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Abstract 

Background and Aim: In hanging, a noose can be formed with the knot located on the 
posterior side of the neck (typical hanging), anterior, or lateral side (atypical hangings). 
Upon neck compression, characteristic but nonspecific injuries of hard neck structures 
occur, particularly the hyoid bone's greater horns, the thyroid cartilage's superior horns, 
and the cervical spine. In the evaluation of deaths by hanging, it can be important to 
determine the position of the knot in a noose. This is particularly useful if the ligature is not 
found, or a ligature mark is subtle or absent. However, previous research failed to clearly 
determine if the distribution of fractures of the neck hard tissue structures that occur in 
hanging directly relates to the noose's knot position and if there are distinct patterns of these 
injuries that would correspond to the localization and direction of a force applied to the 
neck by the noose. Also, the subject's age, body height, and weight could impact the 
occurrence of these fractures. The hemorrhages at the origin of the sternocleidomastoid 
muscles at the clavicles could also aid in the knot position assessment. So far, machine 
learning models have not been used to associate the fracture distribution patterns with the 
knot position and thus supplement standard statistical analyses. Machine learning 
algorithms, capable of detecting complex and non-obvious associations between variables, 
might help in these cases. So, this research aimed to analyze the characteristics and 
distribution of neck's hard structure fractures with regards to the knot in a noose position 
in suicidal hangings and to determine the performance of machine learning models in 
assessing the knot position based on the presence of the fractures and their distribution, as 
well as to consider the significance of subjects' body weight and height, and presence of 
sternocleidomastoid muscle's origin hemorrhage in the knot position assessment. 

Material and Methods: The research comprised of three separate parts. In all three parts, 
retrospectively obtained single-institution autopsy data on subjects' sex, age, and 
distribution of greater hyoid bone’s horns (GHH), superior thyroid cartilage’s horns (STH), 
and cervical spine (cS) fractures in suicidal hangings with a short drop or without a drop 
were analyzed. In the first part of the study, which included 1235 cases of suicidal hanging, 
the mentioned variables were analyzed by standard statistical and machine learning-based 
analyses in a stepwise manner to discriminate between a) typical (posterior) and atypical 
(anterior and lateral) hangings, b) anterior and lateral hangings, and c) left and right lateral 
hangings. The study's second part, which included 368 cases, comprised the subset with 
additional data on body weight and body height. To assess the contribution of body weight 
and height in knot position-related fracture patterns (in addition to standard statistical 
analyses), two analogous machine learning models (MLm), one considering these 
anthropometric characteristics and one without this data, were developed. The machine 
learning analysis was performed to discriminate between the typical and atypical knot 
positions. The third part of the study, which included 126 cases of suicidal hangings, 
comprised a subset with data on hemorrhage of the sternocleidomastoid muscle's (SCMm) 



origin at the clavicles. As in the previous step, analogous MLm models were developed to 
discriminate between the typical and atypical knot position, one considering data on SCMm 
origin hemorrhages and analogous model not considering it. In all three study parts, the 
following machine learning algorithms were used: Genetic Algorithm-optimized Artificial 
Neural Network (GA-ANN) developed in MATLAB, and algorithms developed in SPSS – 
Multilayer Perceptron-ANN (MLP-ANN), Decision Tree (DT), k Nearest Neighbors (kNN), 
and Naïve Bayes (NB). 

Results: The accuracy of machine learning models in the first step (discrimination between 
the typical and atypical hangings) was very modest (c. 60%) but increased subsequently in 
discriminating between atypical and lateral hangings, and particularly in distinguishing 
between left lateral from right lateral knot position: ANNs and k-NN models performed 
excellently in this step, with overall classification accuracies above 90%. Age was a 
statistically significant predictor of GHH and cS fractures but not STH fractures. Body 
weight was a statistically significant predictor only of STH fracture and SCMm origin 
hemorrhage occurrence. However, input on body weight, height, and SCMm origin 
hemorrhage presence and distribution did not improve MLm's performance in 
discriminating between the hangings with typical and atypical knot positions. In the second 
part of the study, the developed MLm that considered body height and weight did not 
perform statistically better than analogous MLm that did not consider them, on the ROC 
curve analysis. The same holds for the third part of the study – the developed MLm that 
considered SCMm origin hemorrhages did not perform statistically better than analogous 
MLm that did not consider this variable. Supplemented by conventional statistical analysis, 
the entire research showed that cervical spine and unilateral GHH fractures were 
independently associated with atypical knot position compared to hangings with typical 
knot position. In lateral hangings, the knot position was associated with ipsilateral GHH 
fracture and ipsilateral SCMm hemorrhage, as well as with the contralateral STH fracture. 

