impulses are
transmitted via the sensory fibers of the carotid sinus nerve (Hering’s nerve), the branch of
the glossopharyngeal nerve (CN IX). These afferent fibers terminate in the nucleus tractus

solitarii in the medulla oblongata, while the efferent impulses traverse through the n. vagus
(CNX) [2,3,9,34-37].

But in fact, and as previously stated, many evidence-based conclusions on the
mechanism of death and agonal sequence stem from an analysis of cases of hangings that
were video-recorded and the recent work on this issue of the Working Group on Human
Asphyxia [4, 12, 25, 30-33]. The hanged person typically becomes unconscious after about
ten seconds and then develops generalized tonic-clonic convulsions, followed by
decerebrate and decorticate rigidity, with the last observable movement about 4 minutes
after the hanging. There are also periods of deep rhythmic abdominal respiratory
movements throughout the first two minutes [2, 12]. The exact reported agonal sequence is
shown in Table 1.2. Previously, it has been reported that cardiac activity was detected for
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up to 20 minutes after suspension. However, the evidence on the “point of irreversibility”
for now only shows that a person could recover after about 38 s + 15 s after the suspension
was initiated, in the period of decorticate rigidity [12, 31].

Table 1.2. The agonal sequence in strangulation (based on a review of 14 cases of filmed hanging)

Average time

Loss of consciousness 10s+3s
Convulsions 14s+3s
Decerebrate rigidity 19s+5s

Start of deep rhythmic abdominal respiratory movements 19s+5s
Decorticate rigidity 38s+15s

Loss of muscle tone 1min17s+25s
End of deep rhythmic abdominal respiratory movements 1min51s+30s
Last muscle movement 4min12s+2min29s

From: Sauvageau A. Death by Hanging. In: Rutty G.N. (Ed). Essentials of Autopsy Practice. London:
Springer-Verlage, 2014, p. 28. [12] Reproduced with permission from Springer Nature
(not part of the governing CC license).

1.2.3. Autopsy evaluation of deaths by hanging

In evaluating suspected deaths by hanging on autopsy, as in any case in which a neck
injury is suspected, the general autopsy procedure is modified and supplemented by a so-
called special autopsy of the neck organs [2, 3, 5, 7, 9, 38]. It is, nevertheless, preceded by
looking at the ligature (if still present) and the detailed routine external examination of the
whole body, particularly the skin of the neck, and eventually by creating “the artificial
bloodless field” at the beginning of the internal autopsy examination. This bloodless field is
achieved by opening the cranial vault, removing the brain and incising the dural sinuses on
one side, and disconnecting the heart from its major blood vessels on the other [2, 3, 9, 10].
By this process, the blood is allowed to drain on both ends passively, rostral and caudal
from the neck [2, 3, 9], which significantly decreases the possibility of creating artifactual
hemorrhages in the neck structures (an excellent example of bleeding being a relative vital

sign).

The general findings are typical in all deaths preceded by a very short agony and are
characteristic but non-specific of asphyxia in general and of hanging, for example, the
fluidity of the blood [6] (considered by some to be irrelevant and a myth [3]), well-
pronounced livores mortis, congestion and edema, cyanosis, and petechial hemorrhages. So,
observing them in general is of no definite significance alone (for example, many can be
detected in sudden cardiac deaths) [2, 3, 6, 9]. Their distribution (or even absence) can be of
more use, as will be pointed out.


https://doi.org/10.1007/978-1-4471-5270-5_2
https://doi.org/10.1007/978-1-4471-5270-5_2

1.2.3.1.  Findings on the external examination

Findings above the level of the ligature: The appearance is directly related to the underlying
hemodynamic disturbance [9]. If the constriction by ligature causes partial occlusion of the
major blood vessels of the neck - completely occluding jugular veins but allowing some
inflow of the blood through the carotid arteries - the previously described congestion
ensues above the ligature level [2, 3, 7, 9, 10]. The impaired blood outflow, in addition to the
transudation and consequent tissue edema, probably by combined effects of anoxia and
shifting of the oxyhemoglobin curve, potentiates the formation of the reduced hemoglobin
(carbaminohemoglobin) and causes pronounced cyanosis of the head and the segment of
the neck rostral to the ligature level [3]. The impaired outflow can result in a dramatic
increase in the intravascular pressure, which can lead to rupture of the venules and/or
capillaries, appreciable in the conjunctivae, sclerae, and skin of the forehead. This is
macroscopically observable as a petechial hemorrhage in these regions [2, 3, 6, 9]. Due to the
same reason, overt bleeding from the ears and nose can occur [7, 9]. The petechial
hemorrhage appears suddenly but requires compression to last at least 10 - 20 seconds [2,
3, 9]. These findings are present in cases of incomplete cessation of head circulation and are
hence observable in incomplete and atypical hangings. Contrary, full suspension with
typical knot position and complete cessation of blood inflow to the head as a rule results in
total absence of the described findings (a so-called “pale hangman,” Figure 1.3) [2, 3, 6, 9].
In fact, finding them in such a case must raise a suspicion of foul play [3, 9]. Additional
findings include hypersalivation and saliva dripping from the angle of the lips on a tilted
side of the head [2, 6, 9, 35].

Findings at the level of the ligature: The typical finding at the site of the ligature
compression is the postmortal formed ligature mark, a parchment-like, brown-yellowish, or
dark-reddish furrow, due to skin desiccation [3, 6, 9]. This is present only if the ligature is
not removed quickly and if the constricting force is not minimal [6]. If present, it is usually
overt and is significant for several reasons. It shows the position of the noose’s loop and the
position of the knot in a noose - the lowest portion corresponds to the site of the loop, while
the opposite, highest point indicates the position of the knot (if it was made) or the highest
level of suspension (Figure 1.5) [9]. If there is no tightly constricted fixed knot or a slip noose,
the ligature mark does not encircle the entire neck circumference [2, 3, 9, 10]. It is rarely
placed horizontally, except in a tightly entangled fixed/slip noose, multiple turns of the
ligature, or a specifically tilted body position in incomplete hanging [3, 9]. There may be
excoriations around the ligature mark, which are of no value in terms of vitality [9]. If there
are several turns of the ligature, the skin between them may get pinched. In this skin ridge,
the presence of hemorrhages is a significant relative sign of vitality [2, 3, 6, 9].

Findings below the level of the ligature: Since the hypostasis is typically well-pronounced,
its distribution can aid in reconstructing the body's position or indicate if the body was
moved and position manipulated. In complete suspensions, the characteristic “gloves and
socks” distribution of the hypostasis can be observed [3, 6, 9]. In incomplete hangings, the
distribution can be more complex and corresponds to the body position, compression points
and tilting, if livores were fixed. At the most dependent areas, vibices can be observed
(postmortem phenomenon) [6].



Figure 1.5. (a and b) A furrow in the case of a typical hanging - the ligature mark has the lowest point in
the anterior neck midline (above the laryngeal prominence) and runs symmetrically backwards and upwards,
fading behind the earlobes - indicating the highest point or the knot in the noose was in the occipital region.
(c) A furrow in the case of atypical (left lateral) hanging - the placement of the ligature mark indicates the
lowest part was on the right lateral side of the neck, while the knot was placed in the left auricular region. The
white arrow indicates the pinched ridge of the neck skin.

From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.

1.2.3.2.  Findings on the internal examination

Findings above the level of the ligature: If the described hemodynamic disturbance - acute
congestion above the ligature level occurs in the head region, the petechial hemorrhages can
be detected under the temporal muscles” fasciae and in the leptomeninges. Congestion can
also result in appreciable brain edema [2, 3, 6, 7, 9, 10]. All the findings in the neck region
will be considered separately.

The special neck autopsy procedure and local findings: The layer-by-layer dissection is
performed. Below the level of the ligature, subcutaneous tissue emphysema can occur due
to Macklin effect [39], while at the ligature level, drying out of the soft tissue can be seen
[6]. Moving to deeper layers of the neck, particular attention should be given to the
sternocleidomastoid muscles and the upper belly of the omohyoid muscles [2, 3, 6, 9, 38].
Hemorrhages can be observed in muscles at the ligature level, but the most important are
the periosteal hemorrhages of the clavicles at the origin of sternocleidomastoid muscles
(Figure 1.6) [2, 3, 6, 9]. They represent the local relative vital signs and can be of various
extents. This injury seems to occur due to hyperextension of the muscle - indicating the site
of the knot in a noose [3, 40]. Further, in situ dissection includes the search for vessel injuries,
the Amussat’s sign (transversal intimal tears of carotid arteries), although rare, being the
most characteristic [41, 42], the analysis of deeper neck muscles, the thyroid gland, and
larynx (signs of congestion and mechanical trauma) [9]. Then, the en bloc evisceration of the
tongue, hyoid bone, larynx, and upper segments of the trachea and esophagus is done for
further inspection (see the next paragraph) [2, 3, 9]. Eventually, the revealed cervical portion
of the spinal column is inspected. The cervical spine injuries in short drop hangings are
more often confined to the lower half of the column (between the third and seventh cervical
vertebra) and range from tearing of the anterior longitudinal ligament, widening of the
intervertebral space or fractures without a dislocation [43-46]. The injury seems to be the
most common in anterior atypical hangings. Still, it is different from the cervical spine injury
9



in long drop judicial hangings, where the fracture of the upper spine segments occurs, with
a fragment dislocation (the dens), with medullar injury, or even partial or complete
decapitation [22, 43]. The Hangman's fracture, spondylolisthesis of the second cervical
vertebra, and symmetrical fractures of the pedicles are also characteristic of upper segment
injuries [6, 22]. The fractures should be considered intravital only if accompanied by a
hemorrhage in the surrounding soft tissue [6].

!

Figure 1.6. Dissection of the neck — white arrows indicate visible collarbones subperiosteal hemorrhages,
at the origin of sternocleidomastoid muscles.
From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.

The laryngohyoid complex injuries: The typical injuries are confined to the hyoid bone's
greater horns and the thyroid cartilage's superior horns [3]. Interconnected with ligaments
and soft tissue, they form an interdependent biomechanical functional unit [6, 9, 47]. The
more detailed anatomy of the thyrohyoid complex is described in the following subsection
of the introduction (section 1.3). Of forensic relevance is the detection of fractures,
recognition of signs of intravital fracture occurrence (Figures 1.7 and 1.8), and familiarity
with pitfalls - misinterpretation of anatomy variations, such as the Eagle syndrome, the
hypoplasia or absence of superior thyroid horns, and the misinterpretation of the palpable
triticeal cartilage as a fracture fragment [3, 6, 9, 38, 48]. Detecting horn fractures on autopsy
is typically straightforward after the horns are dissected and defleshed (Figure 1.7). To make
things more straightforward, they are relevant only if surrounded by a soft-tissue
hemorrhage, making them more easily observable [6, 9]. The extensivity of the bleeding may
vary, and artificial bloodless field creation is of great importance here, too. The horns can
fracture by direct compression, laterally oriented or anteroposteriorly oriented force, or by
an indirectly acting stretching through ligamentous structures (membranes) [2, 3]. The
displacement direction of the fragments cannot be established on autopsy due to direct
manipulation and artifactual displacement, but postmortem imaging may prove especially
useful regarding this [49, 50]. The horns can fracture at any site. However, the hyoid bone’s
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greater horns most often fracture on the borderline between the middle and distal thirds,
within 1 cm from the tip, and at the junction with the hyoid bone’s body. The superior horns
of the thyroid cartilage tend to fracture near its base [3, 9]. However, no particular pattern
in fractures has been established concerning the position of the knot in a noose [46, 51-58].
It is well demonstrated that the frequency of horn fractures increases with age (ossification
and calcification, increased brittleness), but the association with other basic anthropometrics
- sex, body weight, and body height remain ambiguous [9, 51, 53, 58-61]. To make things
more complicated, despite numerous autopsy studies, the thyrohyoid complex fracture
prevalence estimation remains unordinary inconsistent - reported prevalences range from
less than 5% to over 75% of cases [46, 52, 56-58, 62-73]!

Figure 1.7. Defleshing the thyrohyoid complex on autopsy. The black arrow shows the site of the fracture
of the right greater horn of the hyoid bone, with macroscopically visible hemorrhage in the surrounding soft
tissue. The hemorrhage is a sign of intravital horn injury, and eases detection of the fracture.

From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.

Findings below the level of the ligature: The general organ hyperemia is seen in all organs
and tissues [6]. Particular attention should be given to remote signs of the agonal sequence
in hanging. Due to hyperextension of the spine and convulsions, the rupture of the vessels
in the ventral sides of the intervertebral discs in the lumbosacral region can occur,
particularly in younger individuals. This macroscopically visible bleeding is called Simon’s
hemorrhage [6, 12, 30, 43, 74].

1.3. Hyoid bone and thyroid cartilage anatomy

The hyoid bone (Latin, os hyoideum) is U- or V-shaped (i.e., curved) and located under
the base of the tongue, in the body midline [3, 9, 34, 47, 58]. It is the only bone of the human
skeleton which does not form a direct connection with any other bone [34, 47]. However, it
forms complex indirect connections with several surrounding structures by fibrous
connections (Figure 1.8). The stylohyoid ligament connects it with the skull, the glossohyoid
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membrane with the tongue, and, most importantly, a thyrohyoid membrane with the larynx
(thyroid cartilage). Moreover, many muscles attach to it, including several tongue muscles,
digastric muscle, stylohyoid muscle, thyrohyoid, sternohyoid, and omohyoid muscle. The
hyoid bone has a centrally placed body and two sets of horns (Latin, cornua) - greater and
lesser horns [34, 47]. Of the most significant forensic relevance are the greater horns, as
previously discussed. They are oriented horizontally backward from the sides of the body
[47]. At the base, they are articulated with the hyoid bone’s body and only in some entirely
ossify and fuse with it over time

The thyroid cartilage (Latin, cartilago thyroidea) is one of the central structures of the
larynx, which in addition comprises of cricoid and epiglottic cartilage, as well as paired
structures, arytenoid, corniculate, and cuneiform cartilages. Thyroid cartilage is a hyaline
cartilage and has two laminas fused at the midline to form the laryngeal prominence [34,
47]. The angle of this fusion is more acute in males (about 90 degrees) than in females (about
120 degrees), making it more prominent in the former case [47]. Superior horns originate
from the lateral aspects, at the junction of laminar upper and posterior margins, and are
directed upwards. At the margin of laminar lower and posterior margins, the inferior horns
originate, directed downwards to articulate with the cricoid cartilage [34, 47], but apart from
this, they are of no forensic significance.

The thyrohyoid membrane is a principal structure that interconnects the thyroid
cartilage and the hyoid bone. In its medial part, it is thicker, while the lateral portions are
thin. The free posterior margins form a connection between the tip of the thyroid cartilage's
superior horn and the hyoid bone's greater horn. It traverses by the interior aspect of the
hyoid bone [47]. The thyrohyoid complex anatomy is shown in Figure 1.8.

1.4. Medicolegal significance of thyrohyoid complex fractures

These fractures are nonspecific neck injuries. They occur in other types of strangulation,
in blunt-force neck trauma (agonal falls, traffic accidents, falls from height when it is
typically not an isolated injury but often associated with polytrauma), or can even be
iatrogenic (endotracheal intubation, Sellick maneuver) [2, 3, 9, 58, 71]. On the evaluation of
strangulation deaths, including the hangings, the forensic medicine specialist is expected to
provide direct answers to several important questions, such as were the detected injuries
sustained while the subject was alive, can a self-infliction be ruled out, and do the autopsy
findings suggest the particular and expected circumstances or rule them out (including the
position of the body and hence the knot position) [2, 3, 9]. To provide answers, one relies on
many findings, including the described autopsy findings such as distribution of the
postmortem lividity, position and direction of the ligature mark, and potentially thyrohyoid
fractures, as well. However, currently, the latter can be of significance only to state that such
an injury (accompanied by the surrounding soft tissue hemorrhage) is consistent with
strangulation (i.e., hanging). But as a non-specific to hangings, and strangulation in general,
and without any recognized patterns regarding the knot in a noose position, other than the
discussed above, the thyrohyoid complex (and cervical spine) fractures are of no other
medicolegal significance per se. Initial attempts to observe the association of some
distribution patterns of these fractures with the knot in a noose position were deemed
unsuccessful, and this topic requires further research.
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Figure 1.8. Predilection sites for fractures of the larynx and hyoid bone from lateral compression. From: Neck
Trauma. In: Dettmeyer R.B, Verhoff M.A, Shutz H.F. Forensic Medicine Fundamentals and Perspectives.
Heidelberg: Springer-Verlage, 2014, p. 176. [9] Reproduced with permission from Springer Nature
(not part of the governing CC license).

1.5. Machine learning and forensic pathology

The concept of artificial intelligence (AI) was coined in 1956 and refers to the
development of computer systems able to perform tasks that require human intelligence
[75]. For example, this would encompass visual perception, speech recognition, and
decision-making. The theory defines three main Al stages: 1. Narrow Al (“weak,” capable
of functioning within a strictly defined narrow function, e.g., Alexa), 2. General Al (“strong”
machine capable of performing any intellectual task a human can - not yet achieved), and
3. Super Al (a stage when a computer surpasses human capacities) [75]. Al is an umbrella
term, while one of its subcategories is called machine learning (ML). ML specifically refers
to a computer program capable of learning how to produce behavior not explicitly
programmed by the author (i.e., by a human). In the broadest sense, ML can learn patterns
from data [75-77]. We can probably see this concept as a set of experience-based learning
and numerous try-and-error attempts, which improve the capability for a correct final
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decision (output) after each step (iteration) based on the previous observation and result.
This concept of self-improvement by recognizing error and trying to minimize it is termed
“Error backpropagation” [75]. Machine learning programs can detect non-obvious
associations between variables, which would remain unobserved by common sense or even
“conventional” statistical analyses. Patterns can be detected in complex data structures (e.g.,
nonlinear associations, interactions, subgroups). Thus, it can be a handy tool to overcome
challenges for which traditional statistical methods are not well-suited [75, 76].

Each machine learning program is defined by an algorithm (set of rules and statistical
techniques for learning and decision making), a model (mathematical equation, a formula
providing output based on the available input), predictor feature(s) (a variable - distinct
observation of interest), and response variable (the “feature” or the target output - outcome
that should be predicted/classified) [75, 76]. For the ML program to function, the sample of
cases from which it will learn needs to be divided into the training set - to train the model
(learning) and a typically smaller testing set — a subgroup of cases from a sample that will
be omitted from the “training sessions.” It will contain “unseen” data to test the general ML
model performance. [75-78]. The sample size ratio is usually 70% to 30% or 80% to 20% for
training and test subset, respectively [75, 76, 79, 80]. The ML modeling requires a
significantly large sample size and uniform data, preferably without any missing
information for every included case in the sample. There are no precise rules for
determining the required sample size for supervised machine learning model development,
but a general rule is that the larger the sample is, the more accurate estimation will make
[75-77].

Depending on how the ML models are trained, three distinct types are defined:
supervised, unsupervised, and reinforcement learning. In the supervised ML, the author
provides the machine with data on the actual outcome in the analyzed set. In the case of the
research presented in this thesis, the machine learning program will be “familiar” with the
position of the knot in a noose for each case, so it can explicitly learn which outcomes should
be differentiated and would ideally provide high-accuracy classifications in the unseen data
(Figure 1.7) - learning by example [75, 77]. The two latter ML forms are less interesting for
the present research. Briefly, the unsupervised learning machine is not provided with the
outcome for each case (so-called unlabeled data) and should classify by itself, without
guidance from the author - it should determine how to best categorize dimensions into
subtypes (e.g., diagnostic groups). It helps understand patterns (e.g., pixel patterns) and
detect grouping (groups). In reinforcement learning, the essential principle is a trial-and-
error learning method (text and speech understanding is an example of application) [76, 77].

Several different “supervised” machine learning algorithms (i.e., different sets of
decision-making rules) exist, and the basic concepts of some will be described here.

Logistic regression can be considered as a “rudimental” machine learning algorithm. The
binary outcome is defined (e.g., the fracture is present or absent, in mathematical terms “1”
or “0”), and the significance of the input variable with the outcome is calculated and defined
as an odds ratio. It can be useful to detect significant associations that can point to important
input variables for other classification algorithms. It is, nevertheless, a “traditional” or a
“conventional” statistical method [75-77].
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Figure 1.9. [llustration of three machine learning problems, left to right: linear and nonlinear regression,
classification, and clustering. From: Lidstromer N, Aresu F, Ashrafian H. Basic Concepts of Artificial
Intelligence: Primed for Clinicians. In: Lidstromer N, Ashrafian H. (Eds). Artificial Intelligence in Medicine.
Cham: Springer, 2022, p. 11. [75] Reproduced with permission from Springer Nature
(not part of the governing CC license).

Decision Tree is an algorithm whose model provides a branching set of rules in decision-
making that resemble the inverted tree (Figure 1.10). If adequately modeled, it can perform
classification tasks in a stepwise manner by several if-then decision steps, which is quite
useful as it is easily understandable by common sense and directly points to the most
significant inputs, with high visual interpretability - it is useful for identifying complex
associations [75-77, 81].

Root
(starting variable -
Input 1)

Decision A
(Output)

Decision B
(Output)

Decision A
(Output)

Figure 1.10. A scheme of a simple “branching” decision tree machine learning model - a series
of understandable if-then decision-making stops.

Naive Bayes is based on the Bayes’ theorem, a distinct set of rules based on the
probabilistic approach. The algorithm’s initial assumption is that none of the inputs are
interdependent (change in the value of one variable does not affect other variables) [75, 82].

K-Nearest Neighbor (k-NN) classifies cases based on the “distance” to the closest (most
similar) neighbor points. It is referred to as a lazy algorithm because it memorizes the training
set and does not learn a discriminative function [75, 83].
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The artificial neural network (ANN) is probably the most complex of the algorithms. The
inspiration for their design is based on the biological organization of neurons (synapses).
Each neuron performs the calculation and provides individual output delivered to the next
neuron. This one independently analyzes the output as a new input. Eventually, the single
final output of the model is provided. During the training process, the weights are
calculated for each transfer function and the best of many pathways in the network is
selected. Several factors define the complexity of ANN, the most significant being the
number of hidden layers - defining the number of interconnections and pathway
complexity [75-77,79, 80, 84].

However, the way the training is carried out is defined by the set of parameters (so-
called hyperparameters) that are not learned but are predefined manually (before training)
[75, 76]. These define how to optimize the weights (variable importance), how many times
the algorithm can pass through the training data, and limiting the complexity of a model
(e.g., number of hidden layers and neurons in ANN, number of nodes and a minimum
sample size of the parent node in decision tree model) [75-77]. There are means by which
this process of manual hyperparameter adjustment can be automatized and systematized -
using a so-called genetic algorithm, which is inspired by the biological evolution process:
the best model achieved in a single generation will be the starting point for the next one [79,
80, 84-86]. Of note is that there is no standardized set of these values that is uniformly
appropriate - one of the reasons why this is an experimental method [76, 77].

A well-trained model should perform against the test data similarly to its average
performance against the training data. The metrics for evaluation can be those dependent
on the defined cutoff point (accuracy, sensitivity, specificity, positive and negative
predictive value), as well as those independent of this - most notably the Receiver operating
characteristics curve analysis [76].

In medicine, the primary interest is in Al-based (ML-based) image analysis (for example,
radiology, histology, and dermatoscopy), which could improve or speed up diagnostics. For
example, a highly accurate automated model that differentiates between benign and
malignant lesions based on a routinely analyzed microscopy slide scan or some other
macroscopic image would be of great direct clinical value. But it can also be useful for the
classification based on non-image data (sets of numerical and categorical data) [75-78, 87].
In forensic medicine, Al-based problem solving was attempted, for example, in research on
the sex and age estimation, dating of bruises, detection and classification of the pulmonary
fat embolism, reconstruction of the pedestrian strike regarding the vehicle type, estimation
of the postmortem interval, toxicology analysis [88-96].

However, up to the author’s best knowledge, no attempts to classify the position of the
knot in a noose in hanging by distribution and pattern of the fractures of the thyrohyoid
complex and the cervical spine have been performed previously [62]. As the previous
subsections of the introduction suggest, this type of research could have important
implications for forensic pathology research and practice in death-by-hanging evaluation.
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2. RESEARCH AIMS

I To analyze characteristics and distribution of thyrohyoid complex and cervical spine
fractures with regards to the position of the knot in a noose in suicidal hangings
by basic descriptive and inferential statistical methods.

II To determine the performance of machine learning algorithms in assessing the knot in a
noose position based on the thyrohyoid complex and cervical spine fracture patterns
in suicidal hangings.

III To determine the performance of machine learning algorithms in assessing the knot in a
noose position while taking into account the body weight of hanged subjects,
in addition to the fractures.

IV To determine the performance of machine learning algorithms in assessing the knot in a
noose position while taking into account the presence of hemorrhages at the origin of
sternocleidomastoid muscles on the clavicles, in addition to the fractures
and the body weight of hanged subjects.

17



3. MATERIAL AND METHODS

This is a single-institution retrospective observational autopsy study on cases of suicidal
hangings autopsied at the Institute of Forensic Medicine of the Faculty of Medicine of the
University of Belgrade, Serbia. The data on autopsy cases relevant to the study was
systematically collected for the period from 1995 to 2023, with several additional sporadic
cases from the later period, which were observed during the conduction of the research. The
data was obtained from autopsy records and supplementary documentation (police reports,
photo documentation, and heteroanamnestic data), all archived at the Institute of Forensic
Medicine. The study was approved by the Ethics Committee of the Faculty of Medicine,
University of Belgrade, Serbia (N?25/V-7).

The entire study presented in this thesis is structured into three separate parts.
Therefore, the general research structure and characteristics common for all three parts are
described in the following sections of the Materials and Methods (from section 3.1. to section
3.3.). After these sections, the detailed design and any additional methodology or data
analyses are described separately in a successive and logical order for each part of the study.
If not otherwise mentioned, the principles described in the general methodology sections
(3.1. - 3.3.) hold for each part of the study.

3.1. General case selection criteria and study sample

The study sample comprised autopsied cases of suicidal hanging with a short drop or
without a drop, in whom autopsy findings, police investigation and report, circumstances,
and heteroanamnestic data excluded potential foul play and concluded the hanging event
and death were of suicidal manner. In all the cases, autopsy findings were consistent with
hanging as a cause of death, and in those cases in whom the fractures of the thyrohyoid
complex or cervical spine were observed on autopsy, the presence of a macroscopically
visible soft-tissue hemorrhage surrounding these fractures was considered a sign of
intravital injury (fracture) occurrence. Exclusion criteria in the case selection were: subject’s
age of fewer than 15 years, a long drop hanging, anatomy variations (congenital or acquired)
of the thyrohyoid complex in which one or more horns - greater hyoid bone horns, and
superior thyroid cartilage horns are absent or hypoplastic, Eagle syndrome, fractures of
other laryngohyoid structures (for example, cricoid cartilage, hyoid bone body, lesser horns
of the hyoid bone), pronounced putrefactive changes, as well as all the cases in which the
position of the knot in a noose could not be determined by autopsy examination and police
investigation.

Based on the assessed knot in a noose localization regarding the head anatomy, each
included case was assigned to one of the four groups (Figure 3.1):

e Posterior knot position,

e Anterior knot position,

o Left lateral knot position,
e Right lateral knot position.
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The position of the knot in a noose was classified as the posterior if the knot was estimated
to be in the region behind the mastoid processes” projections, at the back side of the neck; as
the anterior if the knot was located anteriorly to the projection of mandible angles; and, as
the left or right lateral if the knot was located between the projections of an ipsilateral mastoid
processus and mandible angle, as shown on Figure 3.2 (see section 3.2.1. The knot in a noose
position assessment). In this manner, the cases were divided into typical (posterior) hangings
and atypical (anterior, left lateral, and right lateral) hangings.

posterior anterior right left

TYPICAL ATYPICAL

Figure 3.1. The subjects were assigned to one of the four groups depending on the knot in a noose position:
It can be in a typical (posterior) or atypical position (anterior or left/right lateral).
Adopted from: Lekovic et al. [62]

3.2. Autopsy technique standard and uniformity of documented findings

At the Institute of Forensic Medicine in Belgrade, all autopsies are performed or
supervised by at least two forensic pathologists, university teachers, with at least five years
but usually more than ten years of forensic pathology practice as forensic medicine
specialists. Moreover, at the Institute, all forensic pathologists perform the identical autopsy
standard procedure, which in cases of suspected hanging deaths invariably includes a
mandatory and detailed external neck examination followed by a standard layer-by-layer
neck dissection. Therefore, the uniformity of recorded findings is ensured, as described in
the following text.
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A

Figure 3.2. Scheme of the knot in a noose position classification as anterior (A), posterior (P), or lateral (L).
The head is viewed from the top, ears can be seen on the sides and the nose in front. The drawn lines are
crossing the mastoid processes in the back, and mandible angles in front (not directly visible from the top but
crossing points are corresponding to their positions). Reproduced from: Lekovic et al. [62]

3.2.1. External neck examination — the knot in a noose position assessment

On the external neck examination, if the fixed-knot noose is still in place, the position of
the knot is noted. Regardless of this, the ligature skin mark (a furrow) is always precisely
measured (width, depth) and described considering the distance from the fixed anatomical
points of the head: chin tip, mandible angles, lower poles of earlobes’ radices, and external
occipital protuberance (if a furrow was present). In this manner, even if the noose was
absent at the time of the autopsy examination, the position of the knot could be determined:
it represents the point opposing the lowest and the deepest part of the ligature mark
(illustrative example shown in Figure 1.5). If the mark in the form of the knot’s impression
is visible, this is noted, too. So, the noose knot’s position is estimated based on the
appearance and position of the skin ligature mark on the neck or by noting the position of
the knot on autopsy if the noose was not removed before it.

20



3.2.2. Neck dissection - detection of the thyrohyoid complex and cervical spine fractures

The neck dissection is preceded by the autopsy of the head and cranial vault to ensure
the so-called ‘dry’ neck dissection. Then, a standard layer-by-layer dissection of the
anterolateral neck is performed. For this research, the following segments of this neck
dissection technique should be highlighted:

e A layer-by-layer dissection of the skin and soft tissues, including each muscle layer
of the anterolateral neck, is performed to expose the larynx. Then, the tongue,
oropharynx, larynx, and initial tracheal segments are dissected and removed en bloc
after in situ inspection. Afterward, the thyrohyoid structures are separated
(‘defleshed’) from the soft tissue to reveal any fractures by inspection and palpation.
The thyroid cartilage’s superior horns and the hyoid bone’s greater horns are
invariably inspected, palpated, and checked for mobile fragments and fissures.

e After this, the cervical spine is exposed, and this segment is checked for the presence
of an injury —a fracture.

e As previously mentioned, the fractures of the thyrohyoid complex and the cervical
segment of the spinal column were considered to be intravital (that is, to have
occurred due to hanging and neck compression by the noose) only if accompanied
by the surrounding soft tissue hemorrhage. This prevented misinterpretation of
artifactual fractures due to body transport or ma autopsy-related postmortem injury.

3.3. General variable selection and coding

For all the included cases, the following data were noted: sex, age, position of the knot
in a noose, and presence of the fracture of each (left and right) greater hyoid bone’s horn,
the fracture of each (left and right) superior thyroid cartilage’s horn, and the fracture of the
cervical spine, as per criteria described in the previous methodology (sub)sections. So, for
each included case, it was determined if thyrohyoid complex fractures were present and
exactly which horns were fractured (defining the side - left or right lateral). Based on the
presence or absence of the mentioned thyrohyoid complex and cervical spine fractures, the
following variables were coded for analysis:

¢ Unilateral superior thyroid horn fracture (Yes / No),

e Bilateral superior thyroid horn fractures (Yes / No),

e Total number of superior thyroid horn fractures (range 0 - 2),

e Unilateral greater hyoid horn fracture (Yes / No),

e Bilateral greater hyoid horn fractures (Yes / No),

e Total number of greater hyoid horn fractures (range 0 - 2),

e Total number of thyrohyoid fractures (a sum of variables listed 34 and 6th, range 0 - 4),
e Isolated superior thyroid horn fracture(s) (Yes / No)

e Isolated greater hyoid horn fracture(s) (Yes / No)

e Simultaneous superior thyroid horn and greater hyoid horn fractures (Yes / No)
e Cervical spine fracture (Yes / No)
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The coded variables and other noted data were used in all three parts of this study. Their
further analyses are described in detail in the following (sub)sections of the Material and
Methods for each study part separately. Again, if overlapping in terms of methodology, these
analyses of the obtained data will be described in detail in the part where these are first
applied, with subsequent briefer comments on any modifications in the following segments
of the entire research.

3.4. PARTI I of the study:
Separate analysis of the fracture patterns in knot’s position assessment

3.4.1. Study design

The first part of the study represents analysis, which investigated the association of the
noose knot’s position with the subject’s sex, age, and the presence of fractures of the superior
horns of the thyroid cartilage (STH), greater horns of the hyoid bone (GHH), and the cervical
spine. For the descriptive, inferential statistics analyses, as well as for machine learning
models development, to determine the thyrohyoid and cervical spine fracture patterns with
regards to the knot’s position, this part of the study comprised stepwise, similar analyses of
the entire study sample and three derived subsets, as described below:

e Dataset I — The entire sample - all cases that fulfilled the defined study criteria. A total
of 1235 subjects were included. Therefore, this Dataset (I) comprised the cases without
any thyrohyoid and cervical spine fractures and cases with these fractures. The subjects
were divided into two groups to be compared based on the noose knot’s position: (1)
typical (posterior) hangings and (2) atypical (lateral and anterior) hangings.

e Dataset II — This is a subgroup of the entire sample, including only cases with at least
one thyrohyoid or cervical spine fracture. A total of 773 subjects were included in this
subgroup. The exclusion of subjects without thyrohyoid and cervical spine fractures may
eliminate potential failure of fracture pattern detection or underestimation. The cases
were divided into the same two groups for comparison (typical and atypical hangings).

e Dataset Il — The subgroup comprised only atypical hanging cases with at least one
thyrohyoid or cervical spine fracture and comprised 340 subjects. The subjects were
divided into two groups to be compared based on the noose knot’s position: (1) anterior
hangings and (2) lateral hangings.

e Dataset IV — The subgroup comprised only lateral hanging cases with at least one
thyrohyoid or cervical spine fracture and included 286 subjects. The subjects were
divided into two groups to be compared based on the knot position: (1) left lateral and
(2) right lateral hangings. To try to discriminate between the two groups, additional
variables needed to be coded, defining on which side the fractures occurred: left or right
superior thyroid and greater hyoid horns. Furthermore, based on the statistical analysis
results of the machine learning model experiments, we included two additional
variables: (1) the presence of a single (unilateral) greater hyoid bone horn fracture
ipsilateral to the knot position and (2) the presence of a single (unilateral) superior
thyroid cartilage horn fracture contralateral to the position of the knot.
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3.4.2. Statistical analysis

Descriptive statistics were used to analyze the samples (datasets) and assess the
frequency and distribution of thyrohyoid and cervical spine fractures regarding the position
of the knot in a noose. Nominal data were represented as absolute frequencies and
proportions (%), and numerical data as mean (+ SD) or median (range), as appropriate per
type (categorical or continuous) and normality of distribution. The normality of the
continuous numerical data distribution was analyzed by Q-Q plots and the Kolmogorov-
Smirnov test. Inferential statistical analysis of the coded variables and other obtained data
between the defined study groups was performed using Pearson’s x2 test, Student's t-test
for two independent samples, and the Mann-Whitney U test. To determine the association
between the thyrohyoid and cervical spine fracture patterns with the position of the knot in
a noose, each of the four datasets was analyzed separately in the noted order (I to IV). The
X2 test, t-test for two independent samples, Mann-Whitney U test, and Student's t-test for
two independent samples were used.

For each dataset, the univariable logistic regression analysis was performed to detect
whether the dichotomous variables coded above, and the subjects' age were associated with
the position of the knot in the noose. Variables with p-values < 0.1 on univariable analysis
were included in the multivariable analysis. Results were expressed as odds ratio (OR) with
95% confidence interval (CI). Additionally, a Receiver Operating Characteristic (ROC)
Curve analysis was performed to assess the predictive value of subjects’ age on the
occurrence of thyrohyoid fracture in general and, separately, on the occurrence of superior
thyroid cartilage horn fractures and greater hyoid horn fractures. The highest Youden's
index [97] was criterion for selection of a threshold value. Separately from these analyses,
occurrence of the fractures was analyzed between the subjects older than 40 years of age
and the younger - previous studies reported the fractures tend to occur more often above
this threshold. A two-tailed p-value < 0.05 was considered statistically significant.