Conclusion: Valid machine learning models can be developed to determine the noose knot 
position in hangings with a short drop or without a drop by thyrohyoid complex and 
cervical spine fracture patterns. This contributes to a better understanding of biomechanical 
processes in hanging. While the subject's age should be considered, this study indicated that 
body weight and height are of no detrimental value in assessing the thyrohyoid and cervical 
spine fracture patterns in suicidal hangings. The most apparent fracture distribution 
patterns observed were significantly more frequent unilateral fracture of the hyoid bone's 
greater horn and the cervical spine fracture in atypical hangings. When comparing only 
lateral hangings, the greater hyoid bone's horn fracture on the side of the knot and thyroid 
cartilage's superior horn fracture contralateral to it were significantly more frequent. The 
SCMm origin hemorrhages tend to occur more often on the side of the knot if it is placed on 
the lateral side of the neck. 

Keywords: Forensic Pathology, Expertise, Autopsy, Hanging, Suicide, Machine Learning, 
Thyrohyoid Complex, Cervical Spine, Fracture, Pattern. 
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Сажетак 

Увод и циљ: При вешању омча може да се постави тако да се чвор налази на задњој 
страни врата (типична вешања), предњој или латералној (атипична вешања). При 
стезању врата, долази до карактеристичних, али не и специфичних повреда чврстих 
структура врата и то великих рогова хиоидне кости и горњих рогова тиреоидне 
хрскавице, али и вратне кичме. При анализи смрти услед вешања може бити значајно 
да се утврди место чвора омче. То је нарочито корисно уколико омча није нађена на 
лицу места или је траг стезања слабо изражен или не постоји уопште. Међутим, 
досадашња истраживања нису јасно утврдила да ли је распоред прелома чврстих 
структура врата насталих током акта вешања у директној вези са позицијом чвора 
омче и да ли постоји нарочит распоред, односно дистрибуција прелома у односу на 
правац и место дејства силе којом омча притиска врат. Притом, на настанак ових 
прелома могли би да утичу старост особе, њена висина и тежина. На положај чвора 
омче током вешања, могла би да укажу и крварења припоја стерноклеидомастоидних 
мишића (SCMm) за клавикуле. До сада, модели машинског учења (MLm) нису 
коришћени да открију повезаност између распореда прелома чврстих структура 
врата и позиције чвора и на тај начин буду допуна стандардним статистичким 
анализама. Алгоритми машинског учења, способни да открију сложене везе између 
ових варијабли, које нису очигледне, могли би да буду корисни у овим случајевима. 
Стога, ово истраживање је имало за циљ да анализира карактеристике и распоред 
прелома чврстих структура врата у односу на место чвора омче код самоубилачких 
вешања и да утврди перформансе модела машинског учења у процени положаја 
чвора на основу постојања ових прелома и њиховог распореда, као и да испита значај 
тежине и висине вешаника и крварења припоја стерноклеидомастоидних мишића за 
клавикуле у процени положаја чвора омче. 

Материјал и методе: Истраживање је спроведено у три засебна дела. У сва три дела, 
анализирани су ретроспективно прикупљени подаци о полу, старости, распореду 
прелома великих рогова хиоидне кости (GHH), горњих рогова тиреоидне хрскавице 
(STH) и вратне кичме (cS) у обдукованих особа које су извршиле самоубиство 
вешањем са кратким замахом или без њега. У првом делу студије, који је обухватио 
1235 случајева, наведене варијабле анализиране су стандардним статистичким 
методама и методама машинског учења, поступном анализом, ради дискриминације 
између: а) типичне (задње) и атипичне (предње и бочне) позиције чвора, б) предње и 
бочне позиције чвора и в) леве и десне бочне позиције чвора. У другом делу студије 
испитивано је 368 случајева са додатним подацима о тежини и висини вешаника. Да 
би се проценио значај тежине и висине у односу на распоред прелома и место чвора 
(уз стандардне анализе) направљена су два MLm-а, један који у обзир узима ове две 
варијабле и други, аналогни, који их не анализира. Анализа машинског учења 
коришћена је за дискриминацију између случајева са типичном и са атипичном 



позицијом чвора. У трећи део студије укључено је 126 случајева са подацима о 
крварењима припоја SCMm за клавикуле. Као и у претходном кораку, направљени су 
аналогни модели за дискриминацију између случајева са типичном и са атипичном 
позицијом чвора, један који у обзир узима податке о постојању и распореду ових 
крварења и други који не анализира ове варијабле. У сва три дела истраживања 
коришћени су следећи модели машинског учења: Genetic Algorithm-optimized Artificial 
Neural Network (GA-ANN) направљен у MATLAB-у и модели направљени у SPSS-у – 
Multilayer Perceptron-ANN (MLP-ANN), Decision Tree (DT), k Nearest Neighbors (kNN), и 
Naïve Bayes (NB). 

Резултати: Прецизност класификације модела машинског учења у првом кораку 
(дискриминација између типичне и атипичне позиције чвора) била је врло умерена 
(око 60%), али се потом повећала: ANN и k-NN MLm одлично су разликовали леву од 
десне позиције чвора, уз прецизности веће од 90%. Старост особе била је значајан 
предиктор настанка GHH и cS прелома, али не и настанка прелома STH. Tежина особе 
била је значајан предиктор само прелома STH и крварења припоја SCMm. Међутим, 
подаци о тежини особе и постојању и распореду крварења припоја SCMm нису 
побољшали перформансе MLm у дискриминацији између типичне и атипичне 
позиције чвора. У другом делу истраживања, MLm који су у обзир узимали податке о 
тежини и висини вешаника нису били статистички значајно бољи, на основу анализе 
ROC криве. Исти резултат добијен је и у трећем делу истраживања – MLm који су у 
обзир узимали крварења припоја SCMm нису били статистички значајно бољи у 
односу на моделе који у обзир нису узимали ове варијабле. Уз конвенционалну 
статистичку анализу, резултати целокупног истраживања показали су да су прелом 
вратне кичме и једнострани преломи GHH били независно повезани са предњом у 
односу на задњу позицију чвора. Код бочних позиција чвора, постојала је повезаност 
стране чвора са преломом ипсилатералног GHH и крварењем припоја 
ипсилатералног SCMm,  као и са преломом контралатералног STH. 

Закључак: Могуће је направити валидне моделе машинског учења за одређивање 
позиције чвора омче код вешања са кратким замахом или без њега, а на основу 
прелома чврстих структура врата. Све ово доприноси бољем разумевању 
биомеханичких процеса током акта вешања. Резултати овог истраживања указују да 
телесна висина и тежина нису од пресудног значаја код процене положаја чвора на 
основу распореда прелома, док старост особе треба узимати у обзир. Најочигледнији 
уочени обрасци прелома били су унилатерални прелом великог рога хиоидне кости  
и прелом вратне кичме, који су чешћи код атипичне позиције чвора. При поређењу 
латералних вешања, прелом великог рога хиоидне кости на страни чвора и 
контралатералног горњег рога тиреоидне хрскавице били су значајно чешћи. 
Крварење припоја стерноклеидомастоидних мишића чешће је било на страни чвора, 
уколико је чвор био постављен на бочној страни врата. 

Кључне речи: форензичка патологија, експертиза, обдукција, вешање, самоубиство, 
машинско учење, тиреохиоидни комплекс, вратна кичма, прелом, образац. 
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1. INTRODUCTION 

 

1.1. Asphyxia 

Etymological roots of the coined term asphyxia stem from two Greek words: -a (without) 
and -sphuxis (a pulse), meaning “pulseless” or “absence of pulsation” [1–3]. Under the 
umbrella term “asphyxia” are, however, considered various conditions of natural and 
violent causes that result in the inability of cells to receive or utilize the oxygen (O2) [2, 4, 5] 
– this impairment can be a consequence of the reduced amount of available (atmospheric) 
oxygen, blockage and obstruction of various segments of the respiratory system, restriction 
of respiratory movements, diseases of the lung and thorax (e.g., pneumonia), reduced 
cardiac function, reduced oxygen transport capacity (e.g., severe anemia or bleeding), direct 
blockage of oxygen utilization by cells (cellular respiration) [2, 3].  