Finally, using the same coded variables and case group divisions, the machine learning
algorithm models were assessed for classification - predicting the knot position (see below).

3.4.3. Machine learning algorithms development and assessment

According to the aim of this study, using the age, sex, coded variables, and case group
divisions, the machine learning algorithm models were developed for each of the four
datasets and assessed for classification performance - predicting the knot in a noose
position. All the coded variables were included as potential inputs for the training of
considered algorithms. Before the training, if necessary, the unbalanced dataset was
balanced using the Synthetic Minority Oversampling Technique (SMOTE) algorithm in the
Weka software (v. 3.8): we used the ten nearest neighbors and set the seed for random
sampling to 4. Each dataset was divided into Training and (independent) Test groups, with
a ratio of 70% to 30%, respectively, by manually repeating the randomization until there
were no statistically significant differences in the analyzed variables between the two
groups. The characteristics and comparison of the variables between the training and test
groups are reported in the Supplementary material.
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For each developed dataset, the Artificial Neural Network (ANN) model with
hyperparameter setting finetuning by Genetic algorithm (GA), previously utilized,
modified and provided to the PhD candidate by Vukicevi¢ AM [79, 80, 84], was developed
in MATLAB (v. 2021b). Finetuning of the algorithm by the GA is done in an evolutionary
manner - the GA starts a model optimization from an initial guess of hyperparameters
(initial population), which are used as inputs for the objective function (OF). The OF
ensembles the model with respect to the current guess of hyperparameters and computes
the model accuracy - aiming to maximize it [79, 80, 85]. The number of generations of the
GA optimization was set to 10. Of the developed models, the one with the highest accuracy
in the test sample was selected, with the condition that there was no statistically significant
difference in the ROC curve analysis of the outcome predicted probabilities between the
training and test group. In a case where no model with insignificantly different performance
between the training and test groups was achieved, the GA-optimized ANN development
process was repeated until the criteria were met. The ANN developed in this manner also
selects input variables that were considered and included in the final model, and the
selected variables are reported in the results section.

Then, using SPSS software (IBM, v. 29), for each dataset, another ANN (Multilayer
Perceptron - Artificial Neural Network, MLP-ANN) was developed, as well as the
following machine learning algorithms: k - Nearest Neighbors (k-NN), Decision Tree (DT),
and Naive Bayes (NB). The development of the machine learning models in SPSS was done
by repeated manual or automatic hyperparameter settings. As previously stated, each
dataset used for machine learning models” analysis was divided into a training group (70%
of the dataset) and an independent test group (30% of the dataset) by repeated
randomization until no statistically significant difference between analyzed variables exists,
and this division was also used in SPSS, in any developed machine learning model for which
the statistical program allows the setting to be modified. Again, the model with the highest
accuracy in the test group with no statistically significant difference in the ROC curve
analysis of the outcome predicted probabilities between the training and test groups was
selected. During the analysis in SPSS, at least ten repeated model development attempts
were made using the same available settings adjustment for each selected model. Up to the
top five ranked variables for each developed model are also reported based on their relative
importance in the model. The utilized models” developed in SPSS basic hyperparameter
settings are reported: for MLP-ANN number of hidden layers, number of neurons in a
hidden layer, activation function, training type, training algorithm, initial learning rate, and
momentum; for DT growing method, tree depth, min. samples of parent node, min. samples
of child node, number of nodes, and number of terminal nodes; for k-NN number of
neighbors to consider, distance metrics, and search algorithm (feature selection - stopping
criterion); and for NB maximum memory, number of bins for scale predictors, and number
of selected predictors.

All the developed ML models' performances were evaluated by calculating the accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
positive (LR+) and negative likelihood ratio (LR-), and Area Under the Receiver Operating
Characteristic (ROC) curve (AUC), overall, and for the test and train group. The ROC curve
analysis of the outcome predicted probabilities for each dataset was compared between the
ANN developed in MATLAB and the ANN developed in SPSS. Statistical analysis was
performed using SPSS software (IBM, v. 29). The calculation of the ML models’
performances and the ROC curve comparisons were done in R (v. 4.2) using the EZR GUL
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3.5. PART II of the study:
Analysis of the body weight’s significance
in knot position-related fracture patterns assessment

3.5.1. Study design

The second part of the study represents a similar analysis but only of cases in which, in
addition to the subjects’ sex, age, and thyrohyoid and cervical spine fractures, data on their
body weight and height could be obtained (the body weight has been measured
systematically and accurately only for the past ten years at the Institute). Therefore, this
study part's entire sample was smaller than the previous part and comprised 368 included
cases. Analyses were focused on the contribution of body weight to predicting the knot in a
noose position through the thyrohyoid and cervical spine fracture patterns. So, the cases
were again analyzed stepwise, firstly on the entire sample (with data on the body weight
and height) and then on subsets formed identically to the previous study part (Dataset I -
IV; see Section 3.4.1.). For discrimination between datasets of the first study part, the
datasets in the second part were labeled with the suffix -w” (e.g., Dataset I-w), indicating
analysis of the weight’s significance. The following sample subsets were formed:

e Dataset I-w - a total of 368 cases were included. Again, it included the cases without
thyrohyoid and cervical spine fractures and cases with these fractures. The subjects were
divided into the same two groups to be compared: (1) typical (posterior) hangings and
(2) atypical (lateral and anterior) hangings.

e Dataset II-w - a total of 242 cases were included. It is a subgroup that included only cases
with at least one thyrohyoid or cervical spine fracture. The subjects were divided into
the same two groups to be compared: (1) typical (posterior) hangings and (2) atypical
(lateral and anterior) hangings.

e Dataset III-w - a total of 114 cases were included. There were only atypical hanging cases
with at least one thyrohyoid or cervical spine fracture, and the cases were divided into
two groups to be compared: (1) anterior hangings and (2) lateral hangings.

e Dataset IV-w - a total of 106 cases were included. There were only lateral hanging cases
with at least one thyrohyoid or cervical spine fracture, and the subjects were divided
into the following two groups: (1) left lateral and (2) right lateral hangings. Identically to
the previous step (as for Dataset IV), additional variables were coded to define on which
side the fractures occurred and if these were unilateral or contralateral (see Section
3.4.1.).

3.5.2. Statistical analysis

The basic descriptive and inferential statistical analyses of each of the four datasets that
correspond to the statistical analyses in the first part of the study were performed, with two
additional variables considered: the subjects” body weight and height.

In addition, the ROC curve analyses were performed to assess the predictive value of
subjects” age, body weight, and body height on the occurrence of thyrohyoid fracture in
general and, separately, on the occurrence of superior thyroid cartilage horn fractures and
greater hyoid horn fractures.
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3.5.3. Machine learning algorithms development and assessment

Due to a smaller sample size from the previous part of the research, machine learning
model development was performed only in the first two steps: for Dataset I-w and Dataset
II-w. So, cases without fractures and cases with fractures were included in the first step,
while subjects without any thyrohyoid complex or cervical spine fracture were excluded in
the second step. Therefore, all machine learning algorithms were assessed in classification
performances between the cases where the knot was located posteriorly (typical hangings)
and cases where the knot was located either laterally or anteriorly (atypical hangings).

The machine learning algorithm development approach was the same as previously
described (see Section 3.4.3.), with one additional element: for each machine learning
algorithm, two different models were developed - one that considered subjects’ body
weight and height and one ‘analogous’ that did not have input on these variables. If the
settings allowed this, forcing the input variable (subject’s body weight) was performed in
cases where the model did not automatically consider the variable. The two “analogous’
models of each algorithm, one taking into account the body weight and one not considering
it, were also analyzed by comparing their ROC curves on predicted outcome probabilities
in test samples. This provided additional information on the significance of considering the
body weight in assessing the knot in a noose position based on the thyrohyoid and cervical
fracture patterns.

3.6. PART III of the study:
Analysis of the sternocleidomastoid muscles’ origin hemorrhage
in knot position-related fracture patterns assessment

3.6.1. Study design and the sternocleidomastoid muscle origin site hemorrhage detection

The third part of the study represents an analysis similar to the previous ones but with
additional variables: in addition to the subject’s age, body weight, body height, and
presence of the thyrohyoid and cervical spine fractures, the presence of the hemorrhage at
the origin sites of the sternocleidomastoid muscles at the clavicles was analyzed with
regards to the knot in a noose prediction. The presence of the macroscopically visible
hemorrhage at the sternocleidomastoid muscle origin site — the periosteum of the clavicles,
left and right — was noted only in cases in which the presence or absence of these
hemorrhages was explicitly documented in the autopsy report or by the analyzed autopsy
photographs. This was done to obtain as uniform and as reliable data as possible. Because
of this, this sample was the smallest of the three study parts and comprised 126 cases. For
statistical analysis of these muscle hemorrhages, the following additional variables were
coded:

e Unilateral sternocleidomastoid muscle hemorrhage (Yes / No)
e Bilateral sternocleidomastoid muscle hemorrhages (Yes / No)
e Total number of sternocleidomastoid muscle hemorrhages (range, 0 - 2)

The cases were again analyzed stepwise, firstly on the entire sample and then on subsets
formed identically as in the previous two study parts. For discrimination between the
marking of datasets of the preceding study parts, the datasets in the third part were labeled
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with the suffix “-m’ (e.g., Dataset I-m), indicating analysis of the muscles’ hemorrhage
significance. The following sample subsets were formed:

e Dataset I-m - a total of 126 cases were included. Identically to the previous parts of the
study, the cases without thyrohyoid and cervical spine fractures and cases with these
fractures were included.

e Dataset II-m - a total of 117 cases were included. It is a subgroup that included only cases
with at least one thyrohyoid or cervical spine fracture or hemorrhage of at least one
sternocleidomastoid muscle, and these cases were divided into the same two groups to
be compared: (1) typical and (2) atypical hangings.

e Dataset III-m - a total of 58 cases were included. There were only atypical hanging cases
with at least one thyrohyoid or cervical spine fracture or hemorrhage of at least one
sternocleidomastoid muscle, and the cases were divided into the same two groups to be
compared: (1) anterior hangings and (2) lateral hangings.

e Dataset IV-m - a total of 52 cases were included. There were only lateral hanging cases
with at least one thyrohyoid or cervical spine fracture or hemorrhage of at least one
sternocleidomastoid muscle’s origin site at the clavicle, and the cases were divided into
the following two groups: (1) left lateral and (2) right lateral hangings. In addition to the
variable coding for the fourth dataset, which was identical to the previous study parts,
additional variables were defined - indicating if each (left and right)
sternocleidomastoid muscle had visible hemorrhage and if the hemorrhage occurred at
the side ipsilateral to the position of the knot in a noose.

3.6.2. Statistical analysis

The basic descriptive and inferential statistical analyses of each of the four datasets that
correspond to the statistical analyses in the second part of the study were performed, with
additional variables considered: regarding the presence of the sternocleidomastoid muscle
origin site hemorrhages. In addition, the ROC curve analyses were performed to assess the
predictive value of subjects’” age, body weight, and body height on the occurrence of the
sternocleidomastoid muscle origin site hemorrhages.

3.6.3. Machine learning algorithms development and assessment

Because of the size of the sample in the third study part, machine learning model
development was limited to and performed only in the first step: for Dataset I-m. So, the
algorithms were developed to attempt classification between the atypical and typical knot
in a noose position on the sample that included subjects with thyrohyoid and cervical spine
fractures, as well as the subjects without these fractures. But in each considered case, there
was information on the presence of the sternocleidomastoid muscle origin hemorrhages.
Similarly to the second part of the study, in the machine learning algorithms analysis, two
‘analogous’ models were developed: one machine learning model that took into account the
presence of sternocleidomastoid muscle hemorrhages and one machine learning model that
did not have data (variables) regarding the hemorrhages. These two “analogous’ models of
each algorithm were analyzed by comparing their ROC curves on predicted outcome
probabilities in the test samples. This provided additional information on the significance
of sternocleidomastoid origin site hemorrhages in assessing the knot in a noose position
based on the thyrohyoid and cervical fracture patterns.
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4. RESULTS

The results are reported for each study part separately, in the order following the one in
the Material and Methods.

4.1. PART I of the study:
Separate analysis of the fracture patterns in knot’s position assessment

The basic subjects’ characteristics: sex, age, overall thyrohyoid and cervical spine
fracture occurrence, and ligature knot position prevalence in all the subjects included in this
study are shown in Table 4.1.1.

4.1.1. Descriptive, basic inferential, and logistic regression analysis
of the thyrohyoid and cervical spine fracture patterns

The distribution of the analyzed thyrohyoid and cervical spine fractures in terms of the
coded variables (see section 3.3. of the Material and Methods) for study subgroups (Datasets
I - III) is shown in Table 4.1.2. Due to the additional variable coding, the analysis of the
subgroup of subjects with lateral knot position (Dataset IV) is shown separately in Table
4.1.3. As most of the descriptive information is given in these tables, only the additional
statistically significant associations and binary logistic regression analyses are highlighted
here.

4.1.1.1.  The entire sample (hangings with and without fractures) — Dataset I

Considering the entire sample (all 1,235 cases), the fractures of the thyrohyoid complex
were significantly more frequent in those older than 40 years of age compared to the
younger (N = 591, 63.8% subjects older than 40 years of age vs. N = 158, 51.3% subjects
younger than 40 years of age, x? =15.03, p <0.001). And, this was true for occurrence of STH
fractures considered separately (N = 430, 46.4% of subjects older than 40 years vs. N = 120,
39.0% of subjects younger than 40 years of age, x> = 5.16, p < 0.05), as well as for the
occurrence of GHH fractures considered separately (N= 352, 38.0% of subjects older than 40
years of age vs. N=73, 23.7% of subjects younger than 40 years of age). The cervical spine
fractures were significantly more frequent in cases older than 40 years of age, as well (N =
40,4.3% vs. N =4,1.3%, x> = 6.12, p <0.05). The overall occurrence of thyrohyoid fractures
did not significantly differ between the two groups (typical vs. atypical hangings, x? = 0.001,
df =1, p > 0.05) and the distribution of subjects older than 40 years of age was equal between
these groups (x?2=3.31, df =1, p > 0.05).

On the ROC analysis, age was a statistically significant predictor of the thyrohyoid
fracture occurrence in general, as well as for the occurrence of GHH fractures considered
separately but was not a statistically significant predictor for STH fracture occurrence alone
- the ROC curve analyses are shown in Figure 4.1.1.
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Table 4.1.1. Basic subjects” and injury characteristics - the entire study sample (Dataset I).

N=1,235
Sex | Male 937 (75.9%)

| Female 298 (24.1%)
Age (years) | 543+179

THYROHYOID AND CERVICAL SPINE FRACTURES
Thyrohyoid fractures present %%S Zgg 5369946 (;O/o))
STH fracture present %eos ggg %ég;y/zg
GHH fracture present %eos g%g Egg“é;y/‘(jg
Isolated STH fracture(s) %eos 8%11 E%g%;y/zg
Isolated GHH fracture(s) %eos %,909321(68%%?%)
Simultaneous STH and GHH fractures %eos %306051?8%??%)
Left GHH fracture %eos Sgg ggé Zﬁ;
Right GHH fracture %eos Sgg E%;;{;g
Left STH fracture KIeoS gﬁ 88822;
Right STH fracture KI%S ggg gg%;‘;g
Cervical Spine fracture KI%S Allfllg)i?;@ 4%)
KNOT POSITION

Anterior 116 (9.4%)
Posterior 707 (57.2%)
Left lateral 208 (16.8%)
Right lateral 204 (16.6%)

Note: The data is presented as frequency and ratio.
Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn.
Most of the data previously reported and table adopted from: Lekovi¢ et al. [62]

Age was fair but significant predictor for thyrohyoid fracture occurrence (AUC 0.557,
95% CI 0.524 - 0.591, p <0.05) - cutoff value was age of > 36.5 years (sensitivity 85.7%,
specificity 27.0%), as well as for GHH fractures alone (AUC 0.571, 95% CI 0.538 - 0.601, p
<0.001) - cutoff value was age of > 37.5 years (sensitivity 87.8%, specificity 25.6%). Contrary,
age was not a significant predictor in STH fracture occurrence (AUC 0.518, 95% CI 0.486 -
0.550, p >0.05). Considering the entire sample, age was a good predictor of cervical spine
fracture occurrence - with AUC of 0.709 (95% CI 0.639 - 0.779), p < 0.001. This ROC analysis
is shown in the same figure. Regarding the cervical spine fracture occurrence, the threshold
value was the age of > 64.5 years, with a sensitivity of 65.9%, and a specificity of 70.6%.
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Figure 4.1.1. The ROC curve analyses of the subjects’ age as a predictor for (a) the occurrence of GHH
fractures, (b) the occurrence of STH fractures (c) the occurrence of thyrohyoid fractures in general, and (d)
the cervical spine fracture occurrence, in the entire study sample (Dataset I).

Abbreviations: GHH - Greater hyoid bone horn, STH - Superior thyroid cartilage horn.

On the univariable binary logistic regression analysis, significantly associated with the
atypical knot position were older age (OR = 1.008, 95% CI 1.002 - 1.015; p < 0.05), cervical
spine fracture (OR = 4.797, 95% CI 2.348 - 9.801; p < 0.001), unilateral GHH fracture (OR =
1.615, 95% CI 1.255 - 2.076; p < 0.001), simultaneous STH and GHH fractures (OR = 1.528,
95% CI 1.144 - 2.041; p < 0.01), and absence of isolated STH fractures (OR = 0.640, 95% CI

0.492 - 0.833; p < 0.001).

On the multivariable logistic regression analysis, the cervical spine fracture (aOR = 4.326,
95% CI 2.097 - 8.927; p < 0.001) and unilateral GHH fracture (aOR = 1.368, 95% CI 1.004 -
1.863 p < 0.05) remained significantly associated with the atypical knot position, adjusted
for subjects age (aOR = 1.005, 95% CI 0.999 - 1.012; p > 0.05), simultaneous STH and GHH
fractures (aOR 1.166, 95% CI 0.827 - 1.643), and isolated STH fractures (aOR 0.790, 95% CI
0.553 - 1.054). This model correctly classified 60.7% of cases (x> = 52.94, df = 5, p < 0.001;
Hosmer & Lemeshow Test: 2 = 13.61, df = 8, p > 0.05).
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4.1.1.2.  The hangings with thyrohyoid or cervical spine fractures — Dataset I

In the subgroup of subjects in which at least one thyrohyoid or cervical spine fracture
was observed, subjects older than 40 years were equally distributed between the two groups
(typical vs. atypical hangings, x2 = 0.001, df =1, p > 0.05).

On the univariable logistic regression analysis, significantly associated with the atypical
knot position were older age (OR = 1.012, 95% CI 1.003 - 1.020; p < 0.05), unilateral GHH
fracture (OR =1.703, 95% CI 1.277 - 2.270; p < 0.001), simultaneous STH and GHH fractures
OR =1.521, 95% CI11.114 - 2.077; p < 0.01, cervical spine fracture (OR = 4.700, 95% CI 2.287
-9.658; p < 0.001), and absence of isolated STH fractures (OR = 0.524, 95% CI 0.390 - 0.703;
p <0.001).

On the multivariable logistic regression analysis, the cervical spine fracture (OR = 5.085,
95% CI 2.281 - 11,337; p < 0.001), and unilateral GHH fracture (OR = 1.674, 95% CI 1.033 -
2.712; p < 0.05) remained significantly associated with the atypical knot position,
independently of subjects age (OR =1.008, 95% CI 0.999 - 1.017; p > 0.05), simultaneous STH
and GHH fractures (OR = 1.284, 95% CI 0.873 - 1.980; p > 0.05), or isolated STH fractures
(OR =1.025, 95% CI 0.593 - 1.769; p > 0.05). This model correctly classified 61.8% of cases
(x2=42.98, df =5, p < 0.001; Hosmer & Lemeshow Test: y2 =12.85, df = 8, p > 0.05).

4.1.1.3.  The atypical hangings with thyrohyoid or cervical spine fractures — Dataset 111

The subgroup of Dataset III comprised only atypical hanging cases with at least one
thyrohyoid or cervical spine fracture, and here, the anterior and lateral hanging groups were
compared in between. Subjects older than 40 years of age were equally distributed between
the two groups (x2 =0.25, df =1, p > 0.05).

On the univariable binary logistic regression analysis, significantly associated with the
anterior knot position were cervical spine fracture (OR = 15.698, 95% CI 7.103 - 34.692; p <
0.001) and the absence of unilateral and isolated STH fractures (OR = 0.536, 95% CI 0.291 -
0.988; p < 0.05, and OR = 0.404, 95% CI 0.195 - 0.836; p < 0.05, respectively). The presence of
unilateral GHH fracture was not significantly different between the groups but was
included in multivariable logistic regression analysis since the p-value was less than 0.1 in
univariable binary logistic regression analysis.

On the multivariable binary logistic regression analysis, the cervical spine fracture (aOR
=10.157,95% CI14.032 - 25.588; p < 0.001) remained significantly associated with the anterior
knot position, independently of the unilateral and isolated STH fractures (aOR = 1.066, 95%
CI 0.509 - 2.231; p > 0.05, and aOR = 0.398, 95% CI 0.133 - 1.195; p > 0.05, respectively), as
well as of the unilateral GHH fracture (aOR = 0.508, 95% CI 0.209 - 1.236; p > 0.05). This
model correctly classified 87.4 % of cases (x? = 51.41, df =4, p < 0.001; Hosmer & Lemeshow
Test: x2 =221, df =4, p > 0.05).
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Table 4.1.2. The descriptives of the coded variables: thyrohyoid and cervical fractures and basic subject characteristics for Datasets I, II, and 1I1.

DATASET1 DATASET 11 DATASET 111
THE ENTIRE SAMPLE HANGINGS WITH FRACTURES ATYPICAL HANGINGS
\ Knot Position Knot Position Knot Position
Typical Atypical p-value Typical Atypical p-value Anterior Lateral p-value
N=707 N =528 N =433 N =340 N =54 N =286
(57.3 %) (42.7 %) (56.0%) (44.0%) (15.9 %) (84.1 %)
Sex Male 527 (74.5%) 410 (77.7%) 329 (76.0%) 271 (79.7%) 38 (70.4%) 233 (81.5%)
Female 180 (25.5%) 118 (23.3%) 104 24.0%) 69 (20.3%) 16 (29.6%) 53 (18.5%)
Age (years) | 53.1+18.1 55.7+17.5 <0.05 54.6 £17.2 57.9 £16.4 <0.05 60.5(28-88)  57.0 (16 - 94)
THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS
Isolated Yes 211 (29.8%) 113 (21.4%) <0001 211 (48.7%) 113 (33.2%) <0.001 10 (18.5%) 103 (36.0%) <005
STH fracture(s) No 496 (70.2%) 415 (78.6%) : 222 (51.3%) 227 (55.8%) : 44 (81.5%) 183 (64.0%) :
Unilateral Yes 213 (30.1%) 156 (29.5%) 213 (49.2%) 156 (45.9%) 18 (33.3%) 138 (48.3%) <0.05
STH fracture No 494 (69.9%) 372 (70.5%) 220 (50.8%) 184 (54.1%) 36 (66.7%) 148 (51.7%) :
Bilateral Yes 108 (15.3%) 73 (13.8%) 108 (24.9%) 73 (21.5%) 8 (14.8%) 65 (22.7%)
STH fracture No 599 (84.7%) 455 (86.2%) 325(75.1%) 267 (78.5%) 46 (85.2%) 221 (77.3%)
Total NO of STH fractures 0
0-2) 0-2) 0(0-2) 1(0-2) 0(0-2) <0.05 0(0-2) 1(0-2) <0.05
Isolated Yes 108 (15.3%) 91 (17.2%) 108 (24.9%) 91 (26.8%) 13 (24.1%) 78 (27.3%)
GHH fracture(s) No 599 (84.7%) 437 (82.8%) 325 (75.1%) 249 (73.2%) 41 (75.9%) 208 (72.7%)
Unilateral Yes 165 (23.3%) 174 (30.0%) <0.001 165 (38.1%) 174 (51.2%) <0.001 22 (40.7%) 152 (53.1%)
GHH fracture No 542 (76.6%) 354 (67.0%) : 268 (61.9%) 166 (48.8%) : 32 (53.1%) 134 (46.9%)
Bilateral Yes 53 (7.5%) 33 (6.3%) 53 (12.2%) 33 (9.7%) 7 (13.0%) 26 (9.1%)
GHH fracture No 654 (92.5%) 495 (93.8) 380 (87.8%) 307 (90.3%) 47 (87.0%) 260 (90.9%)
(To(’t_”lzi\] " of GHH fractures ‘ 0(0-2) 0(0-2) <0.05 1(0-2) 0(0-2) <0.001 1(0-2) 1(0-2)
(TO‘”_“Z\]U of TyHy fractures ‘ 1(0-4) 1(0-4) 1(0-4) 1(0-4) 1(0-4) 1(0-4) <0.05
Simultaneous Yes 110 (15.6%) 116 (22.0%) 110 (254%) 116 (34.1%) 16 (29.6%) 100 (35.0%)
;Zgu“rzsd GHH No 597 (84.4%) 280wy 00 323 (74.6%) 224 (65.9%) <001 38 (70.4%) 186 (65.0%)
Contralateral thyrohyoid fracture } I\\{Iis ;2(51976/03)%) 528(9(980@%)
Cervical spine Yes 10 (1.4%) 34 (6.4%) <0.001 10 (2.3%) 34 (10.0%) <0.001 22 (40.7%) 12 (4.2%) <0.001
fracture No 697 (98.6%) 494 (93.6%) ' 423 (97.7%) 306 (90%) : 32 (59.3%) 274 (95.8%) :

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard deviation or median and range. For comparison of
categorical data, the x? test was performed, while the Student’s t-test for two independent samples or Mann-Whitney U test were performed for
numerical data. The missing p values are > 0.05. Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TyHy -
Thyrohyoid. From: Lekovi¢ et al. [62]
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4.1.1.4.  The lateral hangings with thyrohyoid or cervical spine fractures — Dataset IV

Subjects older than 40 years of age were equally distributed between the two groups
(x*=1.16,df=1, p>0.05).

On the univariable binary logistic regression analysis, significantly associated with
the left lateral hangings were fractures of the left greater hyoid horn (OR = 1.701, 95% CI
1.040 - 2.781; p < 0.05), and right superior thyroid horn (OR = 1.607, 95% CI 1.006 - 2.566; p
<0.05).

On the multivariable logistic regression analysis, both variables remained
independently associated with the left lateral hangings (aOR = 1.832, 95% CI 1.126 - 2.979,
p < 0.05, and aOR = 1.940, 95% CI 1.164 - 3.232, p < 0.05, for right STH, and left GHH,
respectively). This model correctly classified 55.9 % of cases (x? = 10.566, df = 2, p < 0.05;
Hosmer & Lemeshow Test: y2 =0.965, df =2, p > 0.05).

Table 4.1.3. Characteristics of lateral hanging cases with thyrohyoid or cervical spine fractures (Dataset IV).

N =286 Left lateral Right lateral p-
N =140 (49.0%) N =146 (51.0%) wvalue
Sex ' Male 233 (81.5%) 119 (85.0%) 114 (78.1%)
| Female 53 (18.5%) 21 (15.0%) 32 (21.9%)
Age (years) ‘ 57.0 (16 - 94) 57.0 (18 - 94) 59.0 (16 - 94)

THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS

Thyrohyoid fractures present ;eos 58(1(79(2 ')3%) é?)(;(19;)9%) ;43519;,)6%)

GHH fracture present ée;s 1(7)2 Egiézﬁ;; g; Eig?zﬁg gé géé:ﬁ;

STH fracture present ;eos ég?)(z(;lo(o)/:/;) ;,(5)5(4(312%]) ZS ggg:ﬁ;

Ipsilateral GHH fracture éis 286(3(285?’/1) éé gggzﬁ:; 3; iégzﬁg

Contralateral STH fracture ;eos 286(2(320?’/1) 49% 8;?33 igﬁgfg@,)

% 70 .89

Left GHH fracture ;eos 237(222564/%) 55;; gg;’;:; ‘;3;2(318;)’)0) <005
Right GHH fracture ée;s 122 Egg;:; ;LZ Egg?zﬁ; &533 gggzﬁg

Left STH fracture ;e(:)s 128 Egi:ﬁg % gi;;ﬁ; ;421 gggzﬁ;

Right STH fracture ;eos 1;2 gg;:ﬁ; Z; EZ‘;;ZZ; Zg gg:zg <0.05
Cervical spine fracture Eeos 54(4{'925@%) Z?S '?9({(3).)0%) ig) '?9(72.)6%)

Note: The categorical data is presented as frequency and ratio, and numerical as median and range. For comparison of categorical data,
the x? test was performed, while the Mann-Whitney U test was performed for numerical data. The missing p values are > 0.05.

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn.
Most of the data previously published in: Lekovic et al. [62]

33



4.1.2. Machine learning algorithms

The characteristics of all the datasets and the coded variables used in the algorithms
considering the training and test groups are given in Supplement A. The distribution of the
subjects in Datasets I, I, and IV regarding the frequencies of two defined outcomes (knot
position) did not require these samples to be balanced (see Tables 4.1.2, and 4.1.3, and
Supplement A for sample sizes and proportions). In Dataset III the SMOTE algorithm was
performed to oversample the significantly less frequent group of cases of anterior hangings
and reduce the frequency disproportion: the initial ratio of 1:5.3 (54 (15.9%) anterior
hangings to 286 (84.1%) lateral hangings) was preprocessed to form the sample of 371 cases
with the ratio of 1:4.4 (85 (22.9%) anterior hangings to 286 (77.1%) lateral hangings).

In the following text, the results for all the four Datasets (I - IV) will be presented in the
following order: (1) performance characteristics of the GA-optimized Artificial Neural
Network developed in MATLAB, (2) performance characteristics of all machine learning
algorithms developed in SPSS, followed by ROC analysis comparisons between the GA-
optimized ANN models developed in MATLAB and the MLP-ANN models developed in
SPSS. At the end of the results section of the first study part, the variable ranking in the
machine learning models developed in SPSS, and the hyperparameter settings of these
models will be reported.

4.1.2.1.  Genetic Algorithm-optimized Artificial Neural Networks

In accordance with the previous paragraph, Tables from 4.1.4 to 4.1.7. show performance
characteristic analysis of the GA-optimized ANNSs, for Datasets I - IV, respectively.

Table 4.1.4. Performance characteristics of ANN developed in MATLAB for knot position classification in
the entire sample (Dataset I).

Accuracy AUC
GA-optimized ANN (95% CI) Sn Sp PPV NPV LR+ LR- (95%CI)
DATASETT | oyerall (5;gf£_3) 252% 87.0% 06 06 19 09 (0.5%_63' o
Vwﬁ;ﬁ%’? | Test (5562‘_560/; o 4% 81% 06 05 20 09 (0_5%_68' )
fractures) Mg (576‘(2)'_66039) 255% 865% 06 06 19 09 (0.5%_65' o

Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the
training and the test group (p > 0.05).

Abbreviations: GA - Genetic algorithm; w&w/o - with and without; Sn - sensitivity; Sp - specificity; PPV - positive
predictive value, NPV - negative predictive value, LR+ - positive likelihood ratio, negative LR- - negative likelihood
ratio, AUC - Area under the curve, CI — Confidence Interval.

The GA-optimized ANN for Dataset I selected following variables (n = 6) to be included
in the model: subject’s sex and age, presence of unilateral GHH fracture, presence of
bilateral GHH fracture, the total number of GHH fractures, and the total number of
thyrohyoid fractures.
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Table 4.1.5. Performance characteristics of ANN developed in MATLAB for knot position classification in
atypical hangings (Dataset II).

Accuracy AUC

GA-optimized ANN  (95%CI) Sm  Sp PPV NPV LR+ LR- (95%CI)
DATASETIL | Overall (596.21'_662"0) 45.0% 764% 60.0% 639% 19 07 (0.6%_6;68)
H"J’;ﬁgﬁigf’h Test (566.21'_7639) 49.0% 72.6% 565% 662% 17 07 (0.5(;_6;71)
Training (531'_66?7) 43.4% 782% 618% 63.0% 19 07 (0.5%_6;69)

Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the
training and the test group (p > 0.05).

Abbreviations: GA - Genetic algorithm; Sn - sensitivity; Sp - specificity; PPV - positive predictive value, NPV -
negative predictive value, LR+ - positive likelihood ratio, negative LR- - negative likelihood ratio, AUC - Area under
the curve, CI - Confidence Interval.

The GA-optimized ANN for Dataset I selected following variables (n = 6) to be included
in the model: subject’s age, presence of bilateral STH fracture, the total number of STH
fractures, presence of unilateral GHH fracture, presence of simultaneous STH and GHH
fractures, and the presence of the cervical spine fracture.

Table 4.1.6. Performance characteristics of ANN developed in MATLAB for knot position classification in
the atypical hangings with fractures (Dataset 11I).

Accuracy AUC

GA-optimized ANN  (9%CI) Sn  Sp PPV NPV LR+ LR- (95%CI)

DATASETIL | oy erall (83,@;_487}’_9) 424% 969% 80.0% 850% 135 0.6 (0'7%_7584)
,fa;y;igi Test (778%_09(71‘"0) 400% 97.7% 833% 851% 17.6 0.6 (0'601'_751_86)

with fractures. | oining (7%'_182/‘;_3) 433% 965% 849% 841% 123 06 (0'7%?887)

Note: The anterior knot position was considered as the positive state in confusion matrix performance calculations. There was no
statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the training and the test group
(r > 0.05).

Abbreviations: GA - Genetic algorithm Sn - sensitivity; Sp - specificity; PPV - positive predictive value, NPV - negative predictive
value, LR+ - positive likelihood ratio, negative LR- - negative likelihood ratio, AUC - Area under the curve, CI - Confidence Interval.

The GA-optimized ANN for Dataset II selected following variables (n =7) to be included
in the model: subject’s sex and age, presence of unilateral and bilateral STH fractures,
presence of unilateral GHH fracture, the total number of thyrohyoid fractures, as well as the
cervical spine fracture.
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Table 4.1.7. Performance characteristics of ANN developed in MATLAB for knot position classification in
atypical hangings with fractures (Dataset IV).

Accuracy AUC
GA-optimized ANN (95% CI) Sn Sp PPV NPV LR+ LR- (95%CI)
PATASETIV | overall (8326'_39(75".1) 043% 904% 904% 943% 98 <01 (0.9%_906'99)
hI;Z;ZZs Test (839;'_89(26) 923% 913% 90.0% 93.3% 106 <0.1 (0.9%_916.00)
with fractures | 1 ining (8;%'_59?8) 95.0% 90.0% 94.7% 925% 95 <0.1 (0.9%_906.99)

Note: The left lateral knot position was considered as the positive state in confusion matrix performance calculations. There was 1o
statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the training and the test group
(p > 0.05).

Abbreviations: GA - Genetic algorithm; Sn - sensitivity; Sp - specificity; PPV - positive predictive value, NPV - negative predictive
value, LR+ - positive likelihood ratio, negative LR- - negative likelihood ratio, AUC - Area under the curve, CI - Confidence Interval.

The GA-optimized ANN for Dataset IV selected following variables (n = 13) to be
included in the model: subject’s sex and age, presence of right STH fracture, presence of
unilateral STH fracture, presence of bilateral STH fracture, presence of STH fracture
contralateral to the knot position, presence of left GHH fracture, presence of right GHH
fracture, presence of unilateral GHH fracture, presence of bilateral GHH fracture, presence
of isolated GHH fracture, presence of GHH fracture ipsilateral to the knot position, and
presence of simultaneous STH and GHH fracture.

4.1.2.2.  MLP-ANN, Decision Tree, k-NN, and Naive Bayes algorithms

Tables 4.1.8 - 4.1.11. provide information on the performance characteristics of the
machine learning algorithms developed in SPSS software, for Datasets I - IV, respectively.

Table 4.1.8. The performance characteristics of the machine learning models developed in SPSS, for the knot
in a noose position classification in Dataset 1.