 

 

Figure 1.1. Classification of asphyxiation. In: Madea B, Keil W, Lunetta P, Kettner M. Asphyxiation. In: 
Madea B (Ed). Handbook of Forensic Medicine, 2nd ed. Hoboken, NJ: Wiley, 2022, p. 510. [2]  
Reproduced with permission from John Wiley & Sons (not part of the governing CC license). 

https://doi.org/10.1002/9781119648628.ch22
https://doi.org/10.1002/9781119648628.ch22
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But, apart from the severe destructive head and brain injuries, it is easy to claim that 
practically every fatal condition is eventually accompanied by a hypoxic-ischemic brain 
death [2]. In the context of forensic medicine and pathology, under the broadest terms, 
asphyxia and asphyxiation refer to the state of oxygen deficiency caused by specific traumas 
that directly result in hypoxic-ischemic brain injury and death.  So, these conditions, in a 
stricter term, stem from the injury, are of violent manners (Latin, asphyxia violenta), and can 
be caused by physical (e.g., electrocution, lightning strike), chemical (e.g., cyanide or 
strychnine poisoning) or mechanical means [2, 6].  

Although violent asphyxia deaths have always been widespread in forensic medicine, 
up to date, even many primary reference textbooks provided different classifications of 
asphyxiation [2, 3, 7–11]. One of these, a comprehensive classification used by Madea et al. 
[2] is shown in Figure 1.1. The most significant issue was to form a single and uniform, 
standardized classification system of the violent asphyxia caused by mechanical means – due 
to simple differences in didactics, different approaches to injury pathophysiology 
understanding, or a non-uniform English-language use. The best overview of the problem 
was probably given by Sauvageau and Boghossian in 2010, where a new classification 
system was proposed, which was presented in 2011 as the “INFOR (International Network 
for Forensic Research) classification” [4, 12]. This classification system of “Asphyxia in 
forensic context” is shown in Figure 1.2 and accompanying Table 1.1. So, violent asphyxia 
caused by mechanical means where external pressure is applied to the neck are strangulations 
[4, 12]. Depending on the origin of the external constricting force, three separate entities are 
recognized: hanging, ligature strangulation, and manual strangulation (Table 1.1) [4, 12]. 

 

1.2. Hanging 

Hanging (suspension, Latin, suspensio) is a form of ligature strangulation in which the force 
applied to the neck is derived from the gravitational drag of the weight of the body or part of the body 
[3]. 

 The majority of the hanging cases are suicidal [2, 3, 7, 9]. It is one of the most common 
suicide methods worldwide [13–18]. The World Health Organization (WHO) ranks it 
among the three most common causes of suicide in general [13]. This suicide method is 
favored by males [2]. Rarely, hangings can be accidental – in autoerotic asphyxia (a typical 
subject is a young or middle-aged male) [3, 12], and in children playing hazardous “hanging 
games” or in a child who accidentally entangled in a rope, or, for example, in a pacifier cord 
[3, 9]. Homicides are extremely rare, and a more common situation than this for a 
perpetrator is to hang the dead body of a previously strangled person to conceal foul play 
[3, 9, 19]. Judicial hangings have been quite a common practice throughout history and are 
nowadays almost entirely abandoned [3, 20]. 
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Table 1.1. Definitions of terms in the INFOR classification 

Term Definition 
Suffocation A broad term encompassing different types of asphyxia, such as 

vitiated atmosphere and smothering, associated with deprivation of 
oxygen 

Smothering Asphyxia by obstruction of the air passages above the epiglottis, 
including the nose, mouth, and pharynx 

Choking Asphyxia by obstruction of the air passages below the epiglottis 
Confined spaces/ 
entrapment / 
vitiated atmosphere 

Asphyxia in an inadequate atmosphere by reduction of oxygen, 
displacement of oxygen by other gases, or by gases causing chemical 
interference with the oxygen uptake and utilization 

Strangulation Asphyxia by closure of the blood vessels and⁄or air passages of the neck 
as a result of external pressure on the neck 

Hanging A form of strangulation in which the pressure on the neck is applied by 
a constricting band tightened by the gravitational weight of the body or 
part of the body 

Ligature strangulation A form of strangulation in which the pressure on the neck is applied by 
a constricting band tightened by a force other than the body weight 

Manual strangulation Manual strangulation A form of strangulation caused by an external 
pressure 

Positional or postural 
asphyxia 

A type of asphyxia where the position of an individual compromises 
the ability to breathe 

Traumatic asphyxia A type of asphyxia caused by external chest compression by a heavy 
object 

Drowning Asphyxia by immersion in a liquid 

From: Sauvageau A. Death by Hanging. In: Rutty G.N. (Ed). Essentials of Autopsy Practice. London: 
Springer-Verlage, 2014, p. 25. [12] Reproduced with permission from Springer Nature  
(not part of the governing CC license). 

Figure 1.2. INFOR Classification of asphyxia. From: Sauvageau A. Death by Hanging. In: Rutty G.N. (Ed). 
Essentials of Autopsy Practice. London: Springer-Verlage, 2014, p. 24. [12] Reproduced with permission 
from Springer Nature (not part of the governing CC license). 

https://doi.org/10.1007/978-1-4471-5270-5_2
https://doi.org/10.1007/978-1-4471-5270-5_2
https://link.springer.com/chapter/10.1007/978-1-4471-5270-5_2
https://link.springer.com/chapter/10.1007/978-1-4471-5270-5_2
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1.2.1. Circumstances and hanging scenarios  

There are some distinct circumstances in hangings where the body can be found. 

Complete and incomplete hangings: The suspension point in suicidal hangings is often not 
high enough to suspend the entire body (without any contact of the body with the 
floor/ground object/platform), and this is called a complete hanging [3, 6, 7, 9]. The entire 
body weight loads the noose and contributes to neck compression – strangulation [6]. In this 
scenario, there is a chair, ladder, or other climbing aid the subject uses to reach the formed 
ligature. Alternatively, which is a more common scenario, the victims can be found in 
standing, kneeling, sitting, or even lying positions, in which they successfully performed 
suicide by an incomplete hanging (Figure 1.3) [2, 3, 6, 9]. In this case, the partial suspension 
implies only the part of the body weight loads the ligature, and thus, the neck [12, 21].  

 

The proportion of the body weight that loads the ligature and the neck is reported to be 
98% if a person stands and touches the ground only with toes, 66% if standing “feet-flat,” 
64 – 74% if kneeling, 18 – 32% if sitting, and 10 – 18% of body weight if lying down [12, 21]. 

The typical and atypical hangings: With regards to the position of a ligature’s noose and 
knot, the hanging can be typical when the ligature slants upwards and backward 
symmetrically from the loop’s lowest position located at the anterior midline of the neck to 
form the knot or the highest point (if there is no knot) at the posterior side of the head and 
neck, typically in the occipital or nuchal region. In the case of any other ligature’s loop and 
knot position, the hanging is considered to be atypical (Figure 1.4) [2, 3, 6, 9]. This atypical 
position of the knot (or the ligature’s highest point if the knot is not formed) can be placed 
in the anterior midline of the neck (the so-called anterior hangings) or on the lateral sides of 
the head and neck (approximately around the earlobes, the so-called lateral hangings) [6, 9].  

The ligature: The ligature can be formed by a rope or improvised by virtually any available 
convenient material. For example, a necktie, cabled earphones, bedsheets, various clothes, 
a belt, a scarf, shoelaces. It can be turned around the neck once, twice, or several more times. 
When constructing a ligature, the noose can be formed by tying the fixed knot, creating a 
slip noose, or by creating an open noose, in which two ends at the highest point remain 
untangled and independently fixed [3, 6, 7, 9, 10]. 

Figure 1.3. Positions in (incomplete) hanging. From: Neck Trauma. In: Dettmeyer R.B, Verhoff M.A, Shutz 
H.F. Forensic Medicine Fundamentals and Perspectives. Heidelberg: Springer-Verlage, 2014, p. 171. [9] 
Reproduced with permission from Springer Nature (not part of the governing CC license). 