MILAs - Dataset 1

The entire sample Accuracy AUC
(w & wy/o fractures) (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
MLP-ANN 1 Overall (576%_362’_1) 144% 946% 667% 597% 27 09 (0‘5%_509. -
Test (546%_06(;00) 131% 95.7% 709% 50.6% 3.1 09 (0.501‘-507.63)
Training (576(;_56(;/;7) 149% 94.2% 655% 599% 26 09 (0‘507'_601.63)
Decision | verall (586.19'_76(:/; g 241% BO8% 638% 613% 24 08 (0'5%?09‘ &)
Test (54%?624.2) 18.8% 90.0% 585% 59.2% 1.9 09 (0‘501'-507.63)
Training (59625_86(200) 26.4% 89.7% 655% 622% 26 08 (0'5%_6(?.64)
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MILAs - Dataset 1

The entire sample Accuracy AUC
(w & wyo fractures) (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
k-NN Overall (596.%'_162/;’.8) 138% 758% 57.5% 643% 18 07 (0.5%_53 -
Test (52%_06?0) 419% 738% 549% 625% 16 08 (0'5%?3 )
Training (59637_06?2) 44.6% 76.7% 58.6% 651% 19 07 (0.5%—5(?63)
Naive Bayes | oyerall (596‘27'_56?2) 403% 791% 590% 640% 19 08 (0'601'_6;67)
Test (566.12.—26(760.0) 38.3% 78.0% 56.1% 63.2% 17 0.8 (0.5%'_651' 70)
Training (596%_1602 " 41.3% 79.6% 60.3% 64.3% 20 0.7 (. 6%_651 67)
f{‘;gse?sion Overall (576%_76?/;5) 25.6% 87.7% 59.5% 61.0% 2.0 08 (0506—509 62)

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Some data
previously published in Lekovic et al. [62]
Abbreviations: MLP-ANN - Multilayer Perceptron - Artificial Neural Network, k-NN - k Nearest Neighbors, Logistic Regression
- Multivariable Logistic Regression analysis, w&w/o - with and without, Sn - sensitivity, Sp - specificity, PPV - positive predictive
value, NPV - negative predictive value, LR+ - positive likelihood ratio, negative LR- - negative likelihood ratio, AUC - Area under

the curve, CI - Confidence Interval.

Table 4.1.9. The performance characteristics of the machine learning models developed in SPSS, for the knot
in a noose position classification in Dataset II.

MLAs - Dataset 11 Accuracy AUC
Hangings with fractures ~ (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
MLP-ANN overall (55.%-%?.7) 39.4% 801% 609% 627% 19 08 (0.6%_6;68)

Test (556'27'_26?5) 44.9% 748% 564% 652% 18 0.7 (0.5%_6572)
Training (55'%'_26?3) 37.2% 82.6% 634% 618% 21 08 (0.5%_651'69)
Decision | overall (551'_06? g 9% 808% 608% 624% 20 08 (0_5%_6566)
Test (556.27'_262"5) 429% 763% 56.8% 648% 18 0.7 (0.5%_6570)
Training (576'16'_96?0) 36.0% 829% 63.0% 614% 21 08 (0.507'_6566)
k-NN Overall (55.26'_16(75‘"5) 447% 758% 59.1% 63.6% 18 0.7 (0.5(;_6&65)
Test (522'_96?2) 459% 719% 542% 647% 16 08 (0.5%_6;71)
Training (586.%1'-66?7) 442% 775% 615% 631% 20 07 (0.5%_509_64)
Naive Bayes | overall (626'51'_66?9) 51.8% 764% 633% 669% 22 06 (0_6%_7873)
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MLAs - Dataset 11 Accuracy AUC
Hangings with fractures  (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)

Naive Bayes 61.7% o 0 o o 0.73
Test (55.2-67.8) 44.0% 743% 55.0% 65.0% 1.7 0.8 (0.67-0.80)

. 67.4% 0 0 0 0 0.68
Training (63.2-71.3) 55.0% 77.5% 66.7% 67.8% 24 0.6 (0.64-0.73)

Logistic

. 61.8% 0 0 0 0 0.65

Regression Overall (58.3-65.3) 391% 79.7% 602% 625% 19 0.8 (0.58-0.72)

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05).

Abbreviations: MLP-ANN - Multilayer Perceptron - Artificial Neural Network, k-NN - k Nearest Neighbors, Logistic Regression
- Multivariable Logistic Regression analysis, Sn - sensitivity, Sp - specificity, PPV - positive predictive value, NPV - negative
predictive value, LR+ - positive likelihood ratio, negative LR~ - negative likelihood ratio, AUC — Area under the curve, CI - Confidence
Interval. Some data was previously published in Lekovic et al. [62]

Table 4.1.10. The performance characteristics of the machine learning models developed in SPSS, for the knot
in a noose position classification in Dataset II1.

MLAs - Dataset I11

Atypical hangings Accuracy AUC
with fractures (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
MLP-ANN 1 Overall (8(6);%6'-68:/;2) 424% 972% 81.8% 85.0% 151 0.6 (0'7852_'51_87)
Test (72‘6'_19%"3) 40.0% 96.6% 850% 841% 117 0.6 (0‘7%?01_90)

Training (7%%?0) 433% 975% 839% 85.0% 171 0.6 (0'7(;?03_89)

pecision Overall (732_%?2) 424% 958% 750% 848% 101 0.6 (0.6%_6376)
Test (758.3(’)'_28?6) 40.0% 955% 714% 848% 88 0.6 (0‘5%_6581)

Training (788.36'_7;2’.0) 433% 96.0% 765% 848% 107 0.6 (0.601'7878)

k-NN Overall (83.%9) 424% 969% 80.0% 850% 135 0.6 (0‘6%_6376)
Test (758%'_282’.6) 400% 955% 714% 848% 88 06 (0.5%_6581)

Training (798%9'_98%’.0) 433% 975% 839% 850% 172 0.6 (0‘601'_7(?_79)

Naive Bayes | 0 erall (838.%'_19(1/;’_4) 407% 958% 64.7% 895% 97 0.6 (0.5%_655‘77)
Test (7883'_79?7) 412% 963% 700% 886% 111 06 4%?578)

Training (8%'_29?1) 405% 95.6% 625% 89.9% 92 0.6 (0'6%_701‘82)

ﬁiﬁiﬁiﬁon Overall (8%'_490(/;’_7) 40.7% 962% 667% 89.6% 106 0.6 (0‘6%_702_81)

Notes: The anterior knot position was considered as a positive state in confusion matrix performance calculations. There was no
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations:
MLP-ANN - Multilayer Perceptron — Artificial Neural Network, k-NN - k Nearest Neighbors, Logistic Regression — Multivariable
Logistic Regression analysis, Sn - sensitivity, Sp - specificity, PPV - positive predictive value, NPV - negative predictive value, LR+
- positive likelihood ratio, negative LR- - negative likelihood ratio, AUC - Area under the curve, CI - Confidence Interval. Some data
was previously published in Lekovic et al. [62]
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Table 4.1.11. The performance characteristics of the machine learning models developed in SPSS, for the knot
in a noose position classification in Dataset IV.

MILAs - Dataset IV

Lateral hangings Accuracy AUC

with fractures (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
MLP-ANN | Gyerall (9347'_19?5) 950% 932% 93.0% 951% 139 <01 (0.9%_919‘ 00)
Test (839}3'_%?6) 92.3% 91.3% 90.0% 933% 10.6 <0.1 (0.9%_91?00)

Training (919%_097;‘6) 96.0% 94.0% 94.2% 959% 160 <0.1 (0_;)9‘?1900)

[T)reec;sion Overall (7z17.92i?.9) 85.7% 733% 755% 843% 32 02 (0‘8%?3 %)
Test (677;'_%?0) 821% 739% 727% 829% 31 02 (0.8%?07_94)

Training (75.%'_18? gy S71% 730% 765% 849% 32 02 (0‘8%_95)_94)

k-NN Overall (8:%_89?2) 97.9% 80.1% 825% 975% 49 <01 (0.9%_906_98)
Test (829%_69?8) 100% 82.6% 83.0% 100% 58 <0.1 (0‘9%_917_ 00)

Training (8;%_19?2) 97.0% 79.0% 824% 963% 46 <0.1 (0'9%_905_ %)

g’;;zg Overall (52%'_86?5) 58.6% 63.0% 60.3% 613% 16 0.7 (0.507'_65’_ 66)
Test (455.63'_56?_2) 591% 53.7% 57.8% 550% 13 0.8 (0‘407'_5371)

Training (556.26'_76? g O83% 667% 615% 636% 17 06 (0.507'_6372)

ﬁiﬁiﬁi@ion Overall (5(?%_96?8) 757% 37.0% 53.5% 614% 12 07 (0‘5%_53 66)

Notes: The left lateral knot position was considered as a positive state in confusion matrix performance calculations. There was no
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations:
MLP-ANN - Multilayer Perceptron - Artificial Neural Network, k-NN - k Nearest Neighbors, Logistic Regression — Multivariable
Logistic Regression analysis, Sn - sensitivity, Sp - specificity, PPV - positive predictive value, NPV - negative predictive value, LR+
- positive likelihood ratio, negative LR- - negative likelihood ratio, AUC - Area under the curve, CI - Confidence Interval. Some data
was previously published in Lekovic et al. [62]
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Figure 4.1.2. shows ROC curve analysis of each reported ML algorithm, separately for
all four datasets (I - IV).

Dataset | Dataset 11 Dataset [T Dataset [V

Sensitivity
=3
[=)}
Sensitivity
Sensitivity
<
>

=
S

- L L
00 =02 04 06 08 1.0 00702 04 06 08 10 00702 04 06 08 1.0 00702 04 06 08 L0
1 - Specificity 1 - Specificity 1 - Specificity 1 - Specificity

‘MLP ] Decision Tree  wem kK-NN == Naive Bayes Log. Reg. mwm Reference Line mm |

Figure 4.1.2. The Receiver Operating Characteristic (ROC) and Area under the curve (AUC) analysis of
developed machine learning models in Test samples of each of four datasets. The AUCs with 95% Confidence
Intervals are listed in Tables 4.1.8 - 4.1.11. There was no statistically significant difference in analysis between
any Training and Test sample (p > 0.05). Abbreviations: MLP — Multilayer Perceptron- Artificial Neural
Network, k-NN - k Nearest Neighbors, Log. Reg. — Multivariable logistic regression analysis. Previously

published in: Lekovi¢ et al. [62]

4.1.2.3.  GA-optimized ANN and MLP-ANN ROC analysis comparison

There comparison analysis between the ROC curves of the GA-optimized ANN models
and the ROC curves of the MLP-ANN models for all four datasets are shown in Figure 4.1.3.
(all p-values were > 0.05).

4.1.2.4.  Machine learning models’ variable importance and settings

Table 4.1.12. lists up to the top five ranked input variables for each of these algorithms,
according to the variable’s independent importance.

The hyperparameters settings for all used algorithms developed in SPSS (MLP-ANN,
DT, k-NN, and NB), in all four datasets (I - IV, respectively) are shown in Table 4.1.13.
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Figure 4.1.3. The comparison of the ROC curves of two Artificial Neural Network models developed for the
knot position classification (atypical vs. typical hangings) in Datasets I and 1I (a and b, respectively), (c) in
Dataset 111 (anterior vs. lateral hangings), and (d) in Dataset 1V (left lateral vs. right lateral hangings): the
GA-optimized ANN developed in MATLAB and the MLP-ANN developed in SPSS.

There was no statistically significant difference between any of the two ROC curves:

Dataset I, Z = 1.2835, p > 0.05;

Dataset 11, Z = -0.48081, p > 0.05;
Dataset 111, Z = -1.6003, p > 0.05;
Dataset 1V, Z = -1.2091, p > 0.05.
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Table 4.1.12. The top five ranked input variables based on their relative importance for utilized machine learning models.

1st

Qnd

3rd

4th

hHth

DATASET 1

DATASET 11

DATASET 111 DATASET IV
MLP DT k-NN NB MLP DT k-NN NB MLP DT k-NN NB MLP DT k-NN NB
Tot.Fr.NO Spine sTy&Hy iTy iTy sTy&Hy  sTy&Hy I?FI; Spine Spine BL-Ty Spine IL-Hy IL-Hy TotFrN0  Sex
Spine sTy&Hy Spine Hy No Ty NO TotFrN0  Spine }IiIL}; Age TotFrN0 TotFrN0  Age CL-Ty II_\II%I L-Hy L-Hy
Age UL-Hy BL-Hy Sex Age UL-Hy BL-Hy Sex Ty NO / Spine Sex R-Hy II{II;; Spine I;%I
Hy No Age Age Tot.Fr.N0 | sTy&Hy Spine Age [,'I{I;]_ iTy / / 113{1; Tot.Fr.N® R-Hy IL-Hy Age
BL-Ty Tot.Fr.NO / BL-Hy Tot.Fr.N© Hy No / Spine | Tot.Fr.NO / / iHy L-Hy iTy sTy&Hy  L-Ty

Note: Some models included less than 5 variables, and these empty fields in table are labeled by “/” sign.

Abbreviations: BL-Hy - bilateral greater hyoid horn fractures, BL-Ty - bilateral superior thyroid horn fractures, CL-Ty - superior thyroid cartilage horn contralateral
to the knot position, Hy N° — Total number of greater hyoid horn fractures, iTy - isolated superior thyroid horn fracture(s), IL-Hy - greater hyoid bone horn ipsilateral
to the knot position, IL-Ty - superior thyroid cartilage horn ipsilateral to the knot position, L-Hy - left greater hyoid bone horn, L-Ty - left superior thyroid cartilage
horn, R-Hy - right greater hyoid bone horn, sTy&Hy - simultaneous superior thyroid horn and greater hyoid horn fractures, Spine — Cervical spine fracture, Tot.Fr.N?

— Total number of thyrohyoid fractures, Ty N° - Total number of superior thyroid horn fractures, UL-Hy — unilateral greater hyoid horn fracture, UL-Ty — unilateral
superior thyroid horn fracture. From: Lekovic et al. [62]
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Table 4.1.13. Hyperparameter settings in the reported machine learning algorithms (developed in SPSS).

N0 of NP of neurons in L . Training Training Initial
hidden layers a hidden layer Activation function type algorithm learning rate Motmentum
MLP DATASET I . . Gradient
ANN 1 9 Hyperbolic tangent Online Jescent 0.4 0.78
DATASET II . Mini Gradient
1 8 Hyperbolic tangent batch descent 0.4 0.85
DATASET III 1 6 ‘ Scale ‘ Batch Gradient 0.54 0321
conjugate gradient descent
DATASET1V 1 7 Hyperbolic tangent Online Gradient 0.54 0.321
descent
, Min. samples Min. samples No of terminal
Growing method Tree depth of parent node of child node No of nodes nodes
Decision | DATASET I CRT 4 100 10 9 5
Tree | DATASET II CRT 3 100 10 7 4
' DATASET III CRT 2 65 10 7 4
| DATASET IV CRT 4 50 7 11 6
Ne of Neighbors Distance metrics Search Algorithm
to consider (Feature selection - Stopping criterion)
k-NN | DATASETI 13 Euclidean Change in Absolute Error Ratio <0.01
 DATASET II 12 Euclidean Change in Absolute Error Ratio <0.01
' DATASET III 12 Euclidean Change in Absolute Error Ratio <0.01
| DATASET IV 4 Euclidean Select all features
Maximum NO of bins No
memory (Mb) for scale predictors  of selected predictors
Naive | DATASET I 1024 50 10
Bayes | DATASET II 1024 50 6
DATASET III 1024 12 1
DATASET IV 1024 10 5

Abbreviations: MLP-ANN - Multilayer Perceptron — Artificial neural network, k-NN - k Nearest Neighbors. From: Lekovic et al. [62]
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4.2. PART II of the study:
Analysis of the body weight’s significance

in knot position-related fracture patterns assessment

The basic subjects’ characteristics: sex, age, body weight and body height, overall
thyrohyoid and cervical spine fracture occurrence, and ligature knot position prevalence in
the subjects included in this study part are shown in Table 4.2.1.

Table 4.2.1. Basic subjects’ and injury characteristics - the study sample of Dataset I-w.

N =368
Sex ' Male 283 (76.9%)
' Female 85 (23.1%)
Age (years) ‘ 57.0 (16-94)
Body weight (kg) 70 (34-148)
Body height (cm) 176.0 (145-205)
THYROHYOID AND CERVICAL SPINE FRACTURES
Thyrohyoid fractures present %eos %gg ggéé;‘:g
STH fracture present %eos gg %%zﬁg
GHH fracture present KIeOs %gg gggéf’ﬁg
Isolated STH fracture(s) KI%S %gg gggzﬁ;
Isolated GHH fracture(s) KI%S 22130(1(248;@0 )
Simultaneous STH and GHH fractures I\\{I%S 383(2(994 z’()/)o )
Left GHH fracture Yes Sy oo
Right GHH fracture %eos ggg;z(ggo(‘;@% )
Left STH fracture %eos %})g gégzﬁ;
Right STH fracture %eos %4218 ggézﬁ;
Cervical Spine fracture I\\{I%S 31322(%935%7)% )
KNOT POSITION
Anterior 18 (4.9%)
Posterior 197 (53.5%)
Left lateral 82 (22.3%)
Right lateral 71 (19.3%)

Note: The data is presented as frequency and ratio.

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn.
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4.2.1. Descriptive, basic inferential, and logistic regression analysis
of the thyrohyoid and cervical spine fracture patterns

Corresponding to the previous part of the study, the distribution of the analyzed
thyrohyoid and cervical spine fractures in terms of the coded variables for study subgroups
(Datasets I-w - III-w) is shown in Table 4.2.2, and Table 4.2.3 (Dataset IV-w), while the
additional statistically significant associations and logistic regression analyses are reported
here.

4.2.1.1.  The entire sample (hangings with and without fractures) — Dataset I-w

In the Dataset I-w, comprising 368 hangings with and without thyrohyoid complex and
cervical spine fractures, the fractures of the thyrohyoid complex were, in overall,
significantly more frequent in subjects older than 40 years of age, compared to the younger
subjects (N = 192, 69.6% subjects older than 40 years of age vs. N = 44, 47.8% of younger
subjects, 2 = 14.17, df = 1, p < 0.001). When considered separately, both, STH and GHH
fractures were significantly more frequent in subjects older than 40 years of age compared
to younger subjects (N = 144, 52.2% subjects older than 40 years of age vs. N = 34, 37.0% of
younger subjects, x2 = 6.40, df =1, p < 0.05; and N = 116, 42.0% subjects older than 40 years
of age vs. N = 17, 18,5% of younger subjects, y2 = 16.58, df = 1, p < 0.001, respectively).
However, between these two groups there was no significant difference in the frequency of
cervical spine fractures (N = 14, 5.1% subjects older than 40 years of age vs. N = 2, 2.2% of
younger subjects, x2 =1.39, df =1, p > 0.05). The overall occurrence of thyrohyoid fractures
did not significantly differ between the two analyzed groups (typical vs. atypical hangings,
X2 =2.655, df =1, p > 0.05) and the distribution of subjects older than 40 years of age was
equal between these groups (x> =3.31, df =1, p > 0.05).

On the ROC analysis, subjects’ age and body weight were statistically significant
predictors for thyrohyoid and cervical fracture occurrence, while the subject’s body height
was not - the ROC curve analyses are shown in Figures 4.2.1 - 4.2.3. for subjects” age, body
weight, and body height, respectively.

Age was a significant predictor for thyrohyoid fracture occurrence (AUC 0.616, 95% CI
0.556 - 0.677, p < 0.001) - cutoff value was age of = 41.5 years (sensitivity 80.9%, specificity
39.4%), and for the occurrence of GHH fractures alone (AUC 0.653, 95% CI 0.595 - 0.710, p
<0.001) - cutoff value was age of = 52.5 years (sensitivity 76.7 %, specificity 51.9%) but, again,
age was not a good predictor of STH fracture occurrence considered separately (AUC 0.528,
95% CI 0.469 - 0.587, p > 0.05). In this group of subjects (Dataset I-w), age was not a
significant predictor of cervical spine fracture occurrence (AUC 0.618, 95% CI 0.490 - 0.746,
p > 0.05).
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Age showed a weak statistically significant positive correlation with the total number of
thyrohyoid fractures (range 0-4 - sum of STH and GHH fractures, p = 0.212, p <0.001), and
with the total number of GHH fractures (range 0-2, p = 0.248, p <0.001), but did not correlate
with the number of STH fractures (range 0-2, p = 0.183, p > 0.05).
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Figure 4.2.1. The ROC curve analyses of the subjects’ age as a predictor for (a) the occurrence of GHH
fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as
(d) the cervical spine fracture occurrence, in the entire study sample(Part 11 of the study, Dataset I-w).
Abbreviations: GHH - Greater hyoid bone horn, STH - Superior thyroid cartilage horn.
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Figure 4.2.2. The ROC curve analyses of the subjects” body weight as a predictor for (a) the occurrence of
GHH fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as
well as (d) the cervical spine fracture occurrence, in the entire study sample (Part 11 of the study, Dataset I-
w). Abbreviations: GHH - Greater hyoid bone horn, STH - Superior thyroid cartilage horn.

Body weight was a statistically significant predictor only of STH fracture occurrence
(AUC 0.573, 95% CI 0.514 - 0.631, p < 0.05) - cutoff value was body weight of > 72.5 kg
(sensitivity 51.1%, specificity 61.6%). Body weight was not a significant predictor of
thyrohyoid fracture occurrence in general (AUC 0.520, 95% CI 0.459 - 0.580, p > 0.05), nor
for the occurrence of GHH fractures alone (AUC 0.461, 95% CI 0.400 - 0.521, p > 0.05), and
for the cervical spine fracture occurrence (AUC 0.448, 95% CI 0.297 - 0.599, p > 0.05).

Body weight showed significant but negligible positive correlation only with the total
number of STH fractures (range 0 - 2, p = 0.139, p < 0.05).
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Figure 4.2.3. The ROC curve analyses of the subjects” body height as a predictor for (a) the occurrence of GHH
fractures (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as
(d) the cervical spine fracture occurrence, in the entire study sample (Part II of the study, Dataset I-w).
Abbreviations: GHH - Greater hyoid bone horn, STH - Superior thyroid cartilage horn.

Body height was not a significant predictor of cervical spine fracture occurrence (AUC
0.420, 95% CI 0.306 - 0.534, p > 0.05), of overall thyrohyoid fracture occurrence (AUC 0.486,
95% CI 0.424 - 0.547, p > 0.05), of GHH fracture occurrence considered separately (AUC
0.494, 95% CI 0.432 - 0.555, p > 0.05), nor of STH fracture occurrence considered separately

(AUC 0,512, 95% CI 0.453 - 0.571, p > 0.05).

Body height did not significantly correlate with the number of thyrohyoid fractures,
overall and when considered separately (STH and GHH, p > 0.05 - for all).
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On the univariable logistic regression analysis, only unilateral GHH fracture was
statistically significantly associated with the atypical knot position (OR = 1.791, 95% CI
1.126-2.848, p < 0.05). In the multivariable analysis the following variables were also
included, as p-values were less than 0.1 in univariable binary logistic regression analyses:
isolated STH fracture (p = 0.068), and simultaneous STH and GHH fractures (p = 0.065).

On the multivariable binary logistic regression analysis, the presence of unilateral GHH
fracture was not significantly associated with the atypical knot position (aOR = 1.521, 95%
CI 0.884-2.617, p > 0.05), when adjusted for the presence of isolated STH fracture (aOR =
0.803, 95% CI 9.483-1.336, p > 0.05) and for the presence of simultaneous STH ad GHH
fractures (aOR = 0.803, 95% CI 0.676-2.177, p > 0.05). This model correctly classified 57.3%
of cases (x2 =7.481, df = 3, p > 0.05; Hosmer & Lemeshow Test: y2 = 5.044, df = 3, p > 0.05).

4.2.1.2.  The hangings with thyrohyoid or cervical spine fractures — Dataset II-w

In the subgroup of subjects in which at least one thyrohyoid or cervical spine fracture
was observed, subjects older than 40 years were equally distributed between the two groups
(typical vs. atypical hangings, x> = 0.829, df =1, p > 0.05).

Age showed statistically significant weak positive correlation with the total number of
GHH fractures (range 0-2, p = 0.200, p < 0.05). The positive correlation between subjects’
body weight and the total number of STH fractures was statistically significant but
negligible (range 0-2, p = 0.199, p < 0.05). ). Body height did not significantly correlate with
the number of thyrohyoid fractures, overall and when considered separately (STH and
GHH, p > 0.05 - for all).

On the univariable binary logistic regression analysis, a statistically significant
association with the atypical knot position was observed with the presence of unilateral
GHH fracture (OR = 1.977, 95% CI 1.176 - 3.321, p < 0.05), and the absence of isolated STH
fracture (OR =1.793, 95% CI 1.068 - 3.009, p < 0.05). The presence of simultaneous STH and
GHH fracture was included in the multivariable analysis, as the p-value was < 0.1.

On the multivariable binary logistic regression analysis, none of the three considered
variables were an independent predictor of the atypical knot position: unilateral GHH
fracture (aOR = 1.775,95% CI 0.836 - 3.770, p > 0.05), simultaneous STH and GHH fractures
(@OR =1.343, 95% CI 0.681 - 2.648, p > 0.05), and the absence of isolated STH fracture (aOR
=1.014, 95% CI 0.429 - 2.396, p > 0.05). This model correctly classified 58.7% of cases (x? =
7.705, df = 3, p > 0.05; Hosmer & Lemeshow Test: x? = 5.977, df = 3, p > 0.05).
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4.2.1.3.  The atypical hangings with thyrohyoid or cervical spine fractures -
Dataset I11I-w

The subgroup of Dataset III-w comprised only atypical hanging cases with at least one
thyrohyoid or cervical spine fracture, and here, the anterior and lateral hanging groups were

compared in between. Subjects older than 40 years of age were equally distributed between
the two groups (x>=1.51,df =1, p > 0.05).

In Dataset IIl-w, subjects’ age, body weight, and body height did not correlate
significantly with the number of thyrohyoid fractures, either combined, or considered
separately (STH and GHH fractures, p-values > 0.05).

On the univariable binary logistic regression analysis, a statistically significant
association with the anterior knot position was observed with the total number of GHH
fractures (OR = 0.206, 95% CI 0.043 - 0.977, p < 0.05), total number of thyrohyoid fractures
(OR = 0.143, 95% CI 0.035 - 0.587, p < 0.05), and the presence of the cervical spine fracture
(OR = 33.667,95% CI 6.214 - 182.402, p <0.001). In addition to these variables, subjects’ sex
was included in the multivariable analysis, as the p-value for this variable was < 0.1.

On the multivariable binary logistic regression analysis, the presence of cervical spine
fracture remained independently associated with the anterior knot position, compared to
the lateral (aOR = 66.829, 95% CI 5.111 - 873.808, p = 0.001), adjusted for subjects” sex (aOR
= 0.123, 95% CI 0.011 - 1.334, p > 0.05), as well as for the total number of GHH fractures
(@OR = 0.274, 95% CI 0.032 - 2.374, p > 0.05) and the total number of thyrohyoid fractures
(@OR = 0.770, 95% CI 0.187 - 3.174, p > 0.05). This model correctly classified 93.9% of cases
(x? =25.938, df = 4, p <0.001; Hosmer & Lemeshow Test: y2 = 3.340, df =7, p > 0.05).

4.2.1.4.  The lateral hangings with thyrohyoid and cervical spine fractures —
Dataset IV-w

Subjects older than 40 years of age were equally distributed between the two groups (x?
=0.008, df =1, p > 0.05).

Subjects” age, body weight, and body height did not correlate significantly with the
number of thyrohyoid fractures, either combined, or considered separately (STH and GHH
fractures, p-values > 0.05).

On the univariable binary logistic regression analysis, none of the coded variables was

significantly associated with the left lateral hangings, and because not a single p-value was
< 0.1 the multivariable regression analysis was not performed.
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Table 4.2.2. The descriptives of the coded variables: thyrohyoid and cervical fractures and basic subject characteristics for Datasets I-w, II-w, and I1I-w.

DATASET I-w DATASET II-w DATASET IIT-w
THE ENTIRE SAMPLE HANGINGS WITH FRACTURES ATYPICAL HANGINGS
Knot Position Knot Position Knot Position
Typical Atypical Typical Atypical Anterior Lateral
N=197 N=171 p-value N=128 N=114 p-value N=38 N=106 p-value
(53.5%) (46.5%) (52.9%) (47.1%) (7.0%) (93.0%)
Sex Male 155 (78.7%) 128 (74.9%) 99 (77.3%) 88 (77.2%) 4 (50.0%) 84 (79.2%)
Female 42 (21.3%) 43 (25.1%) 29 (22.7%) 26 (22.8%) 4 (50.0%) 22 (20.8%)
Age (years) 55.0 (18-90) 58.0 (16-94) 57.0 (22-90) 61.5 (16-94) 66.0 (57-82) 60.5 (16-94)
Body weight (kg) 70 (34-148) 71.0 (38-112) 70 (41-146) 70.5 (38-112) 67.5 (38-94) 70.5 (40-112)
Body height (cm) 176.0 (145-205)  176.0 (151-195) 175.0 (145-205) 176 (152-195) 172.5 (154-181) 176 (152-195)
THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS
Isolated Yes 63 (32.0%) 40 (23.4%) 63 (49.2%) 40 (35.1%) <0.05 3 (37.5%) 37 (34.9%)
STH fracture(s) No 134 (68.0%) 131 (76.6%) 65 (50.8%) 74 (64.9%) ) 5 (62.5%) 69 (65.1%)
Unilateral Yes 63 (32.0%) 51 (29.8%) 63 (49.2%) 51 (44.7%) 3 (37.5%) 48 (45.3%)
STH fracture No 134 (68.0%) 120 (70.2%) 65 (50.8%) 63 (55.3%) 5 (62.5%) 58 (54.7%)
Bilateral Yes 33 (16.8%) 31 (18.1%) 33 (25.8%) 31 (27.%) 1(12.5%) 39 (28.3%)
STH fracture No 140 (81.9%) 164 (83.2%) 95 (74.2%) 83 (72.8%) 7 (87.5%) 76 (71.7%)
(TOOt_”IZfI " of STH fractures 0(0-2) (0-2) 1(0-2) 1(0-2) 05 (0-2) 1(0-2) <0.05
Isolated 30 (15.2%) 28 (16.4%) 30 (23.4%) 28 (24.6%) 1(12.5%) 27 (25.5%)
GHH fracture(s) 167 (84.8%) 143 (83.6%) 98 (76.6%) 86 (75.4%) 7 (87.5%) 79 (74.5%)
Unilateral Yes 43 (21.8%) 57 (33.3%) <0.05 43 (33.6%) 57 (50.0%) <0.05 2(25.0% 55 (51.9%)
GHH fracture No 154 (78.2%) 114 (66.7%) . 85 (66.4%) 57 (50.0%) : 6 (75.0%) 51 (48.1%)
Bilateral Yes 20 (10.2%) 13 (7.6%) 20 (15.6%) 13 (11.4%) 0 (0%) 13 (12.3%)
GHH fracture No 177 (89.8%) 158 (92.4%) 108 (84.4%) 101 (88.6%) 8 (100%) 93 (87.7%)
(To(’t_”lzfm of GHH fractures (0-2) (0-2) 0(0-2) 1(0-2) 0 (0-1) 1(0-2)
(To"’f_”g\] " of TyHy fractures 1(0-4) 1(0-4) 1(0-4) 2 (0-4) 0 (0-2) 2 (0-4) <0.05
Simultaneous Yes 33 (16.8%) 42 (24.6%) 33 (25.8%) 42 (36.8%) 1(12.5%) 41 (38.7%)
STH and GHH fractures
164 (83.2%) 129 (75.4%) 95 (74.2%) 72 (63.2%) 7 (87.5%) 65 (61.3%)
Contralateral Thyrohyoid fracture \I\{If)s g E(l)({z))% ) ;El_) ggé‘ﬁ g
Cervical spine fracture ‘ Yes 6 (3.0%) 10 (5.8%) 6 (4.7%) 10 (8.8%) 5 (62.5%) 5 (4.7%) <0.001
No 191 (97.0%) 161 (94.2%) 122 (95.3%) 104 (91.2%) 3 (37.5%) 101 (95.3%) ’

Note: The categorical data is presented as frequency and ratio, and numerical as average * standard deviation or median and range. For comparison of categorical data, the y? or Fisher’s Exact
test were performed, while the Mann-Whitney U test was performed for numerical data. The missing p-values are > 0.05.
Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TyHy — Thyrohyoid.
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Table 4.2.3. Characteristics of the lateral hanging cases with thyrohyoid or cervical spine fractures
(Dataset IV-w).

Left lateral Right lateral p-
N=106 N=54(50.9%) N =52(49.1%) value
Sex Male 84 (792%) 45(833%) 39 (75.0%)
Female 22 (20.8%) 9 (16.7%) 13 (25.0%)
Age (years) 60.5 (16-94) 60.5(18-94) 605 (16-87)
Body weight (kg) 70.5 (40-112) 72.5(49-112)  70.0 (40-103)
Body height (cm) 176.0 (152-195) 178 (153-195)  174.5 (152-195)
THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS
. Yes 105 (99.1%) 53(98.1%) 52 (100%)
Thyrohyoid fractures present No 1(0.9%) 1(1.9%) 0 (0%)
Yes 78 (73.6%) 42 (778%)  37(692%)
STH fracture present No  28(264%) 12(222%) 16 (30.8%)
Yes 68 (64.2%) 35(64.8%) 33 (63.5%)
GHH fracture present No 38 (35.8%) 19(352%) 19 (36.5%)
Yes 41 (38.7%) 24 (444%) 17 (32.7%)
Left GHH fracture No  65(613%) 30 (55.6%) 35 (67.3%)
. Yes 40 (37.7%) 19(352%) 21 (40.4%)
Right GHH fracture No 66 (623%) 35 (64.8%) 31 (59.6%)
Yes  52(49.1%) 27 (50.0%) 25 (48.1%)
Left STH fracture No 54 (50.9%) 27 (50.0%) 27 (51.9%)
. Yes  56(52.8%) 31(57.4%) 23 (42.6%)
Right STH fracture No 50 (47.2%) 25 (48.1%) 27 (51.9%) 008
Yes 27 (25.5%) 11(204%) 16 (30.8%) :
Isolated GHH fracture No 79 (745%) 43 (79.6%) 36 (69.2%)
Yes 37 (34.9%) 18(333%) 19 (365%)
Isolated STH fracture No 69 (65.1%) 37 (66.7%) 33 (63.5%)
Simultaneous STH and Yes 41 (38.7%) 24 (444%) 17 (32.7%)
GHH fracture No  65(61.3%) 30 (55.6%) 35 (67.3%)
. Yes  55(55.9%) 27 (50.0%) 28 (53.8%)
Unilateral GHH fracture | 51 (48.1%) 27 (50.0%) 24 (46.2%)
| Yes 48 (453%) 26 (48.1%) 22 (423%)
Unilateral STH fracture No 58 (54.7%) 28 (51.9%) 30 (57.7%)
. Yes 13 (12.3%) 8 (14.8%) 5 (9.6%)
Bilateral GHH fracture No  93(87.7%) 46 (852%) 47 (90.4%)
. Yes  30(283%) 16 (29.6%) 14 (26.9%)
Bilateral STH fracture No 76 (71.7%) 38 (704%) 38 (73.1%)
. Yes  32(30.2%) 16 (29.6%) 16 (30.8%)
lpsilateral GHH fracture | " 74 (69.8%) 38 (704%) 36 (69.2%)
Yes 26 (24.5%) 15(27.8%)  11(212%)
Contralateral STH fracture | (" gg (75 59%) 39 (722%) 41 (78.8%)
Contralateral thyrohyoid Yes 11 (10.4%) 7 (13.0%) 4 (7.7%)
Fractures No  95(89.6%) 47 (87.0%) 48 (92.3%)
o Yes  5(47%) 3 (5.6%) 2 (3.8%)
Cervical spine fracture No 101 (95.3%) 51 (94.4%) 50 (96.2%)

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard deviation or median
and range. For comparison of categorical data, the ¥? test or Fisher’s exact test were performed, while the Mann-Whitney
U test was performed for numerical data. All the p-values are > 0.05. Abbreviations: STH - Superior thyroid cartilage
horn; GHH - Greater hyoid bone horn.
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4.2.2. Machine learning algorithms

In the second part of the study, due to the smaller sample size, the machine learning
models were developed only for Datasets I-w and II-w, while for Datasets III-w and IV-w
only ‘conventional’ statistical methods were used for analysis and these are already
reported in the previous subsection of the results. The characteristics of the Datasets I-w and
II-w with regards to the coded variables and test/training group division are shown in
Supplement B. The SMOTE algorithm was used in both datasets (I-w and II-w).

In Dataset I-w, the initial frequency proportion between the group of cases of atypical
hangings and the group of cases of typical hangings - 1:1.2 (46.5% atypical hangings to
53.5% typical hangings) was processed to form the sample of 385 cases, with the ratio of
1:1.05. In Dataset II-w, the initial frequency proportion between the group of cases of
atypical hangings and the group of cases of typical hangings - 1:1.12 (47.1% atypical
hangings to 52.9% typical hangings) was processed to form the sample of 250 cases, with
the ratio of 1:1.05. In the following text, the results on machine learning algorithms are
reported in the previously established order.

4.2.2.1.  Genetic Algorithm-optimized Artificial Neural Networks

Performance characteristics analyses of the GA-optimized ANNSs, for Datasets I-w and

II-w are reported in Table 4.2.4 and Table 4.2.5, respectively.

Table 4.2.4. Performance characteristics of ANN developed in MATLAB for knot position classification in
the entire sample (Dataset I-w).

GA-optimized ANN

Accuracy AUC
DATASET I-w (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
54.8% 0 0 0 0 0.56
- Overall (49.7-59.9) 553% 54.3% 53.6% 56.0% 12 08 (0.50-0.61)
Body weight
&

, 55.7% . o 0 0 0.51
body height | Test (46.1-64.9) 629% 472% 582% 521% 12 0.8 (0.40-0.62)
considered

. . 54.4% 0 0 0 0 0.57
Training (48.3-60.5) 51.6% 56.9% 51.2% 573% 12 0.8 (0.50-0.64)
Body weight | Overall (51565_%f 6) 66.0% 47.7% 54.6% 59.5% 13 0.7 © 5%_5(? 64)
8 . . . .
body height 56.5% 0.52
or Test (47.0-65.7) 69.4% 415% 581% 53.7% 12 0.7 (0.41-0.63)
considered ini S0.7% % % % % .60
Training (50.5-62.7) 64.3% 50.0% 529% 61.5% 13 0.7 (0.54-0.67)

Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the
training and the test group (p > 0.05). Abbreviations: GA - Genetic algorithm; Sn - sensitivity; Sp - specificity; PPV
- positive predictive value, NPV - negative predictive value, LR+ - positive likelihood ratio, negative LR- - negative
likelihood ratio, AUC - Area under the curve, CI - Confidence Interval.
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The GA-optimized ANN for Dataset I-w that considered subjects” body weight and body
height selected following variables (n = 13) to be included in the model: subject’s sex and
age, body weight and body height, presence of unilateral STH fracture, presence of bilateral
STH fracture, presence of isolated STH fracture, total number of STH fractures, presence of
unilateral GHH fracture, presence of bilateral GHH fractures, presence of isolated GHH
fracture, total number of GHH fractures, presence of simultaneous STH and GHH fracture.

The GA-optimized ANN for Dataset I-w that did not consider subjects” body weight and
body height selected following variables (n = 5) to be included in the model: subject’s sex,
presence of unilateral STH fracture, presence of isolated STH fracture, the total number of
thyrohyoid fractures, and the presence of cervical spine fracture.

Table 4.2.5. Performance characteristics of ANN developed in MATLAB for knot position classification in
the hangings with fractures (Dataset 1I-w).

GA-optimized ANNs  Accuracy AUC
DATASET II-w (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
62.4% 0 0 0 0 0.62
Body Overall (56.1 - 68.4) 754% 50.0% 59.0% 681% 15 0.5 (0.55-0.69)
weight
& 68.0% 0 0 0 0 0.67
body height Test (56.2 - 78.3) 81.1% 553% 63.8% 75.0% 18 03 (0.54-0.79)
considered .. 60.0% o o o o 0.61
Training (523 - 67.3) 729% 47.8% 569% 652% 14 0.6 (0.53-0.70)
Body 62.4% 0 0 0 0 0.64
weight Overall (56.1 - 68.4) 69.7% 55.5% 59.9% 657% 16 05 (0.57-0.71)
&
body height 68.0% o o o o 0.66
Test (562 - 783) 73.0% 63.2% 659% 70.6% 20 04 (053-0.78)
NOT 9
considered | Training (526,09 —06@ 3) 68.2% 522% 57.4% 635% 14 0.6 © 5(31_65 71)

Note: The atypical knot position was considered as the positive state in confusion matrix performance
calculations. There was no statistically significant difference in ROC curve analysis of the predicted outcome
probabilities between the training and the test group (p > 0.05). Abbreviations: GA - Genetic algorithm;
Sn - sensitivity; Sp - specificity; PPV - positive predictive value, NPV - negative predictive value, LR+ -
positive likelihood ratio, negative LR- — negative likelihood ratio, AUC - Area under the curve, CI - Confidence
Interval.

The GA-optimized ANN for Dataset II-w that considered subjects” body weight and
body height selected following variables (n = 6) to be included in the model: subject’s age
and body weight, presence of isolated STH fracture, total number of STH fractures, presence
of isolated GHH fracture, and the total number of thyrohyoid fractures.
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The GA-optimized ANN for Dataset II-w that did not consider subjects” body weight
and body height selected following variables (n = 7) to be included in the model: subject’s
sex and age, presence of isolated STH fracture, presence of bilateral GHH fracture, total
number of thyrohyoid fractures, presence of simultaneous STH and GHH fractures, and
presence of the cervical spine fracture.

4.2.2.2.  MLP-ANN, Decision Tree, k-NN, and Naive Bayes algorithms

Table 4.2.6 and Table 4.2.7 provide information on the performance characteristics of
the machine learning algorithms developed in SPSS software, for Datasets I-w and II-w,
respectively.

Figure 4.2.4 shows ROC curve analysis of each reported ML algorithm, separately for
both datasets (I-w and II-w).

Dataset I-w BW considered Dataset I-w BW not considered

o
™

y

Sensitivity

Sensitivit

o
-
o
-

Dataset II-w BW considered

10
08
e B
= .
E Z
E 06 E 08
b= B
93] 2]
= o
¥ 9]
v 04 98] 04
02 02
0o 00
00 02 04 06 08 1.0 00 02 04 06 08 10
C 1 - Specificity d 1 - Specificity

Figure 4.2.4. The Receiver Operating Characteristic (ROC) and Area under the curve (AUC) analysis of
developed machine learning models in Test samples of analyzed sets - (a and b) Dataset I, and (b and c)
Dataset II. The AUCs with 95% Confidence Intervals are listed in Tables 4.2.6 and 4.2.7. Legend: black line
(MLP-ANN), blue line (DT), green line (k-NN), yellow line (NB), red line (reference).
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Table 4.2.6. The performance characteristics of the machine learning models developed in SPSS, for the knot
in a noose position classification in Dataset I-w.

Accuracy AUC
MLAs - DatasetI - w (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
MLP-ANN 57.1% 0 0 5 0 0.60
Overall W (520621 388% 746% 593% 561% 15 08 (0.54.0.66)
58.7% . . . . 0.62
w/o (53.6.63.7) 500% 67.0% 59.1% 584% 15 07 (0.56.0.67)
57.4% . . . . 0.64
Test W 475666) 468% 69.8% 644% 529% 15 08 (054-0.74)
57.4% . . . . 0.61
w/o (47.5-66.6) 548% 604% 618% 533% 14 07 (050-071)
57.0 . N . . 0.58
Training W (509.632) 349% 764% 564% 573% 15 0.9 (051.065)
w/o (53? 91365/3 2 476% 694% 57.7% 602% 16 07 (0 5%_602 69)
o o o)
Decision w G4 51.6% 711% 63.0% 606% 18 0.7 e
Tree Overall (56.5-66.4) (0.59-0.70)
59.5% . . . . 0.62
w/o (54.4-64.4) 527% 66.0% 59.6% 594% 15 07 (056.0.67)
52.2% . . . . 0.47
Test W u761e) 484% 56.6% 56.6% 484% 1.1 0.9 (036-0.58)"
55.7% . . . . 0.56
w/o (46.164.9) 500% 623% 60.8% 516% 13 08 (0.45-0.66)
65.6% . . . . 0.72
Training W (596712 532% 764% 663% 651% 23 06 (0.66.0.78)*
w/o (556 %)16; 0) 540% 674% 591% 62.6% 16 07 (0 508'_65*71)
k-NN 51.4% . . . . 0.52
Overall W 463565) 51.6% 513% 503% 526% 1.1 0.9 (0.47.058)
53.5% . . . . 0.52
w/o (48.4-58.6) 484% 584% 526% 542% 12 09 (0.46-0.57)
52.2% . . . . 0.52
Test W 07616 51.6% 52.8% 56.1% 483% 1.1 0.9 (0.42.0.63)
51.3% . . . . 0.50
w/o (41.8-60.7) 50.0% 52.8% 554% 475% 1.1 0.9 (039-061)
51.1% . . . . 0.52
Training W 450570 51.6% 50.7% 47.8% 545% 10 0.9 (0.45-059)
w/o ( 485 é‘i{; 5 476% 604% 513% 569% 12 0.9 0 405'?0259)
Naive w ey 372% 766% 603% 561% 1.6 08 59
Bayes Overall (52.3-62.4) (0.53-0.64)
57.7% . . . . 0.60
w/o (52.6.62.7) 543% 609% 57.0% 583% 14 07 (054-0.65)
54.8% . . . . 0.57
Test W 457638 317% 76.6% 559% 533% 13 09 (0.46.0.67)
55.2% . . . . 0.54
w/o (152.65.0) 521% 57.9% 51.0% 589% 12 08 (0.43-0.65)
58.6% . . . . 0.59
Training W (524607) 398% 767% 622% 570% 17 08 (052-0.66)
58.6% . . . . 0.61
w/o (52.6-64.4) 550% 6.1% 592% 580% 15 07 (0.55-0.68)
Logistic 57.3% 0.57
) Overall 333% 782% 57.0% 575% 15 0.8
Regress[on (52.1-62.4) (0.51-0.63)

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05), except in a
Decision Tree model that considered body weight (forced input variable) - * — no DT model that considered body weight met this
criterion. Abbreviations: MLP-ANN - Multilayer Perceptron — Artificial Neural Network, k-NN - k Nearest Neighbors, Logistic
Regression - Multivariable Logistic Regression analysis, w — the model considered body weight and body height, w/o - the model did
not consider the body weight and body height, Sn - sensitivity, Sp - specificity, PPV - positive predictive value, NPV - negative
predictive value, LR+ - positive likelihood ratio, negative LR- — negative likelihood ratio, AUC - Area under the curve, CI - Confidence
Interval.
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Table 4.2.7. The performance characteristics of the machine learning models developed in SPSS, for the knot

in a noose position classification in Dataset II-w.

Accuracy AUC
MLAs - Dataset Il - w (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
MLP-ANN w 62.8% g g g g 0.69
Overall (565 - 68.8) 68.0% 578% 60.6% 655% 16 0.6 (0.63-076)
vera w/o 60.0% 59.0% 60.9% 59.0% 609% 15 0.7 0.63
(53.6 - 66.1) - e - e ‘ ‘ (0.56-0.70)
W 64.0% . . . . 0.66
Tedt (521 - 748) 703% 57.9% 619% 667% 17 05 (054-0.79)
€s w/o 60.0% . . 0.65
(523 673) 60.0% 600% 0.6 0.6 15 0.7 052-077)
W 62.3% . . . . 0.71
et (547 695 671% 578% 60.0% 650% 16 0.6 (063.0.79)
raining w/o 60.0% o o o o 0.62
33-751) 56.8% 632% 60.0% 600% 15 0.7 (054-071)
Decision w 60.8% 705% 51.6% 581% 647% 15 0.6 D
(54.4 - 66.9) (0.58-0.72)
Tree Overall 59.6% 06
O/ o, o, o, o, .
w/o (532 - 657) 770% 43.0% 563% 663% 1.4 05 (053-067)
56.0% . . . . 0.61
Test W 41675 73.0% 395% 540% 600% 1.2 0.7 (0.49-0.74)
62.7% . . . . 0.61
w/o (507 - 73.6) 784%  474% 59.2% 692% 15 0.5 (0.48-0.74)
62.9% . . . . 0.67
Training W 552.700) 694% 567% 602% 662% 16 05 (059-075)
0,
w/o (50523 _3 :5 7 765% 411% 551% 649% 1.3 0.6 0 501‘_509 )
k-NN 61.6% . . . . 0.58
Overall W 553 677) 68.0% 555% 593% 645% 15 0.6 (050-0.65)
55.2% . . . . 0.541
w/o (488 - 61.5) 418% 68.0% 554% 551% 13 0.9 (0.469-0.613)
60.0% . . . . 0.63
Test W us0-711) 757% 447% 571% 654% 14 05 (051-076)
54.7% . . . . 0.55
w/o @7 662) 405% 684% 55.6% 542% 1.3 0.9 (0.42.0.69)
62.3% . . . . 0.56
N W 547695 64.7% 60.0% 604% 643% 16 0.6 (0.47-0.65)
e w/o 554% 424% 678% 554% 555% 1.3 0.9 0.53
(47.7 - 62.9) : : : : : : (0.45-0.62)
. 0,
Naive w G123 623% 602% 598% 626% 16 0.6 Uy
Bayes Overall (54.9 - 67.3) (0.603-0.736)
63.2% . . . . 0.65
w/o (569 - 69.2) 574% 688% 63.6% 629% 18 0.6 (0582-0.717)
59.1% . . . . 0.72
Test W 463 710) 594% 588% 57.6% 60.6% 14 0.7 (061084
w/o (50642f) ;’2 7 609% 63.6% 70.0% 538% 17 0.6 0 5%_701 %)
62.0% . . . . 0.65
Training W 545 690) 633% 60.6% 60.6% 633% 16 0.6 (056-073)
w/o G 661?"_7 7/"0 9 553% 705% 60.0% 663% 1.9 0.6 0 5%_60270)
Logistic 58.7% 0 0 0 0 0.60
Resression Overall oo 500% 664% 57.0% 599% 15 0.8 0.53.0.67
8t

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations:
MLP-ANN - Multilayer Perceptron — Artificial Neural Network, k-NN - k Nearest Neighbors, Logistic Regression — Multivariable
Logistic Regression analysis, w - the model considered body weight and body height, w/o — the model did not consider the body weight
and body height, Sn - sensitivity, Sp - specificity, PPV - positive predictive value, NPV - negative predictive value, LR+ - positive
likelihood ratio, negative LR- - negative likelihood ratio, AUC - Area under the curve, CI - Confidence Interval.
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4.2.2.3. GA-optimized ANN and MLP-ANN ROC analysis comparison

The comparison analysis between the ROC curves of the GA-optimized ANN models
and the ROC curves of the MLP-ANN models for Dataset I-w and Dataset II-w are shown

in Figure 4.2.5.
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Figure 4.2.5. Comparison of ROC curves of the two Artificial Neural Network models developed for the knot
position classification (atypical vs. typical hangings) in Dataset I-w, for models that (a) did consider and (b)
did not consider subjects’ body weight and height, and in Dataset II-w, for models that (c) did consider and
(d) did not consider subjects” body weight and height: The GA-optimized ANN developed in MATLAB and

the MLP-ANN developed in SPSS.

* There was a statistically significant difference between the outcome predicted probabilities on
ROC curve analysis of the models that considered subjects’ body weight and height - one developed
in MATLAB (GA-ANN) and the other (MLP-ANN) in SPSS (Z =-2.4978, p < 0.05).

There was no statistically significant difference between the ROC curves between the remaining
models developed in MATLAB and SPSS:

Dataset I-w with subjects” body weight and height not considered, Z = 1.4154, p > 0.05;

Dataset I1-w with subjects’ body weight and height considered, Z = 0.059016, p > 0.05;

Dataset I1-w with subjects’ body weight and height not considered, Z = 0.23823, p > 0.05;
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4.2.2.4.  Comparison of analogous machine learning models:
Models with & models without consideration of subjects” body weight & height

There was no significant difference in the ROC curves analyses in test samples between
the analogous ML models that did consider and did not consider subjects’ body weight and
height in Datasets I-w and II-w. This holds true for GA-optimized ANNs (Figure 4.2.6), as
well as for MLP-ANNSs, DTs, k-NN, and NB (Figures 4.2.7. and 4.2.8, for Dataset I-w and

Dataset II-w, respectively).

Dataset I-w Dataset II-w
1.0 7 1.0 4
0.8 08 4
Iy >
E 06 06
= N
%) o
& n
o8] o
U 04 ﬁ 04
02 - 02
1
p — BW considered ' — BW considered
00 -=== BW not considered 0.0 4 ---- BW not considered
T T T T T T T T T T T T
, 10 0.8 06 o q.4 02 0.0 b 10 08 08 04 0.2 0.0
d Specificity Specificity

Figure 4.2.6. The comparison of the ROC curves of two analogous GA-ANN models developed in MATLAB,
one considering subjects’ body weight and body height, and one that does not consider them, in (a) Dataset I-

w, and in (b) Dataset 1I-w.

There was no statistically significant difference in the ROC curve analysis between the two analogous
models. (Dataset I-w: Z = -0.17407, p > 0.05; Dataset II-w: Z = 0.059016, p > 0.05).

4.2.2.5.  Machine learning models’ variable importance and settings

Table 4.2.8. lists up to the top five ranked input variables for each of these algorithms,
according to the variable’s independent importance.

The hyperparameters settings for all used algorithms developed in SPSS (MLP-ANN,
DT, k-NN, and NB), in both datasets (I-w and II-w, respectively) are shown in Table 4.2.9.
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Figure 4.2.7. The comparison of the ROC curves of two analogous machine learning models developed in
SPSS, one considering the subjects” body weight and body height, and one that does not consider them, in
Dataset I-w: MLP-ANN (a), Decision Tree (b), k-Nearest Neighbors (c), and Naive Bayes (d).

There was no statistically significant difference in the ROC curve analysis between any of the analogous

models:

MLP-ANN, Z = 0.66786, p > 0.05;
Decision Tree, Z = -1.4334, p > 0.05;
k-Nearest Neighbors, Z = 0.48151, p > 0.05;
Naive Bayes, Z = 0.32563, p > 0.05;
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Figure 4.2.8. The comparison of the ROC curves of two analogous machine learning models developed in
SPSS, one considering the subjects’ body weight and body height, and one that does not consider them, in
Dataset II-w: MLP-ANN (a), Decision Tree (b), k-Nearest Neighbors (c), and Naive Bayes (d).

There was no statistically significant difference in the ROC curve analysis between any of the analogous
models:

MLP-ANN, Z = 0.28063, p > 0.05;

Decision Tree, Z = 0.064592, p > 0.05;

k-Nearest Neighbors, Z = 0.90233, p > 0.05;
Naive Bayes, Z = 0.2654, p > 0.05;
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Table 4.2.8. The top five ranked input variables based on their relative importance for utilized machine learning models.

DATASET I-w DATASET I-w DATASET II-w DATASET II-w
considering BW & BH not considering BW & BH considering BW & BH not considering BW & BH

MLP DT k-NN NB MLP DT* k-NN NB MLP DT k-NN NB MLP DT k-NN NB
Ist BH BW Spine BW  Age ULHy  Age Toliiopr' BH BW  UL-Hy To;ifr' Age Age  HyN° UL-Hy
2nd | Age  UL-Hy sTy&Hy  BH Tolzfr' Age Sex iHy BW Age  BL-Hy iHy Spine  UL-Ty BL-Hy  iTy

) Tot.Fr. Tot.Fr. . Tot.Fr. .

3rd NO Hy NO Hy N° NO BL-Hy sTy&Hy  Spine BL-Hy | Hy N° NG Hy N° BL-Hy sTy&Hy iTy UL-Hy sTy&Hy
4t BW Age iHy UL-Ty Hy No / sTy&Hy  Sex TOIEOF“ BH iHy UL-Ty  HyN° sTy&Hy iHy  BL-Hy
50 | iTy  sTy&Hy BL-Hy UL-Hy BL-Ty / HyN° ULTy | Age  TyNo To;fr' sTy&Hy UL-Hy  HyN° To;fr' Spine

Note: Some models included less than 5 variables, and these empty fields in table are labeled by “/” sign.

Abbreviations: BW - Body Weight, BH - Body Height, BL-Hy - bilateral greater hyoid horn fractures, BL-Ty - bilateral superior thyroid horn fractures, CL-Ty - superior
thyroid cartilage horn contralateral to the knot position, Hy N° — Total number of greater hyoid horn fractures, iTy — isolated superior thyroid horn fracture(s), IL-Hy - greater
hyoid bone horn ipsilateral to the knot position, IL-Ty - superior thyroid cartilage horn ipsilateral to the knot position, L-Hy - left greater hyoid bone horn, L-Ty - left superior
thyroid cartilage horn, R-Hy - right greater hyoid bone horn, sTy&Hy - simultaneous superior thyroid horn and greater hyoid horn fractures, Spine — Cervical spine fracture,
Tot.Fr.NO - Total number of thyrohyoid fractures, Ty N° — Total number of superior thyroid horn fractures, UL-Hy - unilateral greater hyoid horn fracture, UL-Ty - unilateral
superior thyroid horn fracture.

*Selecting Exhaustive CHAID growing method for DT model does not provide information on variable importance ranking.
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Table 4.2.9. Hyperparameter settings in the reported machine learning algorithms (developed in SPSS).

NO of NO of neurons in Training Training Initial
hidden layers a hidden layer Activation function type algorithm learning rate Momentum
DATASET I- i
IIX%]I\)’ BW cansiderev;ll 1 5 Hyperbolic tangent Batch C;Z‘ileenrlt 04 0.9
DATASET I- i
BW not cons;.v 1 10 Hyperbolic tangent Batch Gdreas(i;enrlt 04 0.9
DATASET II- i
BW considerec‘l’v 1 9 Hyperbolic tangent Online Cj;;i:iﬁt 0.5 0.7
DATASET II- i
BW not consd.w 1 10 Hyperbolic tangent Online Gdreascciglt 0.5 0.7
. Min. samples Min. samples of Ne of terminal
Growing method Tree depth of parent node child node Ne of nodes nodes
Decision | DATASET I-w
Tree BW considered CRT 4 50 10 13 7
DATASET [w Exhaustive CHAID 3 70 10 9 5
DATASET II-w
BW considered CRT 3 25 10 7 4
DATASET II-w
BW not consd. CRT 2 25 10 5 3
Ne of Neighbors Distance metrics Search Algorithm
to consider (Feature selection - Stopping criterion)
k- BDQTC?SSEE;‘Z 3 Euclidean Select all features
gxgﬁtsf;l;,iy 13 Euclidean Select all features
BDQE?SE;‘;L;V 13 Euclidean 5 features selected
gxﬂﬁff;izw 10 Euclidean Select all features
Maximum memory NO of bins No
(MDb) for scale predictors of selected predictors
Naive DATASET I-w
Baves BW considered 1024 5 1
Y DATASET I-w 1024 5 5
BW not consd.
DATASET II-w
BW considered 1024 10 10
DATASET II-w
BW not consd. 1024 10 13

Abbreviations: MLP-ANN - Multilayer Perceptron - Artificial neural network, k-NN - k Nearest Neighbors.
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4.3. PART III of the study:
Analysis of the sternocleidomastoid muscles’ origin hemorrhage
in knot position-related fracture patterns assessment

The characteristics of included cases regarding the subjects’ sex, age, body weight and
body height, thyrohyoid and cervical spine fracture occurrence, ligature knot position, as
well as the presence of the hemorrhages of the sternocleidomastoid muscle origins at the
clavicles are shown in Table 4.3.1.

4.3.1. Descriptive, basic inferential, and logistic regression analysis
of the thyrohyoid and cervical spine fracture patterns

Following the reporting of the previous study parts, the distribution of the analyzed
variables (thyrohyoid and cervical spine fractures), including the presence of
sternocleidomastoid muscle origin hemorrhages, in terms of the coded variables for study
subgroups (Datasets I-m - III-m) is shown in Table 4.3.2, and Table 4.3.3. (Dataset IV-m),
and the additional basic and logistic regression analyses are reported here.

4.3.1.1.  The entire sample (hangings with and without fractures
or sternocleidomastoid muscle hemorrhages) — Dataset I-m

In the Dataset I-m, comprising 126 hangings with and without thyrohyoid complex and
cervical spine fractures, in overall, the thyrohyoid complex fractures were significantly
more frequent in subjects older than 40 years of age than in the younger subjects (N = 68,
73.9% subjects older than 40 years of age vs. N =17, 50.0% of younger subjects, x> = 6.47, df
=1, p <0.05). Further analysis revealed that the significant difference in fracture occurrence
between these two age groups existed only for the greater hyoid horn fractures: GHH
fractures were significantly more frequent in older than 40 years of age compared to
younger individuals (N = 37, 40.2% subjects older than 40 years of age vs. N = 4, 11.8% of
younger subjects, x2=9.16, df =1, p <0.05). Contrary, no significant difference was observed
in the frequency of STH fractures (N = 51, 55.4% of subjects older than 40 years of age vs. N
= 16, 47.1% of younger subjects, x> = 0.69, df = 1, p > 0.05). There was no statistically
significant difference in the frequency of SCM muscle hemorrhages between these two
groups, too (N =79, 85.9% subjects older than 40 years of age vs. N = 29, 85.3% of younger
subjects, x> = 0.01, df =1, p > 0.05). The overall occurrence of thyrohyoid fractures did not
significantly differ between the two analyzed groups (typical vs. atypical hangings, x> =
1.46, df =1, p > 0.05), the distribution of subjects older than 40 years of age was equal
between these groups (x? = 0.09, df = 1, p > 0.05), and the frequency of SCM hemorrhage
occurrence was similar (x2=0.19, df =1, p > 0.05).

On the ROC analysis, subjects’” age and body weight were statistically significant
predictors of thyrohyoid fracture occurrence, which is not true for subject’s body height. Of
these anthropometric variables, only the body weight was a statistically significant predictor
of sternocleidomastoid muscle hemorrhage at the origin on the clavicles. The ROC curve
analyses are shown in Figures 4.3.1 - 4.3.3. for subjects” age, body weight, and body height,
regarding the analyzed fractures, respectively, while the predictive value of these variables
for the occurrence of SCM hemorrhages is shown in Figure 4.3.4.
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Table 4.3.1. Basic subjects” and injury characteristics - the study sample of Dataset I-m.

N =126
Sex ' Male 99 (78.6%)

' Female 27 (21.4%)
Age (years) \ 5.0 (17 - 94)
Body weight (kg) | 70,0 (40 - 125)
Body height (cm) | 176.0 (145 - 205)

THYROHYOID AND CERVICAL SPINE FRACTURES
Thyrohyoid fractures present \1\{Teos 2‘;’ gggg%
STH fracture present f\{TeOS gg gigé?ﬁ;
GHH fracture present KT%S gé gg%g;ﬁ;
Isolated STH fracture(s) KT%S g% ggé?;ﬁ;
Isolated GHH fracture(s) KT%S 11088((1845?;é2)
Simultaneous STH and GHH fractures KI?)S 12(?3((1881"370/0(}2)
Left GHH fracture \1\{1%5 12051 ((1890?2({0/3)
Right GHH fracture N 5 (75 6%)
Left STH fracture \1\{1%8 gg ggg%
Right STH fracture \1\{%5 % %%?;(3
Cervical Spine fracture KT%S 1233((294;%2%)
STERNOCLEIDOMASTOID MUSCLE HEMORRHAGES
SCM hemorrhage present } f\{ﬁ)s 11088 ((1845.370/00/0))
Left SCM hemorrhage } f\{ﬁ)s Zg Egé%%
Right SCM hemorrhage } f\{ﬁ)s gg Eggg%
KNOT POSITION

Anterior 7 (5.6%)
Posterior 62 (49.2%)
Left lateral 33 (26.2%)
Right lateral 24 (19.0%)

Note: The data is presented as frequency and ratio.
Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn;
SCM - sternocleidomastoid muscle.
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Table 4.3.2. The descriptives of the coded variables: thyrohyoid and cervical fractures and basic subject characteristics for Datasets I-m, II-m, and 11I-m.

DATASET I-m DATASET II-m
THE ENTIRE SAMPLE HANGINGS WITH FRACTURES ATXZ;LI%:?LS IIiI]:AIIf]IgI?\I GS
OF STUDY PART III OR SCM HEMORRHAGES
Knot Position Knot Position Knot Position
Typical Atypical p- Typical Atypical p- Anterior Lateral p-
N=62 N =64 value N =59 N=58 value N=6 N=52 value
(49.2%) (50.8%) (50.4%) (49.6%) (10.3%) (89.7%)
Sex | Male 49 (79.0%) 50 (78.1%) 46 (78.0%) 46 (79.3%) 5 (83.3%) 41 (78.8%)
| Female 13 (21.%) 14 (21.9%) 13 (22.0%) 12 (20.7%) 1 (16.7%) 11 (21.2%)
Age (years) 55.5(20-90) 54.5 (17 - 94) 56.0 (20-90)  54.5(24 - 94) 57.5 (31 - 91) 54.0 (23 - 94)
Body weight (kg) 68 (41 -125) 72 (40 - 112) 69.0 (41 -125) 72.5(40-112) 85.5 (60 - 94) 72.0 (40 - 112)
Body height (cm) 175 (145 - 177 (151 - 175.0 (145 - 177.5 (151 - 179.5 (164 - 177.0 (151 -
205) 190) 205) 190) 190) 190)
THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS
Isolated Yes 22 (35.5%) 22 (34.4%) 22 (37.3%) 22 (37.9%) 2 (33.3%) 20 (38.5%)
STH fracture(s) No 40 (64.5%) 42 (65.6%) 37 (62.7%) 36 (62.1%) 4 (66.7%) 32 (61.5%)
Unilateral Yes 21 (33.9%) 20 (31.3%) 21 (35.6%) 20 (34.5%) 1 (16.7%) 19 (36.5%)
STH fracture No 41 (66.1%) 44 (68.8%) 38 (64.4%) 38 (65.5%) 5 (83.3%) 33 (63.5%)
Bilateral Yes 12 (19.4%) 12 (18.8%) 12 (20.3%) 12 (20.7%) 1(16.7%) 11 (21.2%)
STH fracture No 50 (80.6%) 52 (81.2%) 47 (79.7%) 46 (79.3%) 5 (83.3%) 41 (78.8%)
Total N of STH fractures 1(0-2) 1(0-2) 1(0-2) 1(0-2) 0(0-2) 1(0-2)
(0-2)
Isolated | 12 (19.4%) 6 (9.4%) 12 (20.3%) 6 (10.3%) 1 (16.7%) 5(9.6%)
GHH fracture(s) | 50 (80.6%) 58 (90.6%) 47 (79.7%) 52 (89.7%) 5 (83.3%) 47 (90.4%)
Unilateral | Yes 17 (27.4%) 11 (17.2%) 17 (28.8%) 11 (19.0%) 1 (16.7%) 10 (19.2%)
GHH fracture | No 45 (72.6%) 53 (82.8%) 42 (71.2%) 47 (81.0%) 5 (83.3%) 42 (80.8%)
Bilateral | Yes 6 (9.7%) 5 (7.8%) 6 (10.2%) 5 (8.6%) 0 (0.0%) 5(9.6%)
GHH fracture | No 56 (90.3%) 59 (92.2%) 53 (89.8%) 53 (91.4%) 6 (100.0%) 47 (90.4%)
Total N° of GHH fractures ‘ 0(0-2) 0(0-2) 0(0-2) 0(0-2) 0(0-1) 0(0-2)
(0-2)
Total N° of TyHy fractures ‘ 1(0-4) 1(0-4) 1(0-4) 1(0-4) 0.5(0-2) 1(0-4)
(0-4)
Simultaneous | Yes 11 (17.7%) 12 (18.8%) 11 (18.6%) 12 (20.7%) 0 (0.0%) 12 (23.1%)
STH and GHH ‘ No 51 (82.3%) 52 (81.3%) 48 (81.4%) 46 (79.3%) 6 (100.0%) 40 (76.9%)
fractures
Contralateral thyrohyoid fracture | Yes 0(0.0%) 6 (11.5%)
' No 6 (100.0%) 46 (88.5%)
Cervical spine fracture | Yes 1(1.6%) 2 (3.1%) 1(1.7%) 2(3.4%) 1 (16.7%) 1(1.9%)
| No 61 (98.4%) 62 (96.9%) 58 (98.3%) 56 (96.6%) 5(83.3%) 51 (98.1%)

66



Table 4.3.2. Continued

STERNOCLEIDOMASTOID MUSCLES’ ORIGIN HEMORRHAGES

Unilateral ‘ Yes
SCM hemorrhages ‘ No
Bilateral | Yes
SCM hemorrhages | No

Total N° of SCM hemorrhages
0-2)

STERNOCLEIDOMASTOID MUSCLES’ ORIGIN HEMORRHAGES

DATASET I-m
THE ENTIRE SAMPLE
OF STUDY PART III
Knot Position
Typical Atypical
N=62 N =64
(49.2%) (50.8%)
21 (33.9%) 29 (45.3%)
41 (66.1%) 35 (54.7%)
33 (53.2%) 25 (39.1%)
29 (46.8%) 39 (60.9%)
‘ 2(0-2) 1(0-2)

p-
value

DATASET II-m

HANGINGS WITH FRACTURES
OR SCM HEMORRHAGES
Knot Position

Typical Atypical p-

N=59 N =158 value
(50.4%) (49.6%)

21 (35.6%) 29 (50.0%)

38 (64.4%) 29 (50.0%)

33 (55.9%) 25 (43.1%)

26 (44.1%) 33 (56.9%)
2(0-2) 1(0-2)

DATASET III-m

ATYPICAL HANGINGS WITH
FRACTURES OR SCM HEMORRHAGES
Knot Position
Anterior Lateral p-
N=6 N=52 value
(10.3%) (89.7%)
1 (16.7%) 28 (53.8%)
5 (83.3%) 24 (46.2%)
5 (83.3%) 20 (38.5%)
1 (16.7%) 32 (61.5%)
2(1-2) 10-2) <0.05

Note: The categorical data is presented as frequency and ratio, and numerical as average * standard deviation or median and range. For comparison of categorical data, the x?
or Fisher’s Exact test were performed, while the Mann-Whitney U test was performed for numerical data. The missing p-values are > 0.05.

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; SCM - sternocleidomastoid muscle.
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Table 4.3.3. Characteristics of the lateral hangings in Dataset IV-m.

Left lateral Right lateral
N =52 N =30 (57.7%) N =22 (42.3%) p-value
Sex Male 41 (78.8%) 26 (86.7%) 15 (68.2%)
Female 11 (21.2%) 4 (13.3%) 7 (31.8%)
Age (years) 54.0 (24 - 94) 51.5 (24 - 94) 54.0 (25 - 85)
Body weight (kg) 72.0 (40 - 112) 715 (49 - 112) 72.5 (40 - 103)
Body height (cm) 177.0 (151 - 190) 179.0 (151 - 190) 176.0 (153 - 190)
THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS
Thyrohyoid fractures present Yes 37 (71.2%) 21 (70.0%) 16 (72.7%)
No 15 (28.8%) 9 (30.0%) 6 (27.3%)
STH fracture present Yes 32 (61.5%) 19 (63.3%) 13 (59.1%)
No 20 (38.5%) 11 (36.7%) 9 (40.9%)
GHH fracture present Yes 17 (32.7%) 10 (33.3%) 7 (31.8%)
No 35 (67.3%) 20 (66.7 %) 15 (68.2%)
Isolated STH fractures Yes 20 (38.5%) 11 (36.7%) 9 (40.9%)
No 32 (61.5%) 19 (63.3%) 13 (59.1%)
Isolated GHH fractures Yes 5(9.6%) 2 (6.7%) 3 (13.6%)
No 47 (90.4%) 28 (93.3%) 19 (86.4%)
Left GHH fracture Yes 13 (25.0%) 8 (26.7%) 5(22.7%)
No 39 (75.0%) 22 (73.3%) 17 (77.3%)
Right GHH fracture Yes 9 (17.3%) 5 (16.7%) 4 (18.2%)
No 43 (82.7%) 25 (83.3%) 18 (81.8%)
Left STH fracture Yes 17 (32.7%) 9 (30.0%) 8 (36.4%)
No 35 (67.3%) 21 (70.0%) 14 (63.6%)
Right STH fracture Yes 26 (50.0%) 16 (53.3%) 10 (45.5%)
No 26 (50.0%) 14 (46.7%) 12 (54.5%)
Unilateral GHH fracture Yes 10 (19.2%) 7 (23.3%) 3 (13.6%)
No 42 (80.8%) 23 (76.7%) 19 (86.4%)
Unilateral STH fracture Yes 19 (36.5%) 13 (43.3%) 6 (27.3%)
No 33 (63.5%) 17 (56.7%) 16 (72.7%)
Bilateral GHH fracture Yes 5(9.6%) 3 (10.0%) 2(9.1%)
No 47 (90.4%) 27 (90.0%) 20 (90.9%)
Bilateral STH fracture Yes 11 (21.2%) 6 (20.0%) 5 (22.7%)
No 41 (78.8%) 24 (80.0%) 17 (77.3%)
Ipsilateral GHH fracture Yes 6 (11.5%) 5 (16.7%) 1(4.5%)
No 46 (88.%) 25 (83.3%) 21 (95.5%)
Contralateral STH fracture Yes 12 (23.1%) 10 (33.3%) 2 (9.1%) <005
No 40 (76.9%) 20 (66.7%) 20 (90.9%) '
Contralateral thyrohyoid fractures Yes 6 (11.5%) 5 (16.7%) 1(4.5%)
No 46 (88.5%) 25 (83.3%) 21 (95.5%)
Simultaneous STH and GHH fracture Yes 12 (23.1%) 8 (26.7%) 4 (18.2%)
No 40 (76.9%) 22 (73.3%) 18 (81.8%)
Total N° of STH fractures (0 - 2) 11(0-2) 1(0-2) 1(0-2)
Total NY of GHH fractures (0 - 2) 1 0(0-2) 0(0-2) 0(0-2)
Total NO of thyrohyoid fractures (0 - 4) | 1(0-4) 1.5(0-4) 1(0-3)
Cervical spine fracture Yes 1(1.9%) 1(3.3%) 0(0.0%)
No 51 (98.1%) 29 (96.7%) 22 (100.0%)
STERNOCLEIDOMASTOID MUSCLE’S ORIGIN HEMORRHAGES
SCM hemorrhage present Yes 48 (92.3%) 28 (93.3%) 20 (90.9%)
No 4 (7.7%) 2(6.7%) 2(9.1%)
Left SCM hemorrhage Yes 31 (59.6%) 23 (76.7%) 8 (36.4%) <0.05
No 21 (40.4%) 7 (23.3%) 14 (63.6%) :
Right SCM hemorrhage Yes 37 (71.2%) 17 (56.7%) 20 (90.9%) <0.05
No 15 (28.8%) 13 (43.3%) 2 (9.1%) :
Unilateral SCM hemorrhage Yes 28 (53.8%) 16 (53.3%) 12 (54.5%)
No 24 (46.2%) 14 (46.7%) 10 (45.5%)
Bilateral SCM hemorrhage Yes 20 (38.5%) 12 (40.0%) 8 (36.4%)
No 32 (61.5%) 18 (60.0%) 14 (63.6%)
Ipsilateral Yes 23 (44.2%) 11 (36.7%) 12 (54.5%)
SCM hemorrhage No 29 (55.8%) 19 (63.3%) 10 (45.5%)
Total NO of SCM hemorrhages (0 - 2) 11(0-2) 1(0-2) 1(0-2)

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard deviation or median and range. For comparison
of categorical data, the y? test or Fisher’s exact test were performed, while the Mann-Whitney U test was performed for numerical data. All the p-
values are > 0.05. Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; SCM - Sternocleidomastoid muscle.
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Age was a significant predictor for overall thyrohyoid complex fracture occurrence
(AUC 0.622,95% CI1 0.511 - 0.733, p < 0.05) - cutoff value was age of > 54.5 years (sensitivity
75.3%, specificity 51.2%), as well as for the occurrence of GHH fracture (AUC 0.664, 95% CI
0.568 - 0.760, p = 0.001) - cutoff value was age of > 52.5 years (sensitivity 75.6%, specificity
55.3%). However, age was not a good predictor of STH fracture occurrence considered
separately (AUC 0.479, 95% CI 0.374 - 0.584, p > 0.05). Here, age was not a significant
predictor of cervical spine fracture occurrence, too (AUC 0.533, 95% CI 0.293 - 0.772, p >

0.05).
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Figure 4.3.1. The ROC curve analyses of the subjects’” age as a predictor for (a) the occurrence of GHH

fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as
(d) the cervical spine fracture occurrence, in Dataset I-m. Abbreviations: GHH - Greater hyoid bone horn,

STH - Superior thyroid cartilage horn.

Age showed a negligible statistically significant positive correlation with the total
number of thyrohyoid fractures (range 0-4 - sum of STH and GHH fractures, p = 0.188, p <
0.05), and a weak correlation with the total number of GHH fractures (range 0-2, p = 0.248,
p < 0.05), but did not correlate with the total number of STH fractures (range 0-2, p = 0.023,
p > 0.05). Also, subjects’ age did not correlate significantly with the number of SCM

hemorrhages (range 0-2, p = 0.007, p > 0.05).
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Subjects” body weight was a significant predictor for the occurrence of STH fracture
(AUC 0.640, 95% CI 0.544 - 0.737, p < 0.05) - cutoff value was body weight of > 65.5 kg
(sensitivity 74.6%, specificity 52.5%). However, body weight was not a good predictor of
overall thyrohyoid complex fracture occurrence (AUC 0.556, 95% CI 0.453 - 0.659, p > 0.05)
and of GHH fracture occurrence considered separately (AUC 0.482, 95% CI 0.373 - 0.591, p
> 0.05). Also, body weight was not a significant predictor of cervical spine fracture
occurrence, too (AUC 0.537, 95% CI 0.257 - 0.817, p > 0.05).
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Figure 4.3.2. The ROC curve analyses of the subjects” body weight as a predictor for (a) the occurrence of
GHH fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as
well as (d) the cervical spine fracture occurrence, in the Dataset I-m. Abbreviations: GHH - Greater hyoid

bone horn, STH - Superior thyroid cartilage horn.

A statistically significant but negligible positive correlation was observed only between
subjects” body weight and the total number of STH fractures (range 0-2, p = 0.197, p < 0.05).
There were no statistically significant correlations of body weight with the total number of
thyrohyoid fractures (range 0-4 - sum of STH and GHH fractures, p = 0.083, p > 0.05), total
number of GHH fractures considered alone (range 0-2, p =-0.049, p > 0.05), as well as with
the total number of SCM muscle hemorrhages (range 0-2, p = 0.141, p > 0.05).
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Body height was not a significant predictor for any of the considered variables: overall
thyrohyoid fracture occurrence (AUC 0.534, 95% CI 0.430 - 0.639, p > 0.05), GHH fracture
occurrence considered separately (AUC 0.518, 95% CI 0.410 - 0.625, p > 0.05), STH fracture
occurrence considered separately (AUC 0.575, 95% CI 0.475 - 0.676, p > 0.05), and cervical
spine fracture occurrence (AUC 0.541, 95% CI 0.317 - 0.765, p > 0.05).

Body height did not significantly correlate with the number of thyrohyoid fractures,
overall and when considered separately (STH and GHH, p > 0.05 - for all), as well as with
the total number of SCM muscle hemorrhages (range 0-2, p = 0.112, p > 0.05).
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Figure 4.3.3. The ROC curve analyses of the subjects’ body height as a predictor for (a) the occurrence of GHH
fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as
(d) the cervical spine fracture occurrence, in the Dataset I-m. Abbreviations: GHH - Greater hyoid bone

horn, STH - Superior thyroid cartilage horn.

Regarding the predictive value on the occurrence of sternocleidomastoid muscle’s origin
hemorrhages - subjects” age was not a statistically significant predictor of hemorrhages at
the origin of SCM muscles (AUC 0.463, 95% CI 0.316 - 0.610, p > 0.05). Body weight was a
statistically significant predictor of hemorrhages at the origin of SCM muscles (AUC 0.639,
95% CI10.505 - 0.772, p < 0.05) - cutoff value was body weight of > 67.5 kg (sensitivity 62.0%,
specificity 66.7%). Subjects’” body height was not a statistically significant predictor of
hemorrhages at the origin of SCM muscles (AUC 0.619, 95% CI 0.492 - 0.745, p > 0.05).
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Figure 4.3.4. The ROC curve analyses the subjects” age (a), body weight (b), and body height (c) as predictors
for the occurrence of sternocleidomastoid muscle’s origin hemorrhages, in Dataset I-m.

On the univariable logistic regression analysis, none of the defined coded variables
showed statistically significant association with the knot in a noose position (p > 0.05, for
all), and because all the p-values were above 0.1, multivariable logistic regression analysis
was not performed.

4.3.1.2.  The hangings with thyrohyoid or cervical spine fractures or
sternocleidomastoid muscle hemorrhages — Dataset II-m

In the subgroup of subjects in which at least one thyrohyoid or cervical spine fracture or
SCM muscle hemorrhage was observed, subjects older than 40 years were equally
distributed between the two groups (typical vs. atypical hangings, x> = 0.003, df =1, p >
0.05).

Subjects” age had a weak statistically significant positive correlation with the number of
GHH fractures (range 0-2, p = 0.249, p < 0.05). The body weight and body height did not
correlate with the number of thyrohyoid fractures overall, and if GHH and STH were
considered separately (p > 0.05, for all). The number of SCM hemorrhages (range 0 - 2) did
not significantly correlate with the subjects” age, body weight, and body height (p > 0.05, for
all).

On the univariable logistic regression analysis, none of the defined coded variables
showed statistically significant association with the knot in a noose position (p > 0.05, for
all), and because all the p-values were above 0.1, multivariable logistic regression analysis
was not performed.

4.3.1.3.  The atypical hangings with thyrohyoid or cervical spine fractures or
sternocleidomastoid muscle hemorrhages — Dataset I1I-m

The subgroup of Dataset III-m comprised only atypical hanging cases with at least one
thyrohyoid or cervical spine fracture or at least one sternocleidomastoid muscle
hemorrhage, and it this dataset the anterior and lateral hanging groups were compared in
between. Subjects older than 40 years of age were equally distributed between the two
groups (x2=0.29, df =1, p > 0.05).
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In Dataset III-m, subjects” age showed statistically significant weak positive correlation
with the total number of thyrohyoid complex fractures (range 0-4, p = 0.293, p < 0.05), but
did not significantly correlate with the total number of GHH or STH fractures if these were
considered separately (both p-values > 0.05). Subjects” body weight, and body height did
not correlate significantly with the number of thyrohyoid fractures, either combined, or
considered separately (STH and GHH fractures, p-values > 0.05).

Also, subjects’ age, body weight, and body height did not significantly correlate with the
total number of sternocleidomastoid muscle hemorrhages (all three p-values were > 0.05).

On the univariable binary logistic regression analysis none of the coded variables was
significantly associated with the (atypical) knot in a noose position (all p-values were > 0.05).
The p-values for bilateral sternocleidomastoid muscle hemorrhages and total number of
SCM hemorrhages (range 0-2) were < 0.1 but greater than 0.05 (OR 8.000 95% CI 0.870-
73.550, p = 0.066, and OR 7.316 95% CI 0.836 - 64.034, p = 0.072, respectively), and the
multivariable logistic regression analysis was not performed.

4.3.1.4. The lateral hangings with thyrohyoid and cervical spine fractures
or sternocleidomastoid muscle hemorrhages — Dataset IV-m

Subjects older than 40 years of age were equally distributed between the two groups ()2
=0.341,df =1, p > 0.05).

Subjects” age showed statistically significant weak positive correlation with the total
number of thyrohyoid complex fractures (range 0 - 4, p = 0.334, p < 0.05), but did not
significantly correlate with the total number of GHH or STH fractures when these were
considered separately (both p-values > 0.05). Subjects” body weight, and body height did
not correlate significantly with the number of thyrohyoid fractures, either combined, or
considered separately (STH and GHH fractures, p-values > 0.05).

In Dataset IV-m, subjects’ age, body weight, and body height did not significantly
correlate with the total number of SCM muscle hemorrhages (all three p-values were > 0.05).

On the univariable logistic regression analysis, statistically significant association with
left lateral knot position had the presence of left SCM muscle hemorrhages (OR 5.750, 95%
CI 1.710 - 19.333, p < 0.05), and the absence of right SCM muscle hemorrhages (OR 7.647,
95% CI 1.509 - 38.759, p < 0.05). The presence of STH fracture contralateral to the knot
position was included in the multivariable analysis due to p-value < 0.01.

On the multivariable logistic regression analysis, the hemorrhages of left SCM muscle
(@OR 5.625, 95% CI 1.390 - 22.759), absence of right SCM muscle hemorrhages (aOR 8.652,
95% CI1.462 - 51.204), and presence of the STH fracture contralateral to the knot in a noose
position were all independently associated with the left lateral knot position. This model
correctly classified 69.2% of cases (x? = 20.263, df = 3, p < 0.05; Hosmer & Lemeshow Test:
x2=>5.718, df =4, p > 0.05).
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4.3.2. Machine learning algorithms

In the third part of the study, the machine learning models were developed only for
Dataset I-m. The characteristics of this dataset regarding the coded variables and
test/training group division are shown in Supplement C. The data were considered
balanced in terms of the outcome frequency distribution, and the oversampling by SMOTE
algorithm was not performed. In the following text, the results on machine learning
algorithms are reported in the previously established order.

4.3.2.1.  Genetic Algorithm-optimized Artificial Neural Networks

Performance characteristics analyses of the GA-optimized ANNSs, for Datasets I-m are
reported in Table 4.3.4.

Table 4.3.4. Performance characteristics of ANN developed in MATLAB for knot position classification in
the entire sample (Dataset I-m).

GA-optimized ANN Accuracy AUC
DATASET I-m (95% CI) Sn Sp PPV NPV LR+ LR- (95% CI)
69.8% o o o o 0.73
Overall (61.0-77.7) 703% 694% 703% 694% 23 04 (0.64-0.82)
SCM muscle
hemorrhages 65.8% o o o o 0.71
Test (48.6-80.4) 66.7% 65.0% 632% 684% 19 05 (0.54-0.88)
considered
. . 71.6% o o o o 0.73
Training (61.0-80.7) 71.7% 714% 733% 698% 25 04 (0.62-0.84)
63.5% o o o o 0.65
Overall (54.4-71.9) 75.0% 51.6% 61.5% 667% 1.6 0.5 (0.55-0.74)
SCM muscle €3.5% 0.67
hemorrhages 270 9% o o % :
8! Test (46.0-78.2) 88.9% 40.0% 571% 80.0% 15 03 (0.50-0.85)
NOT . . 63.6% o o o o 0.64
considered | Training (52.7-73.6) 69.6% 571% 64.0% 63.2% 16 0.5 (0.52-0.76)

Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the
training and the test group (p > 0.05). Abbreviations: GA - Genetic algorithm; Sn - sensitivity; Sp - specificity; PPV
- positive predictive value, NPV - negative predictive value, LR+ - positive likelihood ratio, negative LR- - negative
likelihood ratio, AUC — Area under the curve, CI - Confidence Interval, SCM - sternocleidomastoid.

The GA-optimized ANN for Dataset I-m that considered the SCM muscle hemorrhages
selected following variables (n = 8) to be included in the model: subjects” body height,
presence of unilateral STH fracture, presence of bilateral STH fractures, presence of isolated
STH fracture, total number of STH fractures, presence of simultaneous STH and GHH
fractures, presence of bilateral SCM muscle hemorrhages, and total number of SCM muscle
hemorrhages.
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The GA-optimized ANN for Dataset I-m that did not consider the SCM muscle
hemorrhages selected following variables (n = 6) to be included in the model: subjects’ sex,

age, body weight, total number of STH fractures, presence of bilateral GHH fractures, and
presence of isolated GHH fracture.

4.3.2.2.  MLP-ANN, Decision Tree, k-NN, and Naive Bayes algorithms

Table 4.3.5. shows information on the performance characteristics of the machine
learning algorithms developed in SPSS software, for Dataset I-m.

Figure 4.3.5. shows ROC curve analysis of each of these reported ML algorithms.
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Figure 4.3.5. The Receiver Operating Characteristic (ROC) and Area under the curve (AUC) analysis of
developed machine learning models in test samples of each of four datasets. The AUCs with 95% Confidence
Intervals are listed in Table 4.3.5. There was no statistically significant difference in analysis between any

training and test sample (p > 0.05). Abbreviations: MLP - Multilayer Perceptron- Artificial Neural
Network, k-NN - k Nearest Neighbors.
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Table 4.3.5. The performance characteristics of the machine learning models developed in SPSS, for the knot
in a noose position classification in Dataset I-m.

MILAs - Dataset I-m Accuracy Sn Sp PPV NPV LR+ LR- AUC
(95% CI) (95% CI)
MLP-ANN 61.1% o o o o 0.69
w (52.0-69.7) 75.0% 468% 593% 64.4% 14 0.5 (0.60-0.78)
Overall 65.1° 0.61
w/o (56.1-73.4) 84.4% 452% 614% 73.7% 1.5 0.3 (051-0.71)
60.5% o o o o 0.63
w (43.4-76.0) 66.7% 55.0% 571% 64.7% 15 0.6 (0.45-0.81)
Test 60.5% 0.60
w/o (43.4-76.0) 722% 500% 56.5% 66.7% 14 0.6 (041 - 0.78)
61.4% o o o o 0.71
o w (50.4-71.6) 783% 429% 60.0% 64.3% 14 0.5 (0.60-0.81)
Training 67.0% 0.62
U/ 0, o, o, 0, .
w/o (56.2-76.7) 89.1% 429% 631% 783% 1.6 0.3 (0.50-0.74)
Decision 61.9% o o o o 0.63
Tree Overall w (52.8-70.4) 547%  694% 648% 59.7% 1.8 0.7 (0.54-0.73)
60.3% 89.1% 30.6% 57.0% 73.1% 1.3 0.4 0.62
WO (512.689) Al SUbh Tl Aot ' (0.52-0.72)
52.6% o o o o 0.51
w (35.8-69.0) 389% 650% 500% 542% 1.1 0.9 (0.32-0.70)
Test 55.3% 0.62
e 0, o, o, 0, .
w/o (38.3-714) 889% 25.0% 51.6% 714% 1.2 0.4 (0.44-0.80)
65.9% o o o o 0.69
o w (55.0-75.7) 609% 714% 700% 625% 2.1 0.5 (0.58-0.80)
Training 62.5% 0.62
w/o (51.5-72.6) 89.1% 333% 594% 73.7% 1.3 0.3 (0.51-0.74)
k-NN 54.0% o o o o 0.57
w (44.9-62.9) 57.8% 50.0% 544% 53.4% 1.2 0.8 (0.46-0.67)
Overall 60.3% 0.58
/0 0, o, o, 0, .
w/o (51.2-68.9) 797% 403% 58.0% 65.8% 1.3 0.5 (0.48-0.68)
55.3% o o o o 0.52
w (383-714) 55.6% 55.0% 526% 57.9% 1.2 0.8 (0.34-0.71)
Test 55.3% 0.61
w/o (38.3-714) 778% 350% 519% 63.6% 1.2 0.6 (0.43-0.79)
53.4% o o o o 0.58
o w (42.5-64.1) 587% 476% 551% 51.3% 1.1 0.9 (0.46-0.70)
Training 62.5% 0.57
/0 0, o, o, 0, .
w/o (51.5-72.6) 80.4% 429% 60.7%  66.7% 14 0.5 (0.45-0.69)
Naive Bayes 61.1% N o o o 0.64
w (52.0-69.7) 75.0% 468% 593% 64.4% 14 0.5 (0.54-0.74)
Overall 67.5% 0.74
-~ /0 0, o, o, 0, .
w/o (58.5-75.5) 719% 629% 66.7% 68.4% 1.9 0.4 (0.65-0.83)
55.2% o o o o 0.69
w (35.7-73.6) 692% 438% 50.0% 63.6% 1.2 0.7 (051-0.86)
Test 57.6% 0.79
w/o (39.2-74.5) 625% 529% 55.6% 60.0% 1.3 0.7 (0.64-0.94)
62.9% o o o o 0.62
o w (525-72.5) 765% 478% 619% 64.7% 15 0.5 (0.50-0.73)
Training 71.0% 0.7
w/o (60.6-79.9) 75.0% 66.7% 70.6% 71.4% 2.3 0.4 (0.60-0.82)

Note: Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations:
MLP-ANN - Multilayer Perceptron — Artificial Neural Network, k-NN - k Nearest Neighbors, Logistic Regression — Multivariable
Logistic Regression analysis, w — model considered sternocleidomastoid muscle origin hemorrhages w/o — model did not consider
sternocleidomastoid muscle hemorrhages, Sn - sensitivity, Sp - specificity, PPV - positive predictive value, NPV - negative predictive
value, LR+ - positive likelihood ratio, negative LR- — negative likelihood ratio, AUC - Area under the curve, CI - Confidence Interval.
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4.3.2.3. GA-optimized ANN and MLP-ANN ROC analysis comparison

The comparison analysis between the ROC curves of the GA-optimized ANN models
and the ROC curves of the MLP-ANN models for Dataset I-m are shown in Figure 4.3.6.
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Figure 4.3.6. The comparison of the ROC curves of two Artificial Neural Network models developed for the
knot position classification (atypical vs. typical hangings) in Dataset I-m: the GA-optimized ANN developed
in MATLAB and the MLP-ANN developed in SPSS. (a) The comparison of models that considered
sternocleidomastoid muscle origin’s hemorrhages (b) The comparison of models that did not consider

sternocleidomastoid muscle origin’s hemorrhages.

There was no statistically significant difference between the ROC curves developed in MATLAB and SPSS:

Dataset I-m with SCM hemorrhages considered, Z = 0.65384, p > 0.05;
Dataset I-m with SCM hemorrhages not considered, Z = 0.52077, p > 0.05;

4.3.2.4.  Comparison of analogous machine learning models:
Models with & models without consideration of SCM muscle hemorrhages

There was no significant difference in the ROC curves analyses in test samples between
the ML models that considered presence of sternocleidomastoid muscles origin’s
hemorrhages and the ML models that did not considered these hemorrhages in Dataset I-
m. This holds true for GA-ANN (Figure 4.3.7), MLP-ANN, DT, k-NN, and NB (Figure 4.3.8).
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4.3.2.5.  Machine learning models’ variable importance and settings

The hyperparameters settings for all used algorithms developed in SPSS (MLP-ANN,
DT, k-NN, and NB), in Dataset I-m are shown in Table 4.3.6. Table 4.3.7. lists up to the top
five ranked input variables for each of these algorithms, according to the variable’s
independent importance.
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Figure 4.3.7. The comparison of the ROC curves of two analogous GA-ANN models developed in MATLAB,
one considering the presence of sternocleidomastoid muscles origin hemorrhages, and one that does not
consider them, in Dataset I-m.

There was no statistically significant difference in the ROC curve analysis between the two analogous
models (Z = 0.28849, p > 0.05).
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Figure 4.3.8. The comparison of the ROC curves of two analogous machine learning models developed in
SPSS, one considering the presence of sternocleidomastoid muscles origin hemorrhages, and one that does not
consider them, in Dataset I-m: MLP-ANN (a), Decision Tree (b), k-Nearest Neighbors (c), and Naive Bayes

().

There was no statistically significant difference in the ROC curve analysis between any of the analogous

models:

MLP-ANN, Z = 0.40384, p > 0.05;
Decision Tree, Z = -1.0258, p > 0.05;

k-Nearest Neighbors, Z = -0.64212, p > 0.05;

Naive Bayes, Z = -1.1272, p > 0.05;

79



Table 4.3.6. Hyperparameter settings in the reported machine learning algorithms (developed in SPSS).

NO of

NO of neurons in

Training Training

Initial

Activation function Momentum
hidden layers a hidden layer type algorithm learning rate
MLP DATASET I-m . . Gradient
ANN | SCM hemorrhage 2 2 Hyperbolic tangent Online d 0.4 0.9
considered s
DATASET I-m Gradient
SCM hemorrhage 1 2 Hyperbolic tangent Online 04 0.3
not considered descent
. Min. samples Min. samples o Ne of terminal
Growing method Tree depth of parent node of child node Ne of nodes nodes
Decision | DATASET I-m
Tree SCM hemorrhage CRT 3 8 4 7 4
considered
DATASET I-m
SCM hemorrhage CRT 2 8 4 7 4
not considered
Ne of Neighbors Di . Search Algorithm
. istance metrics . . o
to consider (Feature selection - Stopping criterion)
k-NN | DATASET I-m
SCM hemorrhage 11 Euclidean Change in Absolute Error Ratio <0.01
considered
DATASET I-m
SCM hemorrhage 2 Euclidean 5 features selected
not considered
Maximum N° of bins No
memory (Mb) for scale of selected predictors
y predictors P
Naive | DATASET I-m
Bayes SCM hemorrhage 1024 10 2
considered
DATASET I-m
SCM hemorrhage 1024 10 3
not considered

Abbreviations: MLP-ANN - Multilayer Perceptron - Artificial neural network, k-NN - k Nearest Neighbors, SCM - sternocleidomastoid muscle.
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Table 4.3.7. The top five ranked input variables based on their relative importance for utilized machine learning models.

DATASET I-m DATASET I-m
SCM origin hemorrhage considered SCM origin hemorrhage not considered

MLP DT k-NN NB MLP DT k-NN NB
1st BH Tot.Fr.NO Tot.Fr.N° BW BH UL-Hy BL-Hy Age
2nd Age UL-SCM BL-Ty UL-SCM Tot.Fr.N© Hy No Sex UL-Hy
3rd Tot.Fr.NO iHy Spine UL-Hy Hy No BH Spine Tot.Fr.NO
4th BW SCM No SCM No BH UL-Hy iHy iHy BH
5th BL-Ty BL-SCM / Age BW Tot.Fr.N° BH BW

Note: Some models included fewer than 5 variables, and the empty fields in the table are labeled with a “/” sign.

Abbreviations: BW - Body Weight, BH - Body Height, BL-Hy - bilateral greater hyoid horn fractures, BL-Ty - bilateral superior thyroid horn fractures, CL-Ty - superior thyroid
cartilage horn contralateral to the knot position, Hy NO - Total number of greater hyoid horn fractures, iTy - isolated superior thyroid horn fracture(s), IL-Hy - greater hyoid bone
horn ipsilateral to the knot position, IL-Ty - superior thyroid cartilage horn ipsilateral to the knot position, L-Hy - left greater hyoid bone horn, L-Ty - left superior thyroid cartilage
horn, R-Hy - right greater hyoid bone horn, sTy&Hy - simultaneous superior thyroid horn and greater hyoid horn fractures, Spine — Cervical spine fracture, Tot.Fr.NC - Total number
of thyrohyoid fractures, Ty N - Total number of superior thyroid horn fractures, UL-Hy - unilateral greater hyoid horn fracture, UL-Ty - unilateral superior thyroid horn fracture.
SCM NO - Total number of sternocleidomastoid muscle origin’s hemorrhages; UL-SCM - unilateral sternocleidomastoid muscle origin’s hemorrhage, BL-SCM - bilateral
sternocleidomastoid muscle origin’s hemorrhage

81



5. DISCUSSION

The focus of this research and thesis was on the analysis of the potential association of
the injuries to the neck organs, particularly the thyrohyoid complex and the cervical spine,
and their possible distribution patterns with the position of the knot in a noose that was
used in suicidal hanging cases without a long drop. The research was conducted on
retrospectively obtained autopsy data by “conventional” (standard) statistical methods but
also by using machine learning algorithms and experimentally developing several machine
learning models in an attempt to correctly classify the knot in a noose position through the
neck injury patterns. It is helpful to approach the analysis by immediately defining the main
problems to properly scrutinize the issue that this thesis considered. If these are addressed
properly, it provides a foundation and a good context for interpreting and synthesizing the
numerous reported results, divided into three distinct study segments. These problems
essentially are: the limited understanding of fracture distribution patterns of the thyrohyoid
complex and cervical spine with regards to the knot position, the variability of general
characteristics of these injuries in hangings that were observed in previous studies, the
contribution of major anthropometric characteristics (subject’s sex, age, body weight, and
body height) to the injury occurrence and thus, indirectly, their patterns, then, the
usefulness of additional autopsy findings in knot position assessment (this research
analyzed the hemorrhages at the origin of sternocleidomastoid muscles), and finally, what
also may make this thesis a significant one, usefulness of machine learning models which
could potentially better predict the knot position through the injury patterns. So, firstly, the
basic characteristics of the neck’s hard-tissue injuries in general will be discussed, as well as
the medicolegal usefulness in knot position reconstruction. Then, it will be looked at the
thyrohyoid complex and cervical spine fracture characteristics in the sample this study
analyzed, in general, but also in the context of the basic and crude statistical analyses, as
well as the machine learning analyses. By considering the analogous findings of the three
study parts and interpreting these results not only separately and independently but
simultaneously due to similar designs and performed analyses, the practical and academic
implications will be commented on, providing answers to the defined aims. The following
text will deal with the issues described, roughly respecting the order presented above.

Common pathomorphology in deaths by hanging comprises a range of local (neck) and
general autopsy findings [2-4, 9, 12, 22, 38, 54]. However, one exceptionally straightforward
set of injuries characteristic of neck strangulation is confined to the laryngohyoid, or more
precisely - the thyrohyoid complex [3, 9, 46, 52, 55, 58, 66]. In this research, the terms
laryngohyoid and thyrohyoid were considered interchangeable. As described in more detail in
the introduction section, thyroid cartilage and hyoid bone, located at the anterior neck
midline, have a pair of structures (left and right): superior horns and greater horns,
respectively, interconnected with ligaments and membranes, and surrounding soft tissue
into a biomechanical functional unit [3, 6, 34, 47]. Because detecting these injuries is simple
and is a binominal phenomenon (that is, a fracture is either present or absent), it would be
ideal to observe any fracture distribution pattern associated with distinct hanging cases.
More specifically - associated with the anatomical distribution of the suspension force a
noose applies to the neck structures: the noose can be tied around the neck to form the knot
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(i.e., the suspension point) either behind the occiput (so-called posterior or typical hanging),
on a lateral side of the head (left or right), or anteriorly, in the jaw midline (the lateral and
anterior hangings are so-called atypical hangings) The site of the noose opposing the knot
is where the greatest force is applied on suspension, and the thyrohyoid injury pattern may
reflect its position [43, 46, 51, 52, 58]. Fractures of the thyrohyoid complex may differ,
depending on the distribution of different forces applied - direct compression or indirect,
by stretching the soft tissue and remote structures of the complex or even compression
against the cervical spine column [2, 3, 50].

If the noose applies enough pressure on the neck for some time after death (for example,
more than 20 - 30 minutes), the ligature mark, a furrow, is formed that can clearly indicate
the highest suspension points and knot position [9]. However, if the ligature is removed
shortly after death (suspicious “hanging” deaths in custody, for example), if it is
unavailable, the furrow is subtle, faded, or the body is found in a severely decomposed state
(even skeletonized and detached from the loop - see Figure 5.1), the other means to assess
where the knot was (and, therefore, where the greatest pressure was applied) in the noose
would be of significant assistance to reconstruct the event, confirming or ruling out some of
the possible or presumed circumstances [25, 43, 46, 51, 52, 55-57, 67, 69]. Therefore, the
pattern of thyrohyoid and cervical spine fractures occurring at the moment of hanging or
during the short agony could be useful in determining the knot position in these
circumstances. This may also prove helpful in the event of a near-hanging and examination
of victims of other types of non-fatal strangulation. In addition to the injury of the
thyrohyoid complex, a cervical spine injury may be particularly important in the discussed
terms, as it is already recognized to be more frequent in anterior atypical hangings.

Being one of the most common suicide methods worldwide, autopsy cases of deaths by
hanging are routine in any forensic pathologist practice, and this has been a broadly
explored research topic [2, 3, 6, 14-18, 25, 38, 40-43, 51, 52, 54-58, 64-73, 99-110], from the
epidemiological to forensic and pathological aspects. Nevertheless, as Zatopkova et al.
excellently sum up the issue: “laryngohyoid fractures in hanging victims are one of the most
studied and paradoxically contradictory topics in forensic pathology” [58]. Previous attempts to
observe any fracture pattern provided extremely limited results, with statistical analyses
mainly describing the thyrohyoid fracture frequency or crudely suggesting an association
between the fracture occurrence and the knot position if any at all. Even the overall
prevalence of the fractures is surprisingly inconsistent among the studies of suicidal
hanging cases, from less than 5% to over 75% of analyzed cases [43, 46, 51, 52, 54-58, 64, 66,
68-70, 72, 73, 102, 107, 111-118]! We can unambiguously claim that if there were any
straightforward answers (patterns), we would have them by now.

Nevertheless, before we conclude that thyrohyoid and cervical spine injuries are so
heterogeneous irrespective of the ligature knot position that they should be considered
stochastic essentially and of no medicolegal significance, it would be fair to supplement the
conventional statistics and exhaust some more complex analyses (that is, machine learning
models) on larger datasets with strictly uniform methodology.
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Figure 5.1. The almost entirely skeletonized remains of a middle-aged man were found at the scene of a
suspected suicidal short drop hanging. The noose was still hanging from a fixed point, while the human
remains were on the ground in immediate vicinity. The anthropological and pathological examination
reconstructed the skeleton of the thyrohyoid complex and further revealed jagged edged “disarticulation” of
the greater horns from the body of the hyoid bone, indicating potential fractures (white arrows). Currently,
there is no mean by which it can be stated with how much certainty the injuries could correspond to the neck
constriction by the found noose regarding the position of its knot (e.g., is it a typical or atypical hanging).
From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.

So, as directly implied from the defined aims, this research primarily aimed to utilize
machine learning algorithms in an attempt to reconstruct (classify) the position of the knot
in suicidal hangings. But it also presented many descriptive and inferential statistical
analyses. And the reason for these numerous results should be clarified entirely first.
Obviously, standard, often performed, and most importantly, relatively easily
understandable and interpretable, crude and multivariable analyses can point directly to
significant associations between variables. This is useful alone and in the context of a so-
called black-box machine learning algorithm’s output, which is not explainable by common
logic (this will be referred to later). However, these descriptive and inferential statistical
analyses are a solid foundation for the appropriate overall research interpretation in the
light of very heterogenous results on data of our interest, which were previously reported
in studies [3, 43, 44, 46, 51-58, 64, 66, 69, 73, 102, 106-108, 111-114, 116-118]. Ultimately, the
eventually developed machine learning algorithms - models will be put in the appropriate
context regarding the overall prevalence and distribution of thyrohyoid and cervical spine
fractures and knot in a noose positions. Besides the fact that this would be a prerequisite to
reflect on already published findings, it will be useful for later comparison by future studies,
as the machine learning-based problem-solving approach will become a significant tool in
forensic pathology research [95, 96, 119, 120].

The reported overall prevalence of thyrohyoid complex fractures, which is of greater
hyoid bone horns (GHH) and superior horns of the thyroid cartilage (STH), is surprisingly
heterogeneous and of a wide range. This data comes from numerous, mainly single-center,
autopsy studies. Among the retrospective ones, the reported frequency of thyrohyoid
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fractures (presence of either STH or GHH fracture, or a combination) ranged from less than
1% to over 75% [51, 58]. The heterogeneity of this prevalence was observed in both older
and in relatively recently published studies. So, for example, we have observations dating
back to 1881, when Maschka [121] reported the overall fracture prevalence of 2.0% on a
sample of 153 cases, Ushakov’s reported prevalence from the year 1900 [122] of 16.7% on a
sample of 48 cases but also Reuters’s study dating back to 1901, [123] which reported a
frequency of 52.5% on a 200-subject sample. One might presume that the autopsy technique
from the first decades of forensic pathology practice as an organized and recognized
separate specialization has improved and become more standardized [2, 3, 5, 124-126].
However, the reported frequencies continued to vary in the second half of the 20t century
and the last few decades. For example, Tualpunt et al. in 2017 [127] reported a prevalence
of these fractures to be 0.8% on a sample of 244 subjects, Tugaleva et al. in 2016 [118] a
prevalence of 7.3% on a sample of 632 subjects, Duband et al. in 2005 [128] frequency of 69 %
of cases on a 29-cases sample, Uzun et al. in 2007 [100] 58.6% on a 761-subject sample, and
Azmak et al in 2006 [102], reporting a prevalence of 76.8% in 56 cases. There are even some
studies on hangings that reported only cases without any of the thyrohyoid fractures [109,
129]! Probably the largest sample retrospective autopsy study reporting thyrohyoid
complex fracture prevalence was published in 2015 by Taktak et al. comprising a total of
4,502 cases with an observed fracture prevalence of 52.3% [64].

In their article on thyrohyoid fractures in hangings, Zatopkové et al. summarized these
reports from 54 retrospective studies [58]. The same authors also found and analyzed 27
additional prospective studies on this issue. We may expect to observe more consistent or
at least only higher reported prevalences in a prospectively designed observation, with a
focused and unambiguously defined methodology for fracture inspections. However, even
in these studies, there are single-digit percentage prevalence reports, reports of no fractures
at all, and higher prevalences from c. 40-70% of analyzed cases or more [58, 73, 130-135]. So
among these, for example, Patel et al. in 2012 [132] reported no fractures in 320 hanging
cases, Hlavaty et al. in 2016 [73] 2.7% in 75 cases, Missliwetz 67.8% in 599 subjects (year
1981) [131], Zatopkova et al. 72.5% in 178 cases [58]. One’s impression can be that in
prospective studies, a considerable number of studies report a prevalence higher than 20%,
mostly ranging from about 40% to 60%.

Often, the most reliable data, in general, and so is the case in this particular issue, comes
from a meta-analysis. The meta-analysis by Wilson et al. was published very recently, and
it estimated the overall prevalence of thyrohyoid complex fractures to be 37.5% but with a
relatively wide confidence interval (95% CI 27.4% - 48.3%) [51]. It is hard to explain such a
striking heterogeneity in reported fracture prevalences in autopsy studies. Probably the
most obvious reason may be the differences in methodology - the details of the dissection
and inspection of autopsies in different institutions, the number of pathologists who
performed the examinations, the systematics of autopsy findings documentation, or the
number of analyzed cases [51, 58]. One direct explanation can also be the different approach
when it comes to differentiating between artifactual and intravital thyrohyoid fractures -
some authors considered all fractures in analyses, some excluded those without the
surrounding soft tissue hemorrhages, while in some research, this was not specified [58].
Some studies relied on postmortem imaging [112, 133, 135-137], but this did not seem to
solve the problem.
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At the Institute of Forensic Medicine in Belgrade, where the present research was
conducted, one study analyzed cervical spine injuries in short drop hangings, while other
two studies on thyrohyoid fractures in hangings were already published by Nikoli¢ et al.
[46, 52]. In the first published study with the smallest sample an overall prevalence of these
fractures reported to be about 68.0% based on the sample of 175 retrospectively analyzed
cases [46]. The second study was on a larger sample of 557 retrospectively analyzed cases
[52], where the frequency of the thyrohyoid complex fractures was reported to be about
57.3%. And in the last, third published study was on a sample of 766 retrospectively
analyzed cases [43], where the frequency of the thyrohyoid complex fractures was reported
to be about 58%. In the present research - this thesis, the most extensive retrospective study
of autopsy hanging cases was conducted at this institution, and the main sample (the study
part I) comprised a total of 1,235 subjects. Here, the thyrohyoid fractures were overall
observed in c. 60% of cases. In addition to the uniform methodology, providing many cases
would be detrimental to the analysis of such heterogeneous results. As we formed a three-
part study, with two samples derived from the largest (1,235 cases, Dataset I), it can be
appreciated that in the study parts Il and III, in the smaller subsets (Dataset I-w and Dataset
I-m, respectively), the overall frequency of thyrohyoid fractures slightly increased as the
number of cases analyzed decreased, from 60.6% to 64.1% in Dataset I-w (368 cases), and to
67.5% in Dataset I-w (126 cases), as shown in Tables 4.1.1, 4.1.2, and 4.1.3. So, with a limited
number of individuals included to analyze these injuries, a true prevalence can be easily
underestimated or overestimated. Given that this sample partially overlaps with those
comprising previous studies by Nikoli¢ et al. [43, 46, 52], it is not surprising that the
observed fracture prevalences were quite similar. Additionally, more than doubling the
number of cases from the previous study likely impacts the better actual prevalence
estimation. Actually, given that these are all retrospective analyses, it strongly points to
consistency and systematicity in autopsy technique, special neck dissection uniformity
among the personnel performing autopsies, and eventually, the autopsy reports per se. This
is not a surprise, as good autopsy practice at the Institute of Forensic Medicine in Belgrade,
its revision, and adequate supervision of it has been insisted on for many decades now (in
the year 2023, the Department of the Forensic Medicine of the University of Belgrade Faculty
of Medicine marked 100t year since its establishment) [138-140].

Why is all this of particular importance here? Well, the significant part of current
research is the form of an experiment (program - software/computer-based), as will be
referred to later in the discussion. However, that sort of experiment, in this case, relies solely
on the retrospectively obtained data. So, in terms of the quality of the obtained data, this is
essentially a retrospective study, and it will directly reflect on the results of the experimental
study part, and obviously the conventional statistical analysis, and thus directly on the
synthesized conclusions derived from all the parts of the study. Looking only at the overall
prevalence of thyrohyoid complex fractures and the described methodology in the
presented research (see section 3. Materials and Methods), and thus the systematic approach
to the autopsies of hanging cases at the Institute (the observational period was relatively
long - from 1995 to 2023), we can conclude that the obtained data was quite uniform, and
matched those observed in a single-institutional, well designed prospective autopsy studies
on the issue of thyrohyoid fractures in hangings. The frequency surpasses that of the recent
meta-analysis (i.e., of average estimates), which is expected as this average value relies on
the data from the studies that reported quite variable prevalences [51, 58]. Simply put - this
means that in the present study, significant disadvantages of retrospectively obtained data
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(e.g., failure to detect events - i.e, fractures) were overcome by a systematic, single-
institutional, uniform autopsy procedure and findings documentation, all supervised by
experienced forensic medicine specialists and that we provided adequate and large study
sample without any missing data. Detecting analyzed fractures is straightforward on
autopsy, which strongly diminishes (inter)investigator bias [58]. With a proper technique -
in situ, neck dissection, en bloc evisceration and dissection of the thyrohyoid complex, and
finally, inspection and palpation of the defleshed greater hyoid bone horns and superior
thyrohyoid cartilage horns - detecting the fractures of interest is simple and should be
invariably performed. Of note is, and it should be highlighted, that of our interest and
consideration here are only suicidal hangings with a short drop or cases in which there is
no drop at all. Because injury and death onset mechanisms, in essence, differ from those of
long drop hangings [22, 25, 45]. If not explicitly stated otherwise, the comments and
discussion refer to short-drop hangings and those essentially without a drop, and of a
suicidal manner.

Scrutinizing further the observed prevalence of thyrohyoid fractures in this research, we
can see that in the present sample and based on the 1,235 analyzed cases of suicidal hangings
(study part I), the fractures of the superior horns of the thyroid cartilage (STH) occurred
more frequently than the fractures of the hyoid bone’s greater horns (GHH), in 44.5% and
34.4% of cases, respectively. The isolated STH fractures were more common than isolated
GHH fractures, 26.2% vs. 16.1% of cases, while in 18.3% of cases in this sample, STH and
GHH fractures co-occurred (both structures were fractured in a single subject). And while
the overall thyrohyoid fracture prevalence slightly increased in study parts II and III, the
distribution of these fractures (whether they were isolated or simultaneous) was nearly
identical (compare frequencies in Tables 4.1.1, 4.2.1, and 4.3.1), and this will ease drawing
synthesized conclusions from thee study parts. Moreover, despite the overall heterogeneity
of reported fracture prevalences in previous studies, this sort of fracture distribution seems
to be mainly consistent - isolated STH fractures are, to some small extent, more common
than isolated GHH fractures, but the existence of statistical significance is in question. So,
what this research contributes to is also yet another information on fracture prevalence from
a large, uniform, complete (complete data in all included cases), and reliable sample. In
addition to thyrohyoid complex fractures, this may be particularly important for the cervical
spine fracture in hangings (Table 4.1.1), which is generally a rare finding but is known to
show some association with the knot position, particularly the anterior one [43].

The proportions of the analyzed hanging types (i.e., the knot in a noose position) can
influence the reported overall fracture prevalence, as the knot position may affect the
fracture occurrence [25, 43, 49]. In this thesis, the largest proportion of cases were so-called
typical hangings (the knot was located posteriorly in almost 60% of cases in Dataset I), the
lateral hangings were the second most common (about a third of the Dataset I sample), while
the smallest proportion of cases were with the anterior knot in a noose position (about 10%
of the Dataset I sample), as shown in Table 4.1.1. Importantly, decreasing the sample in the
present research (from study part I to study parts I and III) led to a significant decrease in
the proportion of atypical hangings - it halved from about 10.0% in the first study part to
about 5.0% of all considered cases in study parts II and III, which should be kept in mind.
Thankfully, due to the uniformity of autopsy findings records in this research, the
estimation of the knot in a noose position was identical in all derived subsets, and this
minimized the risk of a bias of this kind affecting the observed prevalences.
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Can the “conventional” statistical analysis on our sample discover any regularity in the
thyrohyoid fracture pattern and the knot in a noose position? The very beginning of the
study - defining the observations (variable coding) and outcome (knot position groups
comparison), significantly differed from previous research attempts. Earlier studies focused
on discrimination between the four-knot positions (posterior, anterior, left, and right lateral
side of the head) or even eight positions [46, 52, 58, 64], the stepwise approach was made
here through the four separate steps (in each study part). Firstly, it was assessed if any
difference in fracture patterns existed between typical hangings on one side and all atypical
hangings (anterior and lateral, combined) on the other side, also taking into account cases
in which no neck structure fractures existed. The second step was to exclude these cases
without any fractures so that the patterning difference could become more apparent: if there
are no events to be observed - no fractures exist, then the association may be hidden and
strongly and significantly underestimated. Only after this analysis between the typical and
atypical hangings, we turned to fracture pattern discrimination between anterior atypical
and lateral atypical hangings (left and right lateral combined). Ultimately, we looked for
discriminative fracture patterns between the left and right lateral hangings with the
fractures of the neck hard-tissue structures (i.e., the thyrohyoid complex and the cervical
spine). The variable coding was per this approach: instead of immediately defining on
which side a particular horn was fractured (left or right), we initially only defined if the
fractures were unilateral or bilateral, thus increasing the possibility of detecting not-so-
obvious differences in these fracture frequencies regarding the knot position, and in this
manner suggesting an underlying pattern. The composition of the study - division into
separate study parts was also constructed to systematically analyze the potential
confounding effects of the major anthropometric factors - subjects” sex and age (study part
I), body weight, and body height (study part II).

Starting from study part I (see sections 3.1 and 4.1.), which has considered the largest
sample, the crude statistical comparison of thyrohyoid complex fracture patterns between
typical and atypical hangings showed that unilateral fracture of the hyoid bone’s greater
horn and simultaneous fracture of the hyoid bone’s greater horn(s) and thyroid cartilage
superior horn(s) occur significantly more often in atypical than in typical hangings. On the
other hand, in typical hangings, it is considerably more likely to observe an isolated
fracture(s) of the thyroid cartilage’s superior horn(s) without a hyoid bone fracture. Since
we also included those who, in fact do not have any thyrohyoid fractures in this analysis
(the first step), only the substantially large sample provided insight into these statistical
significances - firstly we can see (in Table 4.1.2) that “statistically significantly more
frequent” holds true but was not an overt and straightforward observation: in atypical
hangings, in fact, only c. 30.0% of subjects (about every third case) had a unilateral GHH
fracture compared to as much as 23.3% of typical hanging (about every fourth case), while
the simultaneous fractures of GHH and STH, although significantly more common in
atypical hangings, were present only in every fifth subject with atypically positioned knot
(compared to 15.6% frequency observed in typical hangings). However, these differences
were much more appreciable in Dataset II of the first study part, where the cases without
any thyrohyoid and cervical spine fractures were excluded. Here, the same statistically
significant frequency differences in fracture patterns were present between the typical and
atypical hangings, but the ratios were different: every second hanging case with the atypical
knot position had the unilateral fracture of the hyoid bone’s greater horn, compared to about
every third subject (38.1%) with the typical knot position. Furthermore, every third atypical
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hanging case (34.1%) had the simultaneous fractures of GHH and STH, compared to every
fourth one (25.4%) with the typical knot position. On the other side, in every second typical
hanging case, there was an isolated fracture of the thyroid cartilage superior horn(s) (48.7%),
which was, at the same time, observed in every third case of the atypical hanging (33.2%)
(for counts see Table 4.1.2).

How these non-so obvious differences could remain undetected is best observed when
looking at the subset of this large sample, which was used in the second part of the study
(Dataset I-w). Here, in the 368 analyzed cases of hangings, most of the significant
associations were lost - the only statistically significant difference in thyrohyoid fracture
patterns between typical and atypical hangings was observed in the frequency of the
unilateral fracture of the hyoid bone’s greater horn - it was present in every third case of
the atypical hanging (33.3%) compared to about every fifth case of the typical hanging
(21.8%); when excluding cases without any fractures (in Dataset II-w) these proportions
were more obvious and comparable to those in Dataset II of the first study part - GHH
fractures were present in every second case with the atypical knot position, and in every
third case with the typical knot position (Dataset II-w, part II of the study, see Table 4.2.2).
In this smaller sample, only the exclusion of the cases without the fractures revealed the
significantly more frequent isolated fractures of thyroid cartilage’s superior horns in typical
hangings compared to atypical ones (49.2% vs. 35.1%, respectively). Ultimately, in the third
part of the study this thesis comprises of, there was no observable statistically significant
association of the coded variables (thyrohyoid fracture patterns) with typical or atypical
knot position (see Table 4.3.2, Datasets I-m and II-m).

It was emphasized earlier that intravital cervical spine fracture in hanging, although of
extremely low prevalence, may be very useful in predicting the position of the knot in a
noose [22, 43, 45, 128]. It is particularly associated with anterior hangings, and therefore
with atypical knot position in general [43]. According to the data from the first study part,
we can see that the cervical spine fracture was statistically very significantly associated with
atypical knot position, where it was present in 6.4% - 10.0% of cases (depending on if the
cases without fractures were considered, i.e., Datasets I or II), which was much more
frequent than in typical hangings (1.4% - 2.3% of typical hangings), as shown in Table 4.1.2.

It should be considered that anthropometric characteristics of the sample, such as
subjects’ sex and age, may strongly influence the occurrence of the thyrohyoid and cervical
spine fractures [2, 3, 9, 43, 46, 48, 51, 52, 58, 61, 67, 69, 70, 98, 100, 107, 111, 112, 128, 141-144],
so this must be considered a strong confounding factor, and requires analysis with
adjustments. The significance of sex in thyrohyoid complex fracture occurrence lies within
the sexual dimorphism observed in morphology, thyroid cartilage calcification and hyoid
bone ossification patterns [58, 60, 61, 70, 98, 143-145]. The morphology variations of
thyrohyoid complex may influence the occurrence of fractures, such as the length of the
hyoid bone, greater hyoid horns” steepness, and importantly the overall shape - so-called
V-shaped hyoid bones fracture more often than so-called U-shape hyoid bones. Incidentally
or not, these subtypes show sexual dimorphism, which makes factorial analysis adjustment
more convenient [58-60, 63, 98, 143, 145]. The calcification and ossification pattern
differences between males and females have been suggested but also some studies reported
the more frequent thyrohyoid fractures in one sex than in other (there are studies with
greater prevalence in males, and studies with greater prevalence in females) [58, 66, 68, 70,
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110, 118] but there are also studies reporting no differences in the prevalence of these
fractures [58, 107, 110, 146]. A recent meta-analysis did not reveal consistent patterns
associated with age, but also sex, suspension, and ligature knot position [51]. Whatever the
case is, it is recommended to consider subjects’ sex in a multifactorial analysis, which this
research did take into account. More importantly, a subject’s age is easily the most
significant single anthropometric factor that can affect the thyrohyoid complex and the
cervical spine fracture occurrence [58]. Aging leads to calcification, ossification, reduced
elasticity, increased brittleness and easier fracture occurrence [48, 52, 58, 130, 142, 143, 147].
Whatsoever, it is usually only after the age of 20 years that the hyoid bone’s corpus and
greater horns fusion starts to happen [48, 58, 61, 143]. The latter can affect both the
occurrence of the fracture and the misinterpretation of the unfused horn hypermobility on
autopsy (a false positive finding). The former was considered when the statistics were done,
while the latter was avoided by the uniform neck autopsy procedure and supervision by
experienced forensic pathologists in this research. The thyroid cartilage calcification begins
earlier in males, culminating by the end of 6t decade of life, while in females, calcification
occurs more slowly and is not complete [48, 58]. The thyroid cartilage morphology slightly
alters with age, which may influence the distribution of the applied force and thus,
potentially, the fracture occurrence or even fracture patterns [48, 58, 61, 143].

In the literature, the cutoff value for thyrohyoid fracture occurrence comparison was
often set at 40 years of age [51, 58]. So, we conducted the same analysis in all datasets in all
three parts of this study. In all three study parts, the thyrohyoid complex fractures occurred
significantly more frequently in subjects older than 40 years of age than in younger subjects.
When considered separately, GHH and STH fractures showed the same trend, but only in
GHH fracture occurrence there was a significant association; this consistency was observed
throughout all the study parts. The cervical spine fracture also occurred significantly more
often in subjects older than 40 years of age, but this was not observed in all datasets - most
likely due to the very low prevalence of this injury in hangings and, thus, in the analyzed
subsamples. A very important fact, as well, was that all the groups that were compared
(based on the knot position) had an equal distribution of subjects older and subjects younger
than 40 years of age.

Considering the largest sample in this research (Dataset I, study part I), when all hanging
cases were considered combined, of all the thyrohyoid and cervical spine fractures, age was
the best predictor for cervical spine fracture occurrence. Based on the ROC curve analysis,
the data from 1,235 short-drop hanging cases suggest that the cutoff age of 64.5 years or
more is a good predictor for the presence of cervical spine fracture (AUC of 0.709, 95% CI
0.639 - 0.779) with a threshold sensitivity of 65.9%, and specificity of 70.6%. The statistically
significant prediction of thyrohyoid complex fractures overall and GHH fractures alone was
also observed, but these predictions were less accurate. Age of > 36.5 years indicated the
presence of thyrohyoid fracture with a sensitivity of 85.7% and specificity of 27.0%, while
the age of > 37.5 years indicated the presence of hyoid bone’s greater horn fracture with a
sensitivity of 87.8% and specificity of 25.6% (see Figure 4.1.1). In the remaining two study
parts, the age showed a statistically significant association with overall thyrohyoid fracture
occurrence and GHH fracture occurrence if considered separately (Figures 4.2.1, and 4.3.1),
but the cutoff for the GHH fractures was slightly higher - in the early fifties. No association
was observed between the subjects' age and the occurrence of the thyroid cartilage superior
horn fractures in all study parts. These findings contradict the report of Zatopkova et al.,
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who showed a significant association between age and STH fractures but not between age
and GHH fractures [58]. However, our findings can be explained by the fact that the mean
subjects” age was over 50 years, the age when the ossification of the hyoid bone culminates,
particularly in males, who comprised three-quarters of our sample. So, this crude analysis
of age contribution on the neck solid structures fractures, as well as referenced literature
data, invariably requires the abovementioned thyrohyoid fracture patterns to be interpreted
with regards to the subject's age and adjusted for this variable.

The discussion on the subjects” age importance is even more significant if we consider
that there was a statistically significant difference in age between the compared groups,
where we discovered some fracture patterns associated with the atypical knot in a noose
position. As can be seen in Table 4.1.2, subjects in whom the knot was in an atypical position
on the neck were slightly older than subjects whose knot was in a typical (posterior) location
(a considerable confounding!). Not surprisingly, age showed a significant association with
atypical knot position on univariable logistic regression analysis. So, the multifactorial
analysis provided more exact and reliable fracture patterns (see section 4.2.1). Therefore,
after considering age and previously commented significant fracture patterns (unilateral
GHH fracture, simultaneous GHH and STH fractures, cervical spine fracture, and isolated
STH fracture), the multivariable logistic regression analysis revealed that the associated
variables with atypical knot position were only unilateral fracture of the hyoid bone’s
greater horn and the cervical spine, but both independently of subjects’ age and
independent of the presence or absence of simultaneous STH and GHH fractures, as well as
of isolated STH fractures. The odds for unilateral fracture of the hyoid bone’s greater horn
were c. 37% higher to occur in atypical, compared to typical hangings, while the odds for
the cervical spine fractures were as much as 4.3 times higher than in typical. This was
observed in Dataset I, where the cases without any fractures were included. If these cases
were excluded (Dataset II), the same pattern was observed, and not surprisingly, with a
slightly higher odds ratio. It should be noted that, however, the wide confidence interval
still suggests that these associations (i.e., patterns) are not so evident in a daily case-to-case
practice analysis. This is further well demonstrated in the second study part, with a
significantly smaller sample size - in Dataset I-w, none of the “significant” fracture patterns
was independently associated with the atypical knot position when adjusted for the
presence of other mentioned fractures. Ultimately, in the third study part, conventional
statistics did not reveal any statistically significant fracture patterns to discriminate between
typical and atypical knot positions (Tables 4.3.2, and 4.3.3).

Further step-by-step analysis on thyrohyoid and cervical spine fractures considered
possible pattern differences between anterior atypical hangings and lateral atypical
hangings. These can be most appropriately appreciated only from the first part of the study
(Dataset III) since the second study part (Dataset III-w) and the third study part (Dataset I1I-
m) each comprised less than ten anterior hanging cases included in these subsets (eight and
six cases, respectively; Tables 4.2.1, and 4.3.1). The most striking and statistically significant
discriminator was the cervical spine fracture, present in 40.7% of cases with anterior knot
position, compared to only 4.2% of cases with left or right lateral knot position (Table 4.1.2).
Additionally, isolated and unilateral fractures of the thyroid cartilage’s superior horns were
more frequent in lateral than anterior hangings, with more STH fractures occurring in lateral
hangings. When these variables were adjusted in multivariable logistic regression analysis,
the cervical spine fracture essentially remained the only but strong independent predictor
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of anterior knot position, with an odds ratio of c. 10 (95% CI 4.032 - 25.588). This association
was even apparent in the second part of the study, despite only eight anterior hanging cases
being compared to 106 lateral hanging cases (Dataset III-w).

Finally, the last and fourth step of each part of the study was a comparison of lateral
hanging cases to find associations of fracture patterns with left or right lateral knot position,
or more precisely, to discriminate between the left and the right lateral hangings. The
straightforward and interesting finding was the association of the left GHH fracture and
right STH fracture with the left lateral knot position (Table 4.1.3). The frequency occurrence
of these fractures was not with too overt differences (frequency proportions of about 40%
vs. 30% for both cases), and the odds ratios on multivariable analysis were c. 90% higher,
but this may be an important finding in the context of machine learning analysis later
considered. The unequal occurrence of the STH fracture contralateral to the knot position
was observed in the smallest sample of this research - in Dataset IV-m of the study part III
(Table 4.3.3) but this can be explained by a much smaller sample where this kind of
discrepancy between two biomechanically mirror-imaged groups could happen by chance.

It should be highlighted that before we turn to machine learning algorithms, we need to
reflect on the potential contribution of two additional major anthropometric factors not
considered above - subjects’ body weight and body height, to thyrohyoid complex fracture
occurrence and thus the fracture patterns. Both factors, body weight, and height, could
influence fracture occurrence indirectly but similarly by impacting the amount of force a
noose applies to the neck [51, 53, 58]. When a person initiates suspension, the body or, more
precisely, the neck falls freely until the ligature constricts it, tightened by the gravitational
drag of the own body (whole body or a part of it) [6]. Presuming the person is not lying
down (that is, a force is generated solely by the weight of a head), even in incomplete
hangings, the heavier subjects will thus “generate” greater compression force than the
lighter subjects for a given drop length. The body weight contribution seems
straightforward. But how can the body height influence the force constricting the neck? One
assumption can be that in taller people, the distance the neck travels before it completely
stops due to the tightened loop is longer than in shorter people. Imagine a short-drop
complete hanging context in which two subjects, one taller than the other, will invariably
have a fool suspension. Each person climbs on a chair that is on the same level and puts a
loop that is at the end of the ropes of the same length. The taller person will have a higher
starting point at the beginning of the drop than a shorter person, but both will have the same
endpoint, and the neck of the taller person will have a longer drop. On the other hand, if
two people of the same height are in the previous situation, the heavier one will obviously
generate a greater potential energy during the “free fall”. So, between these two scenarios,
which variable - weight (i.e., mass load) or height (i.e., drop length) would be of more
importance? Figure 5.2. shows an illustrative example of ten cases of two short drop hanging
scenarios. In one scenario the hanged subject body weight is constant while the drop length
is variable, while in the other scenario the drop length is constant, and the body weight is
variable. When the generated work (W) is calculated, it seems that the change in a drop from
2.5 cm to 50 cm forms a steeper increase in generated work than an increase in mass load to
the neck from 10 kg to 100 kg. In this manner, the scenario covers various body weights and
therefore diverse types of incomplete hangings - the different proportional weights are
considered to cover a range of partial suspensions (e.g., lying, kneeling, sitting, standing).
But these are all theoretical considerations. What does the evidence from research point?
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The answer to this question also explains why the entire first part of the study in this
thesis did not consider body weight, but its results can still be argued as valid. It has been
experimentally demonstrated that for a fracture of the superior horn of the thyroid cartilage,
the force generated needs to be about 30 N, which corresponds to a load of only 3 kg [99]!
This was shown by Bockholdt et al. on more than 120 thyroid cartilage samples. There were
some differences in samples from males and females - the critical force for an STH fracture
to occur was higher in men by c. 6-7 N, corresponding to the load of c. 600-700 g [99].

W =m (kg) x g (ms?) x h (m)
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Figure 5.2. The change in generated work (in Joules), depending on:

The blue line - the change in a drop length — the free fall of the person’s neck, starting from the drop of 5 cm
(Case 1), and increasing it by 5 cm until 50 cm is reached (Case 10), for a constant weight of 70 kg.

The orange line — the change in a weight load - increase in the load, starting from 10 kg (Case 1),
and increasing it by 10 kg, until 100 kg is reached (Case 10), for a constant drop length of 20 cm.
Abbreviation: § - gravitational force (a constant).

This is another reason for sex to be considered a confounding factor and included in the
multifactorial analysis, including the machine learning models. The data on hyoid bone’s
greater horn critical load for a fracture to occur could be similar, again approximately about
3 kg [147]. On fresh thyrohyoid samples, experiments, however, by Travis et al. showed that
loads needed to be several times greater than these 3 kgs - between about 14 kg and 19 kg
[148]. Leberton-Chakour et al. experimentally demonstrated that a crushing force of 30.55 +
18.189 N, or, again, a mean load of about 3 kg, is enough to cause a GHH fracture [147].
They also found some correlation between the anthropometric characteristics other than sex
and age - body weight and body height that were associated with variability of hyoid bone
shape, and thus probably and indirectly the fracture susceptibility. Although they discussed
manual strangulation and hyoid bone fracture, their comment can be significant in the
context considered here - a force necessary to generate a GHH fracture. They state the
tollowing: “The forces measured in our study showed that the grip strength of an individual, man
or woman, with no motor deficiency, is generally sufficient to generate a fracture of the hyoid bone
by direct pressure. These findings tend to show that to produce fracture, the pressure required is at
least 1.5 greater than simple, sustained grip pressure [147].” So, given that the head alone
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generates a weight load on a neck that is greater than 3 kg (about 5 kg, on average in adults)
[6, 12, 21], we can argue that in short-drop hangings, including majority of incomplete
hangings, enough force is directly applied on some point of the neck to cause a thyrohyoid
complex fracture - therefore, a position of the loop (and the knot) should define this highest
pressure point and cause a distinct fracture pattern [21, 135].

However, some studies on hanging cases suggested that fractures tend to occur almost
exclusively in those weighing more than 50 kg and that occur significantly more often in
overweight and obese subjects (based on the Body Mass Index - BMI) [57, 118, 128]. This
year, Commins et al. published an article reporting the analysis of the association between
body weight and body height with the occurrence of thyrohyoid fractures [53]. For this
issue, they considered exclusively complete hangings. This, in fact, could be quite a similar
scenario to the one theoretically considered in this discussion and shown in Figure 5.2. What
the study results suggested by logistic regression analysis was that for each increase in body
weight unit (i.e., for each additional kg of weight), the odds for the occurrence of the
thyrohyoid fractures increased by about 1.7% (OR = 1.0166) or, if the BMI was considered,
for each BMI unit increase, the odds for fracture increased by about 6.1% (OR = 1.0607) [53].
Additionally, regarding the body height contribution, the authors reported that the odds
ratio for thyrohyoid fracture to occur for each unit increase in body height was 4.64 [53]!
However, two critical things remained unclear - the authors did not state if the analysis
considered height in meters or centimeters and did not report the p-value of the logistic
regression analysis but reported only wide 95% CI, with the lower interval being <1, thus
indicating no statistically significant association (reported 95% CI was 0.29 - 73.95) [53].
Eventually, they did not perform multivariable analysis after these findings, and it remained
unknown if the variable adjustment would yield a more definitive answer.

Therefore, we conducted a study, part II here, to investigate if there are any associations
between body weight and height with the thyrohyoid complex and cervical spine fracture
occurrence, and in this manner, a contribution to the fracture patterns with regards to the
position of the knot in a noose. The information on the body weight was available only in
some hanging cases and was omitted in study part I to form a sample with complete data,
mainly in order to create a representative sample for machine learning analysis. So, as the
information on body weight for subjects autopsied at our Institute was available from the
end of the year 2014, we included all the relevant cases in the second part of the study,
comprising a total of 368 hanged subjects.

The sample of Dataset I-w was derived from Dataset I (first study part) and, therefore,
had a significant overlapping characteristic, which is a good element for results comparison,
as previously discussed. We already commented that in this second part of the study, the
age remained the good predictor of general thyrohyoid complex fracture occurrence (cutoff
value was the age of > 41.5 years), and for GHH fractures alone (cutoff value was the age of
> 52.5 years - more than 10 years higher than in the first step - note the difference in the
ratio of sensitivity and specificity on ROC curve analysis) but here the focus was on the
body weight and height. While body height did not show any significant correlation with
the number of thyrohyoid fractures in general, nor was it a predictor of their presence, the
body weight did show some statistically significant association. To be precise, body weight
was a predictor of thyroid cartilage’s superior horn fracture presence, with a determined
cutoff value of 2 72.5 kg showing sensitivity of 51.1% and specificity of 61.6% (i.e., correctly
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detecting approximately every second case). But weight did not have any association with
GHH and cervical spine fracture occurrence. The same observations were detected in our
smallest subset, in Dataset I-m of the study part III (Figure 4.3.1). Here the predictive value
was slightly different for STH fracture occurrence, with better ROC curve analysis
performance for a cutoff value of > 65.5 kg, with a sensitivity of 74.6% and a specificity of
52.5%. Although we showed some correlation between weight and STH fracture occurrence
exist, we must highlight that these correlations were essentially negligible (p = 0.139, p <
0.05 in Dataset I-w, and p = 0.197, p < 0.05 in Dataset I-m). Nevertheless, having in mind
experimental data, autopsy studies, and the results reported here, this variable should be
considered in multivariable analyses and particularly in machine learning model
development, in a tool capable of detecting non-obvious associations and regularities (see
further) [75, 76, 78, 80, 94].

The final set of variables that were considered in this research were the characteristics
and distribution of the soft-tissue hemorrhages, sometimes detected at the periosteal surface
of the sternocleidomastoid muscles (SCM) origin at the clavicles. These are considered one
of the most common autopsy findings on autopsy of deaths by hanging and could, therefore,
be a significant tool in knot position assessment [2, 3, 40, 54, 149]. While the first part of the
study was directed solely to thyrohyoid complex and cervical spine fractures, and the
second part of the study additionally considered body weight and body height, this third
and final part of the study aimed to assess the significance of these SCM muscle
hemorrhages regarding the knot in a noose position. The issue here is the fact that, in
contrast to straightforward fracture detection on autopsy, the presence of the hemorrhages
is more prone to subjective interpretation, regarding both its presence at all and the extent.
Therefore, the cases were carefully selected and included only if the presence of the
macroscopically visible hemorrhages was unambiguously established and described
directly on autopsy or by the revision of autopsy photography documentation. Although
the smallest of all the samples in the present research (main sample of 126 cases and smaller
derived subsets), presence of these hemorrhages was observed in more than 85% of cases.

Contrary to the previously analyzed variables (fractures and anthropometrics), the
distribution pattern of these hemorrhages was already relatively clearly described,
particularly in lateral hanging cases [40, 149]. Keil et al. [149] and Hejna & Zatopkova [40]
demonstrated that hemorrhages were more often present at the side of the knot (i.e., the
highest point in lateral hangings, where “the strain at the points of clavicular attachment of
sternocleidomastoid muscles” is highest [40] on suspension and due to the “forced lateroflexion
of the head.” Since these hemorrhages are present in other types of hangings, he suggested
that the additional mechanism for the appearance is “forced dorsiflexion of the head in cases of
anterior hanging” [40] - these tend to occur bilaterally often if the knot is placed anteriorly.
Our results correspond very well with these conclusions. In Dataset I-m, their presence and
distribution did not aid in crude comparison between typical and atypical hangings. But,
when the anterior knot position was compared to the lateral ones, it was demonstrated that
in the former the total number of these hemorrhages was significantly greater than in the
lateral ones (medians of 2 vs. 1) directly pointing that most often, in anterior hangings there
are bilateral SCM hemorrhages (seen in 83.3% of anterior hangings compared to 38.5% of
lateral hangings, despite the insignificant difference on a Fischer’s exact test - the sample of
anterior hanging cases was too small). Moreover, in lateral hangings, where unilateral SCM
hemorrhages occurred in every second case (53.8%) while bilateral SCM hemorrhages were
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present in about every third case (38.5%), a statistically significant association was detected
with the hemorrhage ipsilateral to the knot position (i.e., the left SCM hemorrhage in the
left lateral hangings) (Table 4.3.3). Considering this with thyrohyoid fractures, it should be
noted that in Dataset IV-m, in lateral hangings, the unilateral STH fracture contralateral to
the knot’s position was significantly more frequent in the left compared to the right lateral
hangings (Table 4.3.3). Having in mind patterns recognized in the first study part (Dataset
IV), we can argue that this is a consequence of the much smaller sample (in Dataset IV-m),
with an incidental grouping of these cases into one group (simply by chance).

Our results differed from Hejna’s & Zatopkova’s in one segment. They did not detect
any association with sex, age, and body weight regarding the SCM hemorrhage presence
[40]. In Dataset I-m, body weight was a statistically significant predictor of SCM hemorrhage
occurrence - those weighing 67.5 kg or more were most likely to have these hemorrhages.
This cutoff value had a predictive significance with a sensitivity of 62.0% and a specificity
of 66.7% (AUC 0.639, 95% CI 0.505 - 0.772, Figure 4.3.4). From this cutoff value, it may seem
that a greater mass load is required to produce SCM hemorrhages than some thyrohyoid
complex fractures, but we should remember that these were observed in at least 8 - 9 of 10
subjects, while the overall prevalence of thyrohyoid fractures was less than that (Tables
41.1,4.2.1,and 4.3.1). To be precise, in Dataset I-m of the third part of the study, body weight
was a statistically significant predictor only of STH fracture occurrence, with a determined
cutoff value of > 65.5 kg (sensitivity 74.6%, specificity 52.5%). Despite almost identical cutoff
values of the subject’s body weight for STH fracture occurrence and for the occurrence of
SCM muscle hemorrhages, the latter was c. 30% more common in the sample. Besides the
fact that this was the smallest sample in the entire research, a possible explanation could be
that SCM muscles are superficial but initially absorb a more significant portion of the kinetic
energy than structures of the thyrohyoid complex. Moreover, the elastic properties of the
skeletal muscles significantly differ from those of bone and cartilage, and this may be a
straightforward explanation. But this should be explored in further studies and adjustments
for the knot position.

Only after detailed consideration of all the characteristics of the sample we can now turn
to the final and crucial part of the thesis - do machine learning models supplement the
conventional statistical analyses in the knot in a noose prediction, and if so, do they suggest
any additional conclusions regarding the decision-making process for a forensic
pathologist, and do they point to additional significant associations between analyzed
variables? Answering these questions was the main reason for a specific three-part study
design. In each part, a uniform sample with absolutely complete data of interest (i.e., the
coded variables) was formed and was as large as possible for this single-institutional
research. The first part focused on the sole assessment of thyrohyoid complex fracture
distribution in relation to the knot in a noose position, considering only the subjects” age as
an additional input. The second part complemented the previous analysis by adding
information on each subject’s body weight and height. The third part of the study further
broadened the inputs by adding information on the presence and distribution of SCM
muscle hemorrhages at their origins in the clavicles. So, on the one side, we could evaluate
if providing the additional inputs could improve the predictive capabilities of the machine
learning models and see if, in the same datasets, analogous models where some variables
were omitted (e.g., body weight and height) preserved the same or very similar
classification performances. The only unfortunate thing was that while increasing the input,
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the total sample size decreased. However, the inclusion of only relevant cases with complete
data lies behind this fact, and it is one of the most important parts of the machine learning
models development process.

Technically, the ultimate goal is to provide an input on detected neck organ fracture
distributions, and some of additional information (sex, age, weight, height), and to expect a
multiclass output: there are four possible outcomes - knot located on a posterior, anterior,
left lateral or right lateral side of the head /neck. Regarding the design of machine learning
models, it should be highlighted that we did not approach the solution by creating multi-
class output: the four-class output of a single model, according to the four defined knot
positions (anterior, posterior, left lateral, or right lateral). We instead defined a “stepwise”
decision-making process. Since the process in the first study part represents the most
complete one, that was later replicated and “pruned” in the second and the third part of the
study, we will discuss the issue here on study part I. The stepwise decision-making process
in machine learning classification meant that initially (ML models for Datasets I and II) the
goal was to discriminate between cases of typical (knot located posteriorly) and atypical
hangings (knot located anteriorly or laterally), and then to separately try to differentiate
between anterior and lateral knot positions (Dataset III), or only between left and right
lateral knot positions (Dataset IV). In the first part of the study, except for Dataset III, this
provided a relatively large number of cases with a well-balanced distribution among the
two outcome possibilities (the knot positions, Supplement A). The Datasets I and II differed,
as already explained, in a manner that in the latter, the cases without any fractures were
eliminated: if there is no event in any classes to be observed, it may strongly underestimate
the true power of a model to correctly classify it from a set of same defined events.

Additionally, with a small number of fracture pattern characteristics detected by
“conventional” (standard) statistics in mind, it was first decided to include all coded
variables as available inputs for models’” development. This, of course, increased the
possibility of developing models that overfit the data on training [75-77]. One step in
avoiding this was the set inclusion condition - for any model to be accepted, there must not
be a statistically significant difference in ROC curves between the training and the test
sample based on the outcome-predicted probabilities for each sample. Of course, this was a
single metric, but it was an important supplement to other reported metrics of models’
performance characteristics [76]. Regarding the sample splitting into training and
independent testing divisions, it should be noted that before modeling, each dataset
engaged in machine learning analysis was divided into a portion of 70% of cases for training
the model and 30% of cases for testing the developed model. Again, to avoid the overfitting
and to enable comparison of the performance characteristics of different machine learning
algorithms, another condition was made - the training and test samples were pre-defined
and did not have any statistically significant differences in the coded variables
characteristics in-between (see Supplements for each study part). Except for the Naive Bayes
models developed in SPSS, which could not be set to use these pre-defined training and test
sample divisions (it always automatically performed random sample splitting), all other
developed ML models in all three study parts were trained and tested on the same samples
described in the Supplementary tables. As a rule, many machine learning models presume
the prevalences of different outcomes are similar (“50-50 chances”) [75-77]. In the first part
of the study, the frequency of the analyzed outcomes was similar in Datasets I, II, and 1V,
and the data did not need to be balanced. But, in Dataset III, the SMOTE algorithm was used
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to oversample the minority group (atypical hangings), while in the second part of the study,
a small number of SMOTE-generated cases of atypical hangings were added into the initial
dataset - here not only to balance out the outcome frequencies but also to increase the total
sample size slightly. As the Dataset I-m of the third study part was small, compared to the
previous parts of the study, and outcome frequencies were balanced, the SMOTE-based
oversampling was avoided - it would not be appropriate for SMOTE-generated cases to be
a majority in the test sample.

Furthermore, in addition to developing several different machine learning algorithms
(e.g., neural networks, k-nearest neighbors, decision trees), this research involved the
development of two quite similar artificial neural networks - one using MATLAB, which
automatically optimized model’s hyperparameters by genetic algorithm, and the second,
Multilayer Perceptron - Artificial Neural Network, developed in SPSS. Although
comprising a similar algorithm, the optimization by genetic algorithm theoretically leads to
better hyperparameter optimization than partially manual, more time-consuming with
fewer modeling attempts - optimization performed in SPSS [79, 80, 84, 85]. So, in addition
to analyzing different algorithms, we could compare two artificial neural networks
developed in different software solutions using different optimization methods.

Once the models were developed, their classification performance was assessed through
several metrics (for example, overall accuracy, sensitivity, specificity, positive and negative
predictive value, and ROC curve analysis) [76]. While the ROC curve analysis was
performed on the predicted outcome probabilities (for each case, a probability ranges from
0 to 1), the other classification metrics were calculated based on the predicted group (binary
outcome, e.g., typical or atypical hanging). The cutoff for this dichotomous classification
was not modified - it remained at a probability of 0.5. Therefore, we provided classification
performance based on this cutoff value, but reported the classification metric which is not
dependent on this binary outcome, too - the ROC curve analysis on predicted outcome
probabilities, making the interpretation more flexible [76].

The first part of the study had a complete four-step approach in machine learning-based
reconstruction of the knot in a noose position: in the first two steps discrimination between
typical and atypical knot positions, in third step discrimination between anterior and lateral
knot positions, and in final, fourth step a discrimination between left lateral and right lateral
knot position. In the second study part, the analogous analysis was performed only on the
tirst two steps (discrimination between the typical and atypical knot positions), while in the
third part of the study only the first step was applied, being limited with the significant
decrease in sample sizes. And, instead of considering each study part separately, it may be
clearer to “vertically” analyze machine learning models - comparing first steps in each of
the three study parts (Datasets I, I-w, and I-m), then turning to the second steps in the first
and the second part of the study (Datasets II, and II-w, respectively), and, at the end,
considering the exclusive analysis of the first part of the study - machine learning models
developed on Datasets III and IV, and discriminative power in atypical and only lateral
hanging cases, respectively. The focus should be on the models’ classification performances,
variable selections, and their importance, to extract some practical conclusions.

The first step in each study part regarding the machine learning models was to develop
- train, and then test them on a sample that also contains cases without any fractures of the
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thyrohyoid complex or the cervical spine. The high expectation was on the performance in
the first part of the study, in Dataset I, which was the largest of all (1,235 cases included),
with a well-balanced outcome frequency. Here, the overall accuracy of essentially all
developed models (ANN optimized by genetic algorithm and models developed in SPSS -
MLP-ANN, k-NN, DT, and NB) was c. 60.0%, which is about the proportion of the typical
hangings in Dataset I. What first meets the eye is that these models’ decision-making
processes may be equivalent to guessing based only on the knowledge of outcome
prevalences in the sample. However, this approach would mean that the model predicts the
same outcome (e.g., typical knot position) for all cases in training and test samples, thus
yielding an overall accuracy of 60%. However, this would lead to a “test” with a sensitivity
of 100% and a specificity of 0%! If we look at Table 4.1.4, and Table 4.1.8, we can see the
developed models did not perform this way. What differed between the models most
strikingly was the balance between the sensitivity and specificity, and other calculated
metrics. For example, in these terms, artificial neural networks did not surpass the
performance of the multivariable logistic regression analysis (Table 4.1.8), but, on the other
hand, the k-Nearest Neighbors model showed more balanced values of the test sensitivity
and specificity. In Dataset I of the first study part, almost all developed models could
generalize from training to independent test samples without evident signs of overfitting
[76]. Furthermore, even in the test sample, the ROC curve analysis had a lower 95%
confidence interval above 0.5 (indicating a significant predictor), and based on calculations
from contingency tables, the overall test performances did not have a lower 95% confidence
interval below 50%. So, in general, as a first attempt to utilize machine learning algorithms
in predicting the knot in a noose position solely by the distribution of thyrohyoid and
cervical spine fractures and subjects” age, the results of this analysis can be considered
satisfactory. Also, it should be noted that there was no statistically significant difference in
the ROC curve of GA-optimized ANN developed in MATLAB and the ROC curve of MLP-
ANN developed in SPSS on the same sample - Dataset I (Figure 4.1.3). So, we can say that
less systematic experiments on MLP-ANN development in terms of hyperparameter
settings successfully met the “standard” of systematic hyperparameter settings achieved
through genetic algorithm optimization. Another characteristic of ANN developed in
MATLAB is that the script provides output on the variables selected for the best-developed
ANN (the one reported in this research). Looking at these, we can see the GA-optimized
ANN in Dataset I achieved the reported metrics by considering only six of thirteen available
variables - inputs, including sex, age, and variables considering the number and
distribution of only GHH fractures. But remember that even on a conventional statistical
analysis, a unilateral GHH fracture was a significant discriminator between the typical and
atypical position of the knot and that this needed to be adjusted for age on multivariable
logistic regression analysis (see section 4.1.1.1)! The models developed in SPSS for
discrimination between typical and atypical hangings in Dataset I of the first study part also
highly ranked the importance of some variables recognized as significant in conventional
statistics (Table 4.1.12). For example, cervical spine fractures and the simultaneous presence
of STH and GHH fractures. The not-so-comprehensible concept of the variable importance
in ML models will be commented on later. For now, we can say that these selected variables
can suggest the models did not achieve the reported metrics simply by chance, that the
generalization to the test sample was good, and that similar performances were achieved
by different approaches (that is, different models ranked coded variables differently
regarding their importance), and some models did this despite the presence of irrelevant
data “noise” (non-associated - irrelevant variables) [75, 76, 94].
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Considering the same type of analysis in the second part of this study (analysis on
Dataset [-w) firstly and directly should be highlighted that the developed machine learning
models did not perform better if they considered subjects” body weight and height (Tables
424, and 4.2.6, and Figures 4.2.6, and 4.2.7). Two facts, however, should be additionally
clarified. First, the overall accuracy of the models was lower than in Dataset I (study part I);
the lower 95% confidence intervals of the accuracies were almost always under the
threshold of 50%, and the intervals were wide, and the lower 95% confidence intervals of
the ROC curve analyses in most developed models were below the threshold of a 0.5 on
AUC analysis - indicating a questionable overall predictive value of the developed models.
And second, this was the only segment of the present research in which a statistically
significantly different classification performance was observed between the artificial neural
network developed in MATLAB (GA-ANN) and analogous neural network developed in
SPSS (MLP-ANN) (Figure 4.2.5).

To assess the contribution of body weight (and height) for machine learning models’
improvement in classification (knot position estimation) probably, a good approach is to
develop two analogous models on the exact same dataset (including these variables in one
while omitting them in the other). This is precisely what was done in this research, rather
than directly comparing the models from different parts of the study. This also provided the
opportunity to statistically-mathematically compare classification performances (areas
under the ROC curves) of the two analogous models (one that considered weight and height
and the other that did not). So, this was used as an objective measure to detect significant
improvements or worsening of models’ classification performances. If done otherwise, the
differences in other metrics could be easily misinterpreted as an improvement. For example,
there is a better balance of sensitivity and specificity in Dataset I-w than in Dataset I (see
Tables 4.1.6, and 4.2.6).

The concept in machine learning model development for Dataset I (part I of the study)
and Dataset I-w (part II of the study) was technically identical, but by forming the Dataset
I-w, the total number of cases was decreased by more than three times (from c. 1200 to c.
380 cases). Of the included cases, a portion of them did not have any thyrohyoid or cervical
spine fractures (this may have contributed to the underestimation). Moreover, the models
that considered the body weight and body height had two more input variables, potentially
causing additional noise of irrelevant information for models to handle, all on a smaller
sample. Hence, a slight decrease in performance metrics was expected. All of this
contributed to wider confidence intervals estimates (i.e., less precise estimations).

Of the developed models, the most robust to these changes were MLP-ANNSs, the one
which considered subjects” body weight and height, as well as the analogous one for which
these two variables were omitted. These two ANNs showed the best classification
performances, without a significant difference between them, even with the ROC curve
analyses like those achieved in the first part of the study (Table 4.2.6, Figure 4.2.7). Only in
these two models did the algorithm manage to generalize the classification ability from the
training to the test sample [76], which preserved statistically significant predictive ability on
the ROC curve analysis (the lower 95% confidence intervals remained greater than 0.5, Table
4.2.6). These models had almost identical overall accuracies as the multivariable logistic
regression analysis but showed more balanced sensitivity/specificity metrics (Table 4.2.6)
Additionally, the ANN that did not consider body weight and height was developed,
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optimized by genetic algorithm, with a very similar performance metrics (there was no
statistically significant difference in area under the ROC curve analyses for predicted
outcome probabilities compared to the analogous MLP-ANN algorithm, Figure 4.2.6, and
4.2.7). This GA-optimized ANN considered only six variables when predicting the knot
position (sex, cervical spine fracture, total number of thyrohyoid fractures, isolated and
unilateral STH fractures) - the optimization eliminated many irrelevant variables. On the
one side, we see the GA-optimized ANN “canceled out” the noise of many irrelevant
information-variables by excluding them, and on the other, the analogous MLP-ANN
(SPSS) successfully handled all the input variables to provide the same classification
performances in the experiment without the body weight and body height despite the same
“noise” (Tables 4.2.4 and 4.2.6, and Figure 4.2.5). However, out of GA-optimized ANNSs,
which took into account the body weight and body height variables, the selected model (i.e.,
the best one developed) did not perform better and included 13 input variables (more than
double the analogous GA-ANN model did). Moreover, this GA-optimized ANN had a
significantly worse classification ability compared to the analogous MLP-ANN developed
in SPSS (which considered body weight), as shown in Table 4.2.4, and 4.2.6), and as can be
observed by a direct comparison of the two models” AUC ROC curves (shown in Figure
4.2.5). One explanation is that the reported model, which considered the body weight
variable, was included “by force” to demonstrate if this variable contributes to the better
performance of a model or if it only produces the “noise” of irrelevant information to the
model. The other can be that the experiment in SPSS was done on more optimal
hyperparameter settings (achieved by chance) or the software automatically handled the
numerous irrelevant variables better (which is also possible to occur by chance). Of note is
that the developed models, if considered body weight and height, most often highly ranked
their importance for prediction (Table 4.2.8), with some giving advantage to body height
compared to weight (remember the theoretical examples from Figure 5.2. - this could
explain the phenomenon). On the other hand, the ML models in the second study part, if
not provided with information on subjects” body weight and height, used primarily
variables shown to be statistically significant for knot position discrimination in the
previous (the first) part of the study. This was observed in Dataset I-w even though most of
these significant associations were not present in the same dataset on the “conventional”
statistical analysis - it is hard to believe that these have been selected stochastically.

How the data on body weight (and height) may be irrelevant in knot position assessment
probably best shows the development of decision tree models. Aside from their low overall
performance (Table 4.2.6) we can clearly see the overt discrepancy between the metrics
achieved in the training compared to the test sample. Particularly for the model, which
considered body weight and body height. The model, forced to use the information on
subjects” body weight as a relevant, directly associated body weights of the subjects in the
training group with the knot’s positions. Once given the new, independent test sample, this
caused a drastic deterioration of the classification performance - a very poor generalization
capability. In fact, this was the only model in which there was a statistically significant
difference in predictive capability in the training sample compared to the test sample. The
other machine learning models developed on Dataset I-w showed satisfactory
generalization [76] to the test sample but overall had lower accuracies and wide confidence
intervals of the calculated accuracy and AUCs (Table 4.2.6).
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So, it seems that taking into account subjects’ body weight and height does not contribute
to better prediction of the knot in a noose position, although in the same sample of this
research, we saw some crude predictive significance of body weight to the occurrence of
STH fractures. On the other hand, it was demonstrated that the presence and distribution
of the SCM muscle origin’s hemorrhages can assist in knot position estimation to some
extent. So, it remains to be seen if the SCM muscle hemorrhages can improve the machine
learning-based knot position classification performance. Following the same methodology
for model development that was applied in the second part of the study (on Dataset I-w),
the models were developed on the third part of the study, on Dataset I-m. These models
were provided with additional variables - information on the SCM muscle hemorrhages but
were at the same time developed on a yet smaller sample - of only 126 cases (see
Supplementary Table C.1). Here, again, the most robust showed to be artificial neural
networks. There was no statistically significant difference between the AUCs of the GA-
optimized ANNs developed in MATLAB, and analogous MLP-ANNSs developed in SPSS.
However, we can see in Table 4.3.4. that the GA-optimization resulted in the highest overall
accuracies (lower 95% CI was just below 50%), and more importantly, ROC analysis showed
that these statistically were a significant predictor in knot position assessment (lower 95%
CIs above the value of 0.5). Moreover, as was the case with MLP-ANN (SPSSS), the models
generalized the classification ability from the training to test sample well. The GA-ANN
selected a modest number of important variables (eight), amongst which were the body
height, distribution and number of STH fractures, presence of simultaneous STH and GHH
fractures, but also the distribution and number of SCM muscle hemorrhages. The analogous
GA-ANN algorithm - model without information on SCM muscles, achieved very similar
results by using only six variables, including age, body weight, and variables both on STH
and on GHH fractures. It should be again noted that the study design with development of
two analogous models of each ML algorithm (i.e.,, one considering SCM muscle
hemorrhages, and other that did not have this input) provides better understanding of the
variable’s significance. If we would compare only model performances achieved in the first
study part (Dataset I) with the performances from the third study part (Dataset I-m), we
would overestimate the significance of additional variables since the overall accuracy of
artificial neural networks in Dataset I-m were over 65% (vs. c. 60% in Dataset I). This might
be a consequence of a much smaller sample with a grouping of some “easier” cases, but also,
there might be some minor contribution of additional variables [75-77]. Although, we failed
to demonstrate that this contribution is crucial, by developing analogous models in the same
dataset with statistically same predictive capabilities. Moreover, the variables on SCM
muscle hemorrhages were not amongst the top five variables ranked by importance in the
reported MLP-ANN (Table 4.3.6). Of the models other than neural networks in the third
part of the study, Naive Bayes provided better results than others (k-NN and DT), but this
should be interpreted with caution. As already explained, the settings in SPSS prevented
the NB algorithm from constantly using manually predefined sample division into the
training and test groups. The model automatically formed new groups each time in a
defined proportion of approximately 70% to 30%.

So, considering the first step in machine learning algorithms development in all three
study parts, the impression is that the artificial neural networks showed the best robustness
but also indicated the classification performance did not significantly improve if additional
anthropometrics (weight and height) and some autopsy finding other than presence and
distribution of the neck fractures (i.e., SCM muscle hemorrhages) were considered. The next
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step was to see if the inclusion of cases without any lesions to detect - the fractures strongly
impacted the predictive capabilities of the models. So, the models developed on Dataset II
(study part I) and Dataset II-w (study part II) comprised only cases with at least one
thyrohyoid or cervical spine fracture. By doing this, the overall accuracy of all models in
Dataset I (part I) increased minimally - by a couple of percent (all being around 62.0.% of
overall accuracy). However, the sensitivity and specificity balance improved, which was
particularly appreciable in both artificial neural networks (see Tables 4.1.5, and 4.1.8). In
Dataset I, a similar trend was observed (Tables 4.2.4, and 4.2.7). Here, it was also observed
that some models performed slightly better on a test than on the training sample, which
should be cautiously considered. But let’s remember the condition of the methodology was
to include the models in which there was no statistically significant difference between the
area under the ROC curve analysis in training compared to the test sample. What is more
important when looking at Dataset II-w (part II) is that the models that considered
information on subjects’” body weight and body height did not perform better than the
analogous model-algorithms without information on this variable. Thus, further indicating
their low importance in knot position assessment by machine learning. Some algorithms (k-
NN) developed a model (with the weight and height considered) with a slightly better
overall accuracy than the analogous model without these variables (still, this was a
statistically insignificant difference) but, as shown in Table 4.2.8, we can see that these
variables were not considered to be among the top five most important of all the used.

While we can say that in the first two steps (discrimination between typical and atypical
hangings), the machine learning models” prediction was modest, at most, the ability to
correctly classify the knot position was much better in attempts to discriminate between
anterior and lateral knot position (Dataset III), as well as discriminating between left and
right knot position in a separate analysis of lateral hangings (Dataset IV), that was
particularly good (first part of the study). The overall accuracies for discrimination between
anterior and lateral hangings substantially increased to about 85.0% of correctly classified
cases, which was also possible to achieve through multivariable logistic regression analysis.
Given the imbalance in the sample Dataset III, the high accuracy of the developed models
can, to some extent, be attributed to this limitation of the sample. However, in Dataset IV,
with equal distribution of left lateral and right lateral hangings and with a low accuracy of
the logistic regression model, a substantial result is the development of models with overall
accuracies over 90.0% (Table 4.1.12). With no overt evidence of models’ overfitting [76, 77],
with good generalization from the training to test sample, we can consider these findings
promising. But, having in mind a vast amount of information presented, the usefulness of
metrics” characteristics alone and in combination with conventional statistics will be further
discussed, pointing to some implications for practice and for future research.

There are two aspects on which the summary of the presented research should reflect -
the practical implications and the additional academic significance this thesis provides. The
application of these results directly in current practice is limited from the professional,
medicolegal perspective. In cases where an expert opinion is not possible to confirm a single
scenario (e.g., due to low test sensitivity), but to “only” exclude or significantly lower the
probability of one of four possible events can be decisive. For example, an opinion that a
thyrohyoid and cervical spine injury pattern in a body found hanged with an anteriorly
placed knot in the noose, without evident ligature mark, is very unlikely to be a consequence
of this hanging event (potentially a concealed homicide by neck strangulation, with later
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simulation hanging of a dead body) can be supported by a highly specific test (that is, to
exclude a single distinct scenario). The essential problem with machine learning algorithms
is the black box concept - the inability to comprehend their decision-making process and
underlying “rules” to make a same decision by a common sense, and therefore, these models
can be considered untrustworthy [76, 77, 87, 90, 92, 93, 119]. Particularly as the case in our
study is, with artificial neural networks, some k-NNs or NBs showing the best performances
overall and /the first two) especially in lateral hanging analysis. And with a lack of
consistent and broader evidence - with good reason. The black boxes, lacking
argumentation comprehensible by forensic experts, not only limit the “courtroom”
usefulness of ML models but also do not explain per se the decision-making process that can
point to currently undefined biomechanics of thyrohyoid fracture occurrence in hangings
[119, 120]. On the other hand, developing a decision tree model with a very high accuracy
would be quite a useful in these terms, as this model provides understandable, step-by-step
instructions on making decisions with a defined event certainty through the concept if-then.
Unfortunately, this was not achieved in the present study.

For now, we should probably interpret the characteristics of the developed models only
alongside the detected significant associations of the knot in a noose position with defined
variables. The variables we used and coded for these analyses are easily and directly
observable by a forensic pathologist performing an autopsy, and on-the-spot decision-
making based on the thyrohyoid complex and cervical spine fractures pattern would be
instrumental in directing the further body examination and investigation. Therefore, we
could point out the key elements to further investigate alongside crude and multivariable
analysis of fracture patterns (descriptives and logistic regression) and the knowledge about
the relative importance of coded variables for machine learning algorithms (Tables 4.1.12,
428, and 4.3.7). Finally, this can indirectly point to the biomechanics underlying the
occurrence of neck fractures in hangings and the distribution of the force a noose applies to
the neck. These facts are the most important findings of the present study.

The research presented in this thesis provides several comprehensible answers for
forensic pathology research on the long-standing problem of thyrohyoid complex injury in
hangings:

¢ Until now, researchers who tried to figure out the thyrohyoid complex fracture
patterns often designed the studies by analyzing variables that were expected to directly
discriminate between the four or even eight-knot positions in a single step - by
immediately defining on which side a particular horn was fractured (left or right).
Instead, here it is demonstrated that the distribution pattern can be analyzed by
combining biomechanically similar scenarios (left and right hangings are biomechanical
mirror images - the same outcome). Avoiding the use of two sides (left/right -
biomechanically “mirror-images”) and defining if the fractures were unilateral or
bilateral made some insight into fracture patterns possible to observe on a large sample.

e The single most significant and directly observable finding on autopsy, about five
times more likely to occur in the atypical than in the typical hangings, was the fracture
of the cervical spine. It was followed by the unilateral fracture of the hyoid bone’s greater
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horn, which was about 1.4 - 1.7 times more likely to occur if the knot was placed atypically.
Both findings were valid irrespective of the subject’s age and independent of the presence
or absence of the thyroid cartilage’s superior horns (see sections 4.1.1.1 and 4.1.1.2). With
less certainty of true independent association with an atypical knot, the position was also
the simultaneous fractures of the hyoid bone’s greater horns and thyroid cartilage’s superior
horns. On the other hand, a similar association with the typical knot position was the
presence of isolated fractures of the thyroid cartilage’s superior horn (while the hyoid bone
remains uninjured). Still, adjustments for the subject’s age and the presence of other injuries
failed to confirm the last two results unambiguously.

e The cervical spine fracture was useful not only in discriminating between atypical
and typical knot positions but also between anterior and lateral knot positions. It was at
least ten times more likely to occur if the knot was placed anteriorly compared to left or
right lateral knot positions and independently of the thyrohyoid fractures (see section
4.1.1.3). The isolated fractures of the thyroid cartilage’s superior horns (without other neck
hard structure injury), while rare in anterior hangings, were significantly more common in
typical hangings and in lateral hangings.

e If the knot was located at the lateral sides, the fractures of the thyroid cartilage’s
superior horns tended to be unilateral (but this is not always the case!) and were almost two
times (1.8) more likely to occur on the side opposite to the knot position (contralaterally).
Irrespective of this, in lateral hangings, the fractures of the hyoid bone’s greater horns,
despite not occurring only unilaterally, were almost two times (1.9) more likely to happen
at the side of the knot (ipsilaterally; see section 4.1.1.4).

e Of the other analyzed autopsy findings, the discrimination between left and right
lateral knot position could be improved by considering the distribution of the hemorrhages
at the periosteum of the clavicles - the origins of sternocleidomastoid muscles, which were
more likely to occur on the side of the knot (left or right).

e There are several implications for the hanging biomechanics. One on a cervical spine
mechanism fracture corresponds to the previous suggestions - it is most likely caused by a
hyperextension occurring when the knot is placed anteriorly [6, 22, 40, 43, 45, 58]. Findings
can implicate the biomechanics of thyrohyoid complex fractures in lateral hangings - the
fractures of the superior horns of thyroid cartilage occur most probably due to direct
pressure of the ligature (compressive fractures) either on the cartilage or on the thyrohyoid
membrane. At the same time, greater hyoid bone’s horn fractures, if not directly compressed
by the ligature loop, could occur either indirectly - due to the traction of adjacent soft tissue
(traction fractures) or by compression against the cervical portion of the spine column [26,
49, 50, 59, 98, 142, 147]. Postmortem imaging studies could also corroborate the latter claim
[49, 50, 135]. The direct compressive fractures of the thyroid cartilage would also explain
their low occurrence in anterior hangings (characteristically without a significant direct
compression by the ligature) [43], as will their significantly more frequent and isolated
occurrence in typical hangings observed in this research.

e The major anthropometric factors can contribute to thyrohyoid complex and cervical
spine fracture occurrence, but their clear significance in reconstructing the knot position was
not observed. Regarding age - the most significant of three considered anthropometrics, it
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was already well-demonstrated that subjects older than 40 years were more prone to
these fractures. The present research adds to this by demonstrating that age significantly
impacted only the occurrence of hyoid bone’s greater horns fractures (more likely after
the age of about 37 - by approaching the forties) and cervical spine fractures (more likely
after the age of about 65 years). The body weight was associated only with the fractures
of the thyroid cartilage’s superior horns (more likely in persons heavier than 65 - 72 kg)
and with the appearance of sternocleidomastoid muscle hemorrhages at their origin -
the periosteum of the collarbones (more likely in persons heavier than about 67 kg).

e The present study also demonstrated that it is possible to develop machine
learning models for classification purposes of the knot in a noose position that are
capable of generalization from training to test samples. This was achieved in genetic
algorithm-optimized artificial neural networks developed in MATLAB, as well as in
artificial neural networks and several other algorithms in SPSS. The ANN was probably
the most robust of all developed models, with some successful results also observed in,
for example, k-Nearest Neighbors models. Although the overall accuracy of some
classification attempts was relatively low or modest (discrimination between typical and
atypical hangings) and comparable to logistic regression, very high accuracy for some
discriminations was achieved, especially for the knot side estimation in the lateral
hangings (discrimination between left lateral and right lateral knot position). Even
though far from a solution for a ‘witness” or ‘expert’ opinion in a courtroom, some
probable biomechanics explanations for thyrohyoid fracture patterns occurrence are
suggested. Firstly, it was directly demonstrated that information on the subjects” body
weight and body height did not improve models’ classification performances, despite
presumed theoretical explanations for their significance and despite presented findings
on the crude associations with fracture occurrence. Additionally, the information on the
presence and distribution of SCM muscle-origin hemorrhages did not improve
classification performance for discrimination between typical and atypical hangings.
However, with further analysis and discussed biomechanics in lateral hangings in mind,
this must be explored further. Most developed models either selected or ranked highly
important coded variables, which were significant discriminators in standard statistical
analyses. And the conclusions based on the conventional statistics are in fact further
corroborated by the variables” relative importance in many MLA models analyzed
herein. Given that the aims were to assess the predictive usefulness of machine learning
models in a problem previously unexplored by this method, which was not possible to
explain by conventional descriptive analyses, the present study provided useful and
even promising results.

To the best of the author’s knowledge, this is the first attempt to determine the
thyrohyoid and cervical spine fracture patterns in hangings concerning the position of the
ligature’s knot using machine learning algorithms. Considering this, the information about
the achieved hyperparameter MLA settings for these distinct datasets and variable coding
that showed some valuable results may prove helpful in further studies of this specific
problem. Particularly with conventional statistical software solutions now capable of
machine learning modeling, with graphic user interfaces becoming relatively easy to
operate on by less experienced users (but preferably not completely lay), that forensic
pathologists are, with appropriate supervision. Ultimately, the in-detail report on
methodology (e.g., variable coding), sample characteristics (basic descriptives and
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inferential statistics), and developed machine learning algorithm models characteristics
(e.g., hyperparameter settings) ensure study transparency, accuracy, and reproducibility,
which is a prerequisite for Artificial Intelligence-based research.

At the very end, the study limitations should be discussed. Data on which the machine
learning experiments and other analyses were performed were obtained retrospectively.
The quality of the data source defines the quality of the experiment. Fortunately, the
systematic approach at the Institute provided a complete and uniform source. Information
on subjects’” body weight, height, and particularly hemorrhages of the sternocleidomastoid
muscles was available for a small portion of the sample, which probably impacted the
models’ classification performances. The priority was to give an advantage to uniform and
complete data sets over many missing inputs. Finally, additional data could be significant
and lead to better model development. But the exact circumstances data are often
unavailable and non-systematically obtainable (e.g., point of suspension and completeness
of hanging, a drop length, ligature diameter, and softness/hardness - the material) it may
further improve machine learning models’ performances and knot in a noose position
assessment. On the other hand, some recent reports suggest that, for example, a ligature
diameter did not impact thyrohyoid fracture occurrence. An additional increase in sample
size without missing significant data probably requires multicenter studies, but
representative samples could be obtained with broadly applied standards in autopsy
practice. These collaborations should be highly encouraged. The future collaboration of
forensic experts and engineers in machine learning may prove very useful in academic
research and general practice.

5.1. Study implications and perspective

The present study was the first attempt to utilize machine learning algorithms to
reconstruct the knot in a noose position by analyzing the distribution and pattern of the
thyrohyoid complex and cervical spine fractures. Before this is considered, it should be
noted that the initial step in forming machine learning models - the data acquisition and
data set forming was done distinctly - the variables coding the presence and distribution of
thyrohyoid complex fractures were designed to specify the biomechanical characteristic
(e.g., the general relation of the fracture to the knot position), and not to only directly specify
the exact side of the knot - the knot is not only located on the left or right side, but it is, for
example an unilateral fracture in general or it is a fracture at the same - ipsilateral side to
the knot in lateral hangings. By this variable coding, not only was the development of
several valid supervised machine learning models possible, but some crude significant
patterns of the fractures and knot positions were also revealed, and some previous
observations were confirmed.

The developed machine learning models are, nevertheless, of limited to no direct

applicability in routine practice - either the accuracies were modest, or the algorithm and
model that performed the best in classification do not provide an understandable decision-
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making process (e.g., artificial neural networks) - these are the black boxes.
So, further attempts could be made to develop highly accurate, comprehensible models,
such as decision trees, with potentially sound step-by-step decisions for forensic
pathologists. The potential variables that could be of limited use or create the “noise” are
also pointed out here, including some major anthropometric factors.

Apart from this, how the present research adds in the current form should be considered.
When providing expert opinion on some topic - forensic expertise claims cannot always be
made on a discrete particular level of probability, and sometimes it is even based on a case-
based anecdotal experience. Providing objective measures of certainty is welcome in
contrast to such a biased approach. The present research can also be a proof-of-concept for
this sort of reasoning in modern forensic expertise of various issues in forensic medicine
and pathology. The applicability and potential benefits of artificial intelligence-based and
assisted methods should invariably be further explored, including the topic considered in
this research. If it fails to prove useful, it could be the ultimate sign that one is heading
through a dead-end street.
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6.

|

II

CONCLUSIONS

Based on the analysis of the systematically obtained data on 1,235 suicidal hangings with
a short drop or without a drop, the overall frequency of thyrohyoid fractures was
estimated to be 60.6%, with fractures of the superior horns of the thyrohyoid complex
being more frequent than the fractures of the greater horns of the hyoid bone - 44.5%
and 34.4% of cases, respectively. In the same sample, cervical spine fracture was
observed in 3.6% of cases. The sample comprised 57.2% hangings with a typical
(posterior) knot position, 33.4% with lateral knot positions (left and right positions
almost identical in frequency), and 9.4% of cases with anteriorly placed knots.

On a conventional analysis, subjects” age significantly impacted only the occurrence
of hyoid bone’s greater horns fractures, which were more likely after the age of about 38
years, and cervical spine fractures, which were more likely after the age of about 65
years. It is an essential contributor to thyrohyoid fracture susceptibility.

By analyzing the association of the coded variables and knot in a noose position, the
following significant associations were identified: for discrimination between atypical
(anterior and lateral) and typical (posterior) hangings, significant were cervical spine
fracture, unilateral hyoid horn fracture, simultaneous thyroid and hyoid horns fractures,
all with higher odds to occur in atypical hangings but of course not exclusive to them.
Of those, only the cervical spine and unilateral hyoid horn fractures indicated atypical
knot position independently of other fractures and the subject’s age. The independent
association of other mentioned variables was less clear. In typical hangings, on the other
side, isolated thyroid horn fractures were more likely to occur than in atypical.

Finally, in lateral hangings, the hyoid and thyroid horn fractures occurred with
higher odds on the ipsilateral and contralateral sides to the knot position, respectively.

It is possible to develop machine learning models capable of classification of the knot in
a noose position in suicidal hangings based on the thyrohyoid complex and cervical
spine fractures.

In the first part of the study, this was achieved by considering only fracture presence,
the subject’s sex, and age. All the developed models (GA-optimized ANN, MLP-ANN,
k-NN, DT, NB) could adequately generalize from training to test samples. The genetic
algorithm-based ANN hyperparameter optimization in MATLAB did not result in a
significantly better model than partially manual adjustment experiments performed in
SPSS for MLP-ANN, based on the Receiver Operating Characteristic curve analysis.

The discrimination between typical and atypical hangings was modest, with overall
accuracies of about 60.0%, and this performance improved only slightly (to about 62%)
if the cases without any fractures were excluded. However, the overall classification
accuracies improved significantly in discriminating between anterior and lateral atypical
hangings, and then particularly between left and right lateral hangings. In the latter case,
the ANN and k-NN achieved accuracies higher than 90%, with areas under the receiver
operating characteristic curve in the test sample of 0.98 and 0.97, respectively. Most of
the developed models highly ranked the importance of variables observed to be
significant for discrimination by the conventional (standard) statistical methods.

In addition to the input on fractures, age should be invariably considered.
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III The analogous machine learning algorithm models developed on the same smaller
dataset of the study part II, one with additional inputs on subjects” body weight (and
body height) and one without them, did not statistically significantly differ in the
classification performance, based on the ROC curve comparison, in discriminating
between typical and atypical hangings. This holds true irrespective of considering cases
without any thyrohyoid or cervical spine fracture.

The study's results imply that considering the body weight and height does not
significantly improve machine learning classification between typical and atypical knot
positions - it is possible to develop valid models of similar classification capabilities only
through the fracture distribution and subject’s age. Indirectly, this suggests that body
weight and height are not of vast importance in reconstructing the knot position through
thyrohyoid fracture patterns.

In fact, the decision tree algorithm overfitted the model if forced to consider body
weight. Moreover, most of the developed models highly ranked the importance of
classifying variables that were detected to be significant by conventional (standard)
statistical methods in the first study part, even though most of these crude associations
were not possible to detect in the sample of the second part of the study.

However, body weight was significantly associated with the superior horns of the
thyroid cartilage fracture occurrence on a conventional statistical analysis: these were
more likely to occur in persons heavier than 65 - 72 kg. This could be a rationale for
including the variable in more complex models (on a larger sample with more inputs).

IV The analogous machine learning algorithm models developed on the same smaller
dataset of the study part III, one with additional inputs on the presence and distribution
of the periosteal hemorrhages at the sternocleidomastoid muscle origin at the clavicles
and one without them, did not statistically significantly differ in their classification
performance based on the ROC curve comparison, in discriminating between typical
and atypical hangings (considering cases with fractures and without fractures, and with
and without the muscle hemorrhages).

The study's results imply that considering the sternocleidomastoid muscle
hemorrhages does not improve discrimination between typical and atypical knot
positions. Indirectly, it suggests this input is not crucial in differentiating typical from
atypical knot positions through thyrohyoid fracture patterns. However, given the
significant pattern in hemorrhage distribution in lateral hangings - which were more
likely to occur on the side of the knot, these should be considered in a more complex
model to discriminate between left and right lateral hangings and maybe even between
anterior and lateral hangings.

Again, most of the developed models highly ranked the importance of classifying
variables that were detected to be significant by conventional (standard) statistical
methods in the former study parts, even though most of these crude associations were
not possible to detect in the sample of the second part of the study.

Of potentially significant additional associations between the input variables, body
weight was significantly associated with the appearance of sternocleidomastoid muscle
hemorrhages at their origin — the periosteum of the clavicles, which were more frequent
in persons heavier than about 67 kg.
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SUPPLEMENTS
Supplement A - Part I of the study

Supplementary Table A.1. Training and test groups in Dataset I: the coded variables characteristics
comparison.

Characteristics Total Training Test p-
(N=1235) (N=86570%) (N=370,30%) ovalue
o ‘Male 937 (759 %) 654 (756%) 283 (765 %) - 005
Female 298 (241%) 211 (244 %) 87 (23.5%) '
Age (years) | 542+17.9 53.8+17.6 55.3+18.5 >0.05
THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS
| Yes 369 (299 %) 262303 %) 107 (29.0 %)
Unilateral STH fracture | 866 (70.1 %) 603 (69.7 %) 263 (71.0 %) > 0.05
. Yes 181 (147 %) 129 (149 %) 52 (14.1 %)
Bilateral STH fracture 1\, 1054 (853 %) 736 (851 %) 318 (85.9 %) > 0.05
Total N of STH fractures (0 - 2) ‘ 0(0-2) 0(0-2) 0(0-2) > 0.05
. Yes 339 (274 %) 241 (279%) 98 (265 %)
Unilateral GHH fracture | 896 (72.6 %) 624 (721%) 272 (735 %) > 0.05
. Yes 86 (7.0 %) 59 (6.8 %) 27 (7.3 %)
Bilateral GHH fracture | 1149 (93.0 %) 806 (932 %) 343 (92.7 %) > 0.05
Total N of GHH fractures (0-2) | 0(0-2) 00-2) 0(0-2) >0.05
Total N of TyHy fractures (0 - 4) 1 1(0-4) 1(0-4) 1(0-4) >0.05
Yes 324 (262%)  225(260%) 99 (26.8%)
Isolated STH fracture(s) | i 911 (738%) 640 (740%) 271 (73.2%) > 0.05
Yes 199 (161%) 134 (155%( 65 (17.6%)
Isolated GHH fracture(s) | 1036 (83.9%) 731 (845%) 305 (82.4%) > 0.05
Simultaneous STHand | Yes 226 (183%) 166 (192%) 60 (16.2%) 005
GHH fractures No 1,009 81.7%) 699 (80.8%) 310 (83.8%) '
S Yes 4(36%  32(3.7%) 12 (3.2 %)
Cervical Spine fracture | 1,191 (964 %) 833 (963 %) 358 (96.8 %) > 0.05
KNOT POSITION
Kot position - Hanging | 'YPIaL 707 (572%) 497 (575%) 210 (568 %) oo
type Atypical 558 (428 %) 368 (425%) 160 (43.2 %) '

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard
deviation or median and range. For comparison of categorical data, the x? test was performed, while
the Student’s t-test for two independent samples or Mann-Whitney U test were performed for
numerical data.

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TyHy -
Thyrohyoid.

Adopted from: Lekovi¢ et al. [62]



Supplementary Table A.2. Training and Test groups in Dataset II: the coded variables characteristics

comparison.
Characteristics Total Training Test p-
(N=773)  (N=540,69.9 %) (N=233,30.1%) value
M 1 00 . 00 . 00
Sox Male 600 (77.6%) 419 (77.6% 181 (77.7%) . 0.05
| Female 173 (22.4%) 121 (22.4%) 52 (22.3%)
Age (years) \ 56.1£16.9 55.5+16.9 57.3 +17.0 >0.05
THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS
. Yes 369 (47.7%) 257 (47.6%) 112 (48.1%)
Unilateral STH fracture | g 404 (52.3%) 283 (52.4%) 121 (51.9%) > 0.05
Yes % % %
Bilateral STH fracture 181 (23.4%) 124 (23.0%) 57 (24.5%) . 0.05
No 592 (76.6%) 416 (77.0%) 176 (75.1%)
Total N of STH fractures (0 - 2) ‘ 1(0-2) 1(0-2) 1(0-2) >0.05
. Yes 339 (43.9%) 233 (43.1%) 106 (45.5%)
Unilateral GHH fracture | 434 (56.1%) 307 (56.9%) 127 (54.5%) > 0.05
. Yes 86 (11.1%) 59 (10.9%) 27 (11.6%)
Bilateral GHH fracture | . 687 (88.9%) 481 (89.1%) 206 (88.4%) > 0.05
Total N of GHH fractures (0 - 2) ‘ 1(0-2) 1(0-2) 1(0-2) >0.05
Total N of TyHy fractures (0 - 4) 1(0-4) 1(0-4) 1(0-4) >0.05
Yes 324 (41.9%) 233 (43.1%) 91 (39.1%)
Isolated STH fracture(s) | 449 (58.1%) 307 (56.9%) 142 (60.9%) >0.05
Yes 199 (25.7%) 144 (26.7%) 55 (23.6%)
Isolated GHH fracture(s) | i 574 (743%) 396 (73.3%) 178 (76.4%) >0.05
Simultaneous STH and | Yes 226 (29.2%) 148 (27.4%) 78 (33.5%) 5005
GHH fractures No 547 (70.8%) 392 (72.6%) 155 (66.5%) '
. : Yes 44 (5.7%) 28 (5.2%) 16 (6.9%)
Cervical Spine fracture | g 729 (94.3%) 512 (94.8%) 217 (93.1%) > 0.05
KNOT POSITION
Knot position — Hanging | TyPical 433 (56.0%) 298 (55.2%) 135 (57.9%) 008
type Atypical 340 (44.0%) 242 (44.8%) 98 (42.1%)

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard
deviation or median and range. For comparison of categorical data, the y? test was performed, while
the Student’s t-test for two independent samples or Mann-Whitney U test were performed for

numerical data.

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TyHy -

Thyrohyoid.

Adopted from: Lekovi¢ et al. [62]



Supplementary Table A.3. Training and Test groups in Dataset III: the coded variables

characteristics comparison.

Characteristics Total Training Test
(N=340) (N=238,70%) (N=102,30%) p-value
o Male 271 (79.7%) 193 (81.1%) 78 (76.5%) 005
Female 69 (20.3%) 45 (18.9%) 24 (23.5%) '
Age (years) | 58.00 (16 - 94)  58.5 (19 - 94) 56.0 (16 - 86) >0.05
THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS
: Yes 156 (45.9%) 108 (45.4%) 48 (47.1%)
Unilateral STH fracture No 184 (54.1%) 130 (54.6%) 54 (52,9%) >0.05
. Yes 73 (21.5%) 48 (20.2%) 25 (24.5%)
Bilateral STH fracture No 267 (785%) 190 (79.8%) 77 (75.7%) > 0.05
Total N of STH fractures (0 - 2) ‘ 1(0-2) 1(0-2) 1(0-2) >0.05
) Yes 174 (512%) 125 (52.5%) 49 (48.0%)
Unilateral GHH fracture | 166 (48.8%) 113 (47.5%) 53 (52.0%) >0.05
. Yes 33 (9.7%) 22 (9.2%) 11 (10.8%)
Bilateral GHH fracture No 307 (903%) 216 (90.8%) 91 (89.2%) > 0.05
Total N of GHH fractures (0 - 2) ‘ 1(0-2) 1(0-2) 1(0-2) >0.05
Total N of TyHy fractures (0 - 4) ‘ 1(0-4) 1(0-4) 2(0-4) >0.05
Yes 113 (332%) 78 (32.8%) 35 (34-3%)
Isolated STH fracture(s) No 227 (66.8%) 160 (67.2%) 67 (65.7%) >0.05
Yes 91 (26.8%) 69 (29.0%) 22 (21.6%)
Isolated GHH fracture(s) No 249 (732%) 169 (71.0%) 80 (78.4%) >0.05
Simultaneous Yes 116 (34.1%) 78 (32.8%) 38 (37.3%) >0.05
STH and GHH fractures No 224 (65.9%) 160 (67.2%) 64 (62.7%) '
o Yes 34 (10.0%) 24 (10.1%) 10 (9.8%)
Cervical Spine fracture No 306 (90%) 214 (89.9%) 92 (90.2%) > 0.05
KNOT POSITION
Knot position - Anterior 54 (15.9%) 37 (15.5%) 17 (16.7%) - 005
Hanging type Lateral 286 (84.1%) 201 (84.5%) 85 (83.3%)

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard
deviation or median and range. For comparison of categorical data, the x? test was performed, while
the Mann-Whitney U test was performed for numerical data. Only the preprocessed sample
characteristics are shown. After the SMOTE algorithm was performed to reduce the disproportion
of the group sample sizes, the absence of statistically significant difference in the analyzed variables
was preserved (not shown, see Results, section 3.2.).

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TyHy -

Thyrohyoid.

Adopted from: Lekovi¢ et al. [62]



Supplementary Table A.4. Training and test groups in Dataset IV:

the coded variables characteristics comparison.

Characteristics Total Training Test
(N = 286) (N =201, 70 %) (N=8530%)  p-value
Sor Male 233 (815%) 166 (82.6%) 67 (78.8%) - 005
Female 53 (18.5%) 35 (17.4%) 18 (21.2%) '
Age (years) 570 (16-94) 560 (180-940)  59.0 (16.0 - 94.0) > 0.05
THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS
. Yes 138 (483%) 101 (50.2%) 37 (43.5%)
Unilateral STH fracture No 148 (51.7%) 100 (49.8%) 48 (56.5%) > 0.05
. Yes 65 (22.7%) 43 (21.4%) 22 (25.9%)
B TH > 0.
ilateral STH fracture No 221 (77.3%) 158 (78.6%) 63 (74.1%) 0.05
Total N of STH fractures (0 - 2) ‘ 1(0-2) 1(0-2) 1(0-2) >0.05
Yes 80 (28.0%) 58 (28.9%) 22 (25.9%)
Contralateral STH fracture No 206 (72.0%) 143 (71.1%) 63 (74.1%) >0.05
Yes 136 (47.6%) 95 (47.3%) 41 (42.2%)
Left STH fracture No 150 (52.4%) 106 (52.7%) 44 (51.8%) > 0.05
. Yes 132 (462%) 92 (45.8%) 40 (47.1%)
Right STH fracture No 154 (53.8%) 109 (54.2%) 45 (52.9%) > 0.05
. Yes 152 (53.1%) 108 (53.7%) 44 (51.8%)
Unilateral GHH fracture No 134 (46.9%) 93 (46.9%) 41 (48.2%) >0.05
, Yes 26 (9.1%) 18 (9.0%) 8 (9.4%)
Bilateral GHH fracture No 260 (90.9%) 183 (91.0%) 77 (90.6%) > 0.05
Total N of GHH fractures (0 - 2) ‘ 1(0-2) 1(0-2) 1(0-2) >0.05
Yes 99 (34.6%) 69 (34.3%) 30 (35.3%)
Left GHH fracture No 187 (633%) 132 (65.7%) 55 (64.7%) > 0.05
. Yes 105 (36.7%) 75 (37.3%) 30 (35.3%)
Right GHH fracture No 181 (63.3%) 126 (62.7%) 55 (64.7%) > 0.05
. Yes 90 (31.5%) 62 (30.8%) 28 (23.9%
Ipsilateral GHH fracture No 196 (685%) 139 (69.2%) 57 (67.1%) > 0.05
Total N of TyHy fractures (0 - 4) ' 1(0-4) 1(0-4) 2(0-4) >0.05
Yes 103 (36.0%) 72 (35.8%) 31 (36.5%)
Isolated STH fracture(s) >(0.05
No 183 (64.0%) 129 (64.2%) 54 (63.5%)
Yes 78 (27.3%) 54 (26.9%) 24 (28.2%)
Isolated GHH fracture(s) >(0.05
No 208 (72.7%) 147 (73.1%) 61 (71.8%)
Simultaneous Yes 100 (350%) 72 (358%) 28 (329%) >0.05
STH and GHH fractures No 186 (65.0%) 129 (64.2%) 57 (67.1%) '
o Yes 12 (4.2%) 9 (4.5%) 3 (3.5)
Cervical Spine fracture No 274 (95.8%) 192 (95.5%) 82 (96.5%) > 0.05
KNOT POSITION
Left 140 (49.0%) 101 (50.2%) 39 (45.9%)
., . Lateral
Knot position - Hanging type Right >0.05
Lot 146(510%) 100 (49.8%) 46 (54.1%)

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard
deviation or median and range. For comparison of categorical data, the y? test was performed, while
the Mann-Whitney U test was performed for numerical data.
Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TyHy -
Thyrohyoid. Adopted from: Lekovi¢ et al. [62]



Supplement B - Part 11 of the study

Supplementary Table B.1. Training and test groups in Dataset I-w:
the coded variables characteristics comparison.

Characteristics Total Training Test
(N = 385) (N=270,70.1%) (N=115,29.9%) p-value
Gox ‘Male 298 (77.4%) 207 (76.7%) 91 (79.1%) - 005
| Female 87 (22.6%) 63 (23.3%) 24 (20.9%) '
Age (years) | 57.0 (16-94) 56.5 (16-94) 58.0 (20-90) >0.05
Body weight (kg) (710 (34-148) 700 (34-148) 72.0 (46-108) > 0.05
Body height (cm) 1760 (145-205) 1760 (145-205)  175.0 (153-195) > 0.05
THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS
. Yes 116 (30.1%) 82 (30.4%) 34 (29.6%)
Unilateral STH fracture | 260 (69.9%) 188 (69.6%) 81 (70.4%) > 0.05
, Yes 65 (16.9%) 47 (17.4%) 18 (15.7%)
Bilateral STH fracture | 320 83.1%) 223 (82.6%) 97 (84.3%) > 0.05
Total N of STH fractures (0 - 2) ‘ 0(0-2) 0 (0-2) 0 (0-2)
. Yes 101 (26.2%) 72 (26.7%) 29 (25.2%)
Unilateral GHH fracture | g 284 (73.8%) 198 (73.3%) 86 (74.8%) > 0.05
, Yes 33 (8.6%) 23 (8.5%) 10 (8.7%)
Bilateral GHH fracture | 352 (914%) 247 (91.5%) 105 91.3%) 00
Total N of GHH fractures (0-2) | 0 (0-2) 0 (0-2) 0 (0-2) >0.05
Total N of TyHy fractures (0 - 4) | 1(0-4) 1 (0-4) 1 (0-4) > 0.05
Yes 106 (27.5%) 79 (29.3%) 27 (23.5%)
Isolated STH fracture(s) |\, 279 (72.5%) 191 (70.7%) 88 (76.5%) > 0.05
Yes 59 (15.3%) 45 (16.7%) 14 (12.2%)
Isolated GHH fracture(s) | 326 (847%) 225 (833%) 101 87.8%) OO
Simultaneous STH and | Yes 75 (19.5%) 50 (18.5%) 25 (21.7%) > 0.05
GHH fractures No 310 (80.5%) 220 (81.5%) 90 (78.3%) '
e Yes 16 (4.2%) 10 (3.7%) 6 (5.2%)
Cervical Spine fracture | g 369 (95.8%) 260 (96.3%) 109 (94.8%) > 0.05
KNOT POSITION
Kinot position - Hanging | Typical 197 (51.2%) 144 (53.3%) 53 (46.1%) .
type Atypical 188 (48.8%) 126 (46.7%) 62 (53.9%)

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard
deviation or median and range. For comparison of categorical data, the x? test was performed, while
the Mann-Whitney U test or Student’s t test were performed for numerical data.

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TH -

Thyrohyoid.



Supplementary Table B.2. Training and test groups in Dataset II-w:
the coded variables characteristics comparison.

Characteristics Total Training Test p-
N =250 N=175(70.0%) N=175(30.0%) value
Sox ' Male 193 (77.2%) 134 (76.6%) 59 (78.7%) - 0.05
' Female 57 (22.8%) 41 (23.4%) 16 (21.3%) '
Age (years) 5824179 59.4 +18.0 55.6 £17.6 >0.05
Body weight (kg) (705 (38-146)  72.0(38-146)  70.0 (46-117) > 0.05
Body height (cm) 176 (145-205) 175 (145-205) 176 (152-200) > 0.05
THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS
. Yes 118 (47.2%) 81 (46.3%) 37 (49.3%)
Unilateral STH fracture | \q 132 (52.8%) 94 (53.7%) 38 (50.7%) > 0.05
. Yes 65 (26.0%) 45 (25.7%) 20 (26.7%)
Bilateral STH fracture | 185 (74.0%) 130 (74.3%) 55 (73.3%) > 0.05
Total N of STH fractures (0 - 2) 1(0-2) 1(0-2) 1(0-2)
. Yes 105 (42.0%) 72 (41.1%) 33 (44.0%)
Unilateral GHH fracture | g 145 (58.0%) 103 (58.9%) 42 (56.0% > 0.05
. Yes 33 (13.2%) 24 (13.7%) 9 (12.0%)
Bilateral GHH fracture | g 217 (86.8%) 151 (86.3%) 66 (88.0%) > 0.05
Total N of GHH fractures (0 - 2) 11(0-2) 1(0-2) 1(0-2) >0.05
Total N of TyHy fractures (0 - 4) 11(0-4) 1(0-4) 2(0-4) >0.05
Yes 106 (42.4%) 74 (42.3%) 32 (42.7%)
Isolated STH fracture(s) | g, 144 (57.6%) 101 (57.7%) 54 (57.3%) > 0.05
Yes 61 (24.4%) 44 (25.1%) 17 (22.7%)
Isolated GHH fracture(s) | \p, 189 (75.6%) 131 (74.9%) 58 (77.3%) > 0.05
Simultaneous STH and Yes 77 (30.8%) 52 (29.7%) 25 (33.3%) > 0.05
GHH fractures No 173 (69.2%) 123 (70.3%) 50 (66.7%) '
A Yes 16 (6.4%) 13 (7.4%) 3 (4.0%)
Cervical Spine fracture | g 234 (93.6%) 162 (92.6%) 72 (96.0%) > 0.05
KNOT POSITION
Knot position - Hanging | 1Pieal 128 (51.2%) 90 (51.4%) 38 (50.7%) .
type Atypical 127 (48.8%) 85 (48.6%) 37 (49.3%) '

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard
deviation or median and range. For comparison of categorical data, the x? test was performed, while
the Mann-Whitney U test or Student’s t test were performed for numerical data.

Abbreviations: STH - Superior thyroid cartilage horn; GHH - Greater hyoid bone horn; TH -

Thyrohyoid.



Supplement C - Part 111 of the study

Supplementary Table C.1. Training and test groups in Dataset I-m:
the coded variables characteristics comparison.

Characteristics Total Training Test p-
(N =126) (N =288,69.8%) (N =38,30.2%) value
Sox ' Male 99 (78.6%) 72 (81.8%) 27 (71.1%) . 0.05
| Female 27 (21.4%) 16 (18.2%) 11 (28.9%) '
Age (years) | 55.0 (18 - 94) 55.5 (17 - 94) 54.0 (20 - 90) >0.05
Body weight (kg) 1700 (40-125)  70.0(40-125)  70.0 (41-124)  >0.05
Body height (cm) | 176.0 (145 - 205)  176.5 (145 -190)  173.5 (151 -205) > 0.05

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS

Unilateral STH Yes 41 (32.5%) 26 (29.5%) 15 (39.5%) > 0.05
fracture No 85 (67.5%) 62 (70.5%) 23 (60.5%) '

. Yes 24 (19.0%) 19 (21.6%) 5 (13.2%)
Bilateral STH fracture | i 102 (81.0%) 69 (78.4%) 33 (86.8%) > 0.05
Total N%f STH fractures (0 - 2) ‘ 1(0-2) 1(0-2) 1(0-2) > 0.05
Unilateral GHH Yes 28 (22.2%) 22 (25.0%) 6 (15.8%) > 0.05
fracture No 98 (77.8%) 66 (75.0%) 32 (84.2%) '
Bilateral GHH Yes 11 (8.7%) 7 (8.0%) 4 (10.5%) > 005
fracture No 115 (91.3%) 81 (92.0%) 34 (89.5%) '
Total N0 of GHH fractures (0-2) | 0(0-2) 00-2) 00-2) >0.05
Total N of TyHy fractures (0-4) | 1(0-4) 1(0-4) 1(0-4) >0.05
Isolated STH Yes 44 (34.9%) 30 (34.1%) 14 (36.8%) > 0.05
fracture(s) No 82 (65.1%) 58 (65.9%) 24 (63.2%) )
Isolated GHH Yes 18 (14.3%) 14 (15.9%) 4 (10.5%) > 005
fracture(s) No 108 (85.7%) 74 (84.1%) 34 (89.5%) '
Simultaneous STH Yes 23 (18.3%) 16 (18.2%) 7 (18.4%) > 005
and GHH fractures No 103 (81.7%) 72 (81.8%) 31 (81.6%) '
Cervical Spine Yes 3 (2.4%) 2(2.3%) 1(2.6%) > 005
fracture No 123 (97.6%) 86 (97.7%) 37 (97.4%) '
STERNOCLEIDOMASTOID MUSCLE’S ORIGIN HEMORRHAGES
Unilateral Yes 50 (39.7%) 36 (40.9%) 14 (36.8%) >0.05
SCM hemorrhage No 76 (60.3%) 52 (59.1%) 24 (63.2%) >0.05
Bilateral Yes 58 (46.0%) 39 (44.3%) 19 (50.0%) >0.05
SCM hemorrhage No 68 (54.0%) 49 (55.7%) 19 (50.0%) >0.05
Total N°
of SCM hemorrhages (0 - 2) 1(0-2) 1(0-2) 15(0-2) > 0.05
Kot position - (Typical 62 (49.2%) 46 (52.3%) 18 (47.4%) oo
Hanging type ‘ Atypical 64 (50.8%) 42 (47.7%) 20 (52.6%) ’

Note: The categorical data is presented as frequency and ratio, and numerical as average + standard
deviation or median and range. For comparison of categorical data, the x? test was performed, while
the Mann-Whitney U test was performed for numerical data. Abbreviations: STH - Superior thyroid
cartilage horn; GHH - Greater hyoid bone horn; TH - Thyrohyoid; SCM - sternocleidomastoid

muscle.
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rumHasuje, 2014. ronuae ynmcao je Megnmunckn daxynrer YHusepsutera y beorpamy.
Hvrorommpao je 2020. rogune, ca mpoceunom oreHoM 9,80. CrnenmjayimcTiuke akajgeMcKe
cTyauje n3 (popeH3MUKe IIaTOJIOTVje VM eKCIepTU3He IMjarHOCTMKe Ha MeanimHcKkoM
dakynrery y beorpany ymmcao je 2020, a guruiomupao 2022. rogmHe, o10paHOM 3aBPIITHOT
paga mop, HasuBoM ,DopeH3NUKM 3Hayaj WMHAEKCa OIeYeHOCTH, KapaKTepucTuKa
OIeKOTMHA M BPeHOCTM KapOOKcuxeMOITIOOMHa y ciIydajeBrMa cMpTu y noxapy.” Opn
debpyapa 2022. rogmue 3amocieH je y VIHcTuTyTy 3a cyacky MenuumHy Muaoban
MuanoBanobuli. 'Y s3Bambe capagHMKa y HacTaBu Ha KaTenmpm 3a Cyacky MeauIuMHY
Menymackor dakynrera YHuBep3urera y beorpamy msabpan je 15. merembpa 2021.
roguHe 1 pensabpan ciienehe roguae, a 18. okrobpa 2023. romyHe n3abpaH je y 3Barbe
acucrenTa. ['ogume 2021. ynmcao je JOKTOpcKe akajgeMcKe cTyauje Ha MenumyHcKoM
dakynrery y Beorpany, momyin , buosnornja ckenera.” Takobe, crienmjaysaHT je cyzcke
MenuinHe (Menguimacku dakysrer y beorpany) on anpwia 2023. roguse. TpeHyTHO je
wiIaH IIPOjeKTHOTr TMa Ha IIpojekTy BoFram (Changes in bone structure and composition leading
to increased fracture risk in aged population with chronic comorbidities; pykoBogwiar ipod. Ap
Mapwuja Bypuh), xoju je dunHancupan on crpane Ponra 3a Hayky Perybrmke Cpbuje.
ITpema mmnexcHoj 6asu Ckorryc, Astekca Jlexkosuh o6GjaBuo je 16 Hay4YHO-MCTpaKMBaUKMX
pazioBa y 4acommcumMa ca MMIakT pakTopoM (mpucty 25. arycra 2024. roguse).



Currently published papers resulting from the work on this research and dissertation

Original paper

Lekovié¢ A, Vukicevi¢ A, Nikoli¢ S. Assessing the knot in a noose position by thyrohyoid
and cervical spine fracture patterns in suicidal hangings using machine learning algorithms:
A new insight into old dilemmas. Forensic Sci Int. 2024;357:111973.
https:/ /doi.org/10.1016/i.forsciint.2024.111973.

Letter to the editor

Lekovi¢ A, Nikoli¢ S. Commentary on “The integration and implications of artificial
intelligence  in  forensic  science.”  Forensic = Sci Med  Pathol.  2024.
https:/ /doi.org/10.1007 /s12024-024-00781-z. Epub ahead of print.

Mini-review article (Medical Youth)

Lekovi¢ A, Nikoli¢ S. Autonomous nervous system-related vital reactions in short-drop
hangings. Med Podml. 2025;76(6). https:/ /doi.org/10.5937 / mp76-48972.
(Accepted for publication)



https://doi.org/10.1016/j.forsciint.2024.111973
https://doi.org/10.1007/s12024-024-00781-z
https://doi.org/10.5937/mp76-48972

obpasay usjabe o aymopcmby

V3jaBa 0 ayTOpCcTBY

Vme n mpesume ayTopa Astekca Jlekosuh

bpoj nanexca mec215022

N3jaBpyjem
71a je IOKTOPCKa AycepTalyja Iof1 HaCJIOBOM:
»AJITOPUTMM MAIIMHCKOT y4Yerba y (POpPeH3MUKOj eKCIepTH3N: IIpoIleHa IIoJIodKaja
YBOopa OMYe Yy caMOyOW/JIa4KyMM BeIllarb¥IMa Ha OCHOBY pacmopena IIpeoMa
THUPEOXMOMIHOTI KOMIUIeKca M BpaTHe Kuume” (eHI1. Machine learning algorithms in

forensic expertise: Assessing noose knot’s position in suicidal hangings through fracture
patterns of the thyrohyoid complex and the cervical spine):

* pesyJITaT COIICTBEHOT MCTPaXKMBauKOT paja;

* Ja aycepTalivja y HeJIVMHM HI Y [leJIoBUMa Huje O1la IpefjiokeHa 3a CTUllakbe pyre
AUIUIOMe IIpeMa CTYAUjCKMM IIporpaMyMa JIPYyIX BUCOKOIIKOJICKMX YCTaHOBa;

* J1a Cy pe3yJsITaTyi KOPeKTHO HaBeIeHU U

* Ja HycaM KpIIMO ayTOpcKa IIpaBa 1 KOPUCTUO MHTeJIeKTYaJIHy CBOjUHY APYTVX JIUIIa.

ITorniic ayTopa

Y beorpany,

30. aBrycra 2024. roguse



00pasay, usjabe o ucmobemnocmu wWmamnane u eAeKmMporcke bepsuje 00xmopckoe paoa

M3jaBa 0 MCTOBETHOCTH IIITaMIIaHe 1 eJIeKTPOHCKe Bep3uje
IOKTOPCKOT paga

Vme n mpesume ayTopa Astekca Jlekosuh
bpoj nanekca mec215022

Crynujcku nporpaMm bmostoruja ckenera

Hacros paga ,, AIropuTMy MaIIVHCKOT y4Yerha Y POPEeH3MUKOj eKCIepTH3N: IPoIeHa
II0JI0>Kaja YBOpa OMdYe y caMOyOmIauKyM BelIarbiiMa Ha OCHOBY pacIiopeza IpejioMa
TUPEOXMOMITHOT KOMILIeKca ¥ BpaTHe Knume” (eHrI. Machine learning algorithms in
forensic expertise: Assessing noose knot’s position in suicidal hangings through fracture
patterns of the thyrohyoid complex and the cervical spine)

MenTop npod. np Ciobogan Hukosamh

Vsjapibyjem 11a je mTaMmaHa Bep3uja MOI JTOKTOPCKOI paja WCTOBETHA eJIeKTPOHCKO]
Bep3uju  KOjy caM MOpefao paay IoxpamuBarka y [urmramHoMm penosuropujymy
Ynusepsurera y beorpany.

Jo3BorpaBaM fa ce objaBe MOjVI JIMIHM TIOHALV Be3aHM 3a JoOujarbe aKaIeMCKOT Ha3MBa
AOKTOpPa HayKa, Kao IIITO Cy MMe ¥ IIpe3rMe, TOAMHA M MeCTO pobera 1 JaTyM onOpaHe
pana.

OBy J1MuHM IIOfAIIN MOTY ce 00jaBUTI Ha MPeXXHVM CTpaHMIlaMa AUruTaiHe 01oiImoTeke,
y eJIeKTPOHCKOM KaTaJIory 1 y IyoymkalijamMa YHuBep3uTera y beorpany.

IToric ayTopa

Y beorpany,

30. aBrycra 2024. roguHe




obpasay, usjabe o xopuwbiersy

U3jaBa o kopunihewy

Osnamthyjem YHuBepsurercky 6mbimorexky ,Cserosap Mapkosuh” nma y Hururamam
perno3uTopujyM YHUBep3uTeTa y beorpamy yHece Mojy DOKTOPCKY HucepTaIlijy IIOTI
HaCJIOBOM: , AJITOpUTMM MAIIMHCKOT y9dera y (PpOpeH3MYIKO] eKCIepTH3N: IpoIeHa
II0JI0>Kaja YBOpa OMdYe y caMOyOmIauKyM BellarbiMa Ha OCHOBY pacIiopesa IIpejioMa
THPEOXMOMITHOI KOMIUIeKca M BpaTHe Kuume” (eH1. Machine learning algorithms in
forensic expertise: Assessing noose knot’s position in suicidal hangings through fracture
patterns of the thyrohyoid complex and the cervical spine),

KOja je Moje ayTOPCKO AeJIO.

Huvicepramyjy ca cBuM OpuIo3uMa IIpeJao caM y eJeKTPOHCKOM ¢opMaTy IIOTOJHOM 3a
TpajHO apxuBupame. Mojy [OKTOPCKy aucepTanujy IoxparbeHy Y urnraaHom
peniosuTopujymy YHuBepsutera y beorpaay vt JOCTYIIHY y OTBOPEHOM ITPUCTYITy MOTY Ja

KOpVCTe CBY KOjU IIOIITYjy ofpeade cagpkaHe y ogabpaHoM Tumy jiuiieHIle KpeaTusHe
3ajemumile (Creative Commons) 3a KOjy caMm ce OfjIydmo.

1. Aytopctso (CC BY)
2. Ayropctso - HekoMmep1imjasiHO (CC BY-NC)
@AyTopCTBo - HeKoMepIIMjastHo - 6e3 ipepana (CC BY-NC-ND)
4. AytopcTBO - HeKoMepIIMjastHo - merTy o, uctuM yorosuMa (CC BY-NC-5A)
5. AyTtopctBo - 6e3 mpepamna (CC BY-ND)
6. Aytopctso - genmty of nctmM yctosuma (CC BY-SA)

(Mormmo fa 3a0Kpy KuTe caMo jeflHY Of, I1IeCT [IOHyDeHVX JINIIeHIIN.
Kpatak omvic jmiieHIM je cacTaBHM [1€0 OBe 13jaBe).

IToric ayTopa

Y beorpany,

30. aBrycra 2024. roguHe



1. AyTopcrBo. [lo3BO/baBaTe yMHOXaBame, IVCTPUOYLIMjy ¥ jaBHO CaoIlllITaBame Jiejia, 1
Ipepajie, ako ce HaBelle MMe ayTopa Ha HauMH ofpebeH of cTpaHe ayTopa WIN JIaBaolia
JIMIIeHIle, YaK 1 y KoMepiyjasiHe cepxe. OBo je Hajoio00mHMja Of1 CBVIX JIMIIEHIIL.

2. AytopcTBO - HeKOMepHujasHo. [lo3BojpaBaTe yMHOXaBambe, AUCTPUOYLIjy U jaBHO
caoIlIlITaBame Jella, U IIpepaje, ako ce HaBeJle VIMe ayTopa Ha HaulH ofpebeH of cTpaHe
ayTopa win JaBaolia jimiieHIle. OBa JInileHIla He 03B0JbaBa KOMepIMjaJIHy YIIOTpeOy mera.

3. AyTopcTBO - HeKOMepHMjaJlHO - 0e3 mpepama. [lo3BojbaBaTe YMHOXXABarbe,
AVCTPUOYIIN}Y ¥ jaBHO CaoMIlITaBarbe /ieria, 0e3 IIpoMeHa, IIpeolIMKoBara WiIM yIIoTpede
fieryia y CBOM JIeJly, aKO ce HaBelle VIMe ayTopa Ha HauMH ofpebeH oy cTpaHe ayTopa MM
maBaolia jmreHIte. OBa JIMIIeHITa He JT103B0JbaBa KOMePIMjayIHy yHoTpeOy merna. Y omHoCy
Ha CBe OCTaJIe JINIIeHIle, OBOM JINIIEHIIOM ce OTpaHM4aBa Hajsehn o0mM mmpaBa Koputihera
mesa.

4. AyTopcTBO - HeKOMepLMjaTHO - [eJauTH IIo[d, MCTUMM yciaoBuMa. [lo3sosbaBare
yMHOXaBame, JUCTpUOYLINjy 1 jaBHO caolllITaBakbe [efla, 1 IIpepazie, ako ce HaBeJle MMe
ayTopa Ha HauMH ofpebeH of cTpaHe ayTopa WM [JaBaolla JIMIIeHIle 1 aKo ce IIpepaja
AuCTpuOyMpa IO WMCTOM WIM CIMYHOM JmileHnioM. OBa JINMIleHIIa He [103BOJbaBa
KOMepLMjaIHy YIIOTpeOy [era 1 rmpepaja.

5. AyrtopcrBo - 0e3 mpepaga. Jlo3BoibaBaTe yMHOXaBaibe, OUCTPUOYyLMjy ¥ jaBHO
caoIlTaBame Jiejla, 0e3 IrpoMeHa, IpeoOIMKOBama WM yIIoTpede J1ej1a y CBOM feily, ako
ce HaBeJle MMe ayTopa Ha HauMH ofpebeH of cTpaHe ayTopa Wi J1aBaolia JimieHiie. Oba
JIMIIeHIIa 103B0JbaBa KOMeplujaIHy yIoTpely rerna.

6. AyTOpCTBO - JIeJIMT IO, ICTVM ycJI0BUMa. [o3BosbaBaTe yMHOXaBak-e, IVCTPUOYIIVjy
U jaBHO caoIllITaBame Jlejla, U Ipepaje, ako ce HapeJle MMe ayTopa Ha HauMH ofpebeH o1
cTpaHe ayTopa WIN JaBaolia JIMIIeHIle ¥ aKo ce Ipepaga AUcTpubyupa II0f VCTOM MJIn
cruHoM JinneHiioMm. OBa JiMiieHIIa J103B0/baBa KOMepLyjaIHy yIIoTpeOy fela v mpepasa.
CimiruHa je codpTBepcKyM JIMIIeHIIaMa, OJHOCHO JIMIIeHIJaMa OTBOPeHOT KOJIa.