https://doi.org/10.1007/978-3-642-38818-7_11
https://doi.org/10.1007/978-3-642-38818-7_11
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The short drop and the long drop hangings: One of the most important characteristics 
regarding the case circumstances is distinguishing between the short drop hanging and the 
long drop hanging. The former is characteristic of suicides and accidents. In a short drop, the 
distance the hanged person’s body, or to be more exact – the person’s neck travels from the 
moment the suspension is initiated until the noose is completely tightened and fixed around 
the neck (that is, the final point of suspension) is no more than about one meter, or there is 
no drop at all (N. B. the short drop hangings can be complete or incomplete) [2]. On the 
other hand, long drop hangings are characteristic of executions and only rarely occur in the 
context of suicide or accident [3, 6, 12, 22]. The executions by hanging were performed for 
many centuries in an unstandardized manner with many flaws, and even with sentenced 
persons surviving being hanged [20]. In fact, the drop was introduced in the early 19th 
century, with the initially proposed length of about 0.3 – 0.45 meters [20]. In the following 
decades, the long drop method was introduced, with some adjustments, to make hanging a 
systematic, more efficient, and more humane execution method [12, 20]. Formulas and 
tables were proposed to calculate the required drop for a given subject’s body weight. As 
the name self-describes, the distance the hanged person’s neck travels are significantly 
greater. According to the proposed calculations, for example, a person weighing c. 80 kg 
would require a drop of at least c. 2.5 m [20]. In addition to the drop increase, the preferred 
position of the knot was changed to be placed submental (i.e., anterior atypical hanging) 
[20]. The proposals and conclusions were made after a better understanding of the 
biomechanics and a principal injury caused by this long drop method – the severe injury of 
the cervical spine resulting in instantaneous death, entirely different from the death 
mechanism in suicidal hangings with the short drop, considered in the further text [6, 12, 
20, 22]. 

1.2.2. Mechanism of death by short drop hangings 

The understanding of death mechanisms in hangings lies in two groups of evidence. The 
first is experimental data from the studies conducted around the end of the 19th and 
throughout the 20th century [2, 7, 12, 23–29]. The other is a contemporary analysis of 

Figure 1.4. (a) Typical and (b, c) atypical hanging. From: Neck Trauma. In: Dettmeyer R.B, Verhoff M.A, 
Shutz H.F. Forensic Medicine Fundamentals and Perspectives. Heidelberg: Springer-Verlage, 2014, p. 176. 
[9] Reproduced with permission from Springer Nature (not part of the governing CC license). 

https://doi.org/10.1007/978-3-642-38818-7_11
https://doi.org/10.1007/978-3-642-38818-7_11
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recorded videos of suicidal hangings initiated by Anny Sauvageau, who founded the 
Working Group on Human Asphyxia in the year 2006 [12, 25, 30–33]. 

 The proposed mechanism of airway constriction was soon challenged by the occlusion 
of the large-caliber cervical blood vessels and eventually with the reflex cardiac arrest 
through the carotid sinus reflex [2, 3, 6, 12, 25]. The three proposed mechanisms are not 
considered mutually exclusive, and one could superimpose on others [3]. 

Airway occlusion: It was demonstrated that a weight load of about 15 kg is sufficient to 
close the trachea [3, 23]. But, in hangings, the airway occlusion stems from the lifting of the 
larynx by pushing the base of the tongue upwards and backward against the pharynx walls, 
which results in the so-called tamponada oris [3, 6, 9] occludes the opening of larynx. 

Occlusion of the large-caliber neck blood vessels: The internal jugular veins lie relatively 
superficial, and the complete occlusion of their thin-walled lumens occurs with a load of as 
much as 2 kg [3, 23, 25]. Once the blood outflow from the head (and brain) is impeded by 
neck compression, the continuous blood inflow from the partially or wholly patent carotid 
arteries leads to congestion above the level of the ligature [2, 3, 9]. This eventually prevents 
the oxygenated blood from perfusing the brain and causes neuronal hypoxia [2]. This is a 
reason why it is possible to perform an incomplete hanging in a lying down position – the 
human head, on average, weighs about 5 kg [6]. To occlude the major neck arteries, a higher 
weight load is required – experiments showed that the load for common carotid arteries is 
at least 3.5 – 7.5 kg (often reported to be 5 kg), and for the vertebral arteries a much higher, 
at least 16 – 35 kg (usually referenced at about 30 kg) [2, 3, 21, 23, 26–28]. These results 
mainly refer to typical knot position, but it has been demonstrated that a force of about 30 
kg is enough “to occlude at least two out of four arteries supplying the brain” in atypical 
(lateral) hangings [2]. The complete occlusion of all arteries is not necessary for a rapid, 
irreversible neuronal injury, as it occurs if the brain perfusion drops by 3 to 4 times from the 
standard values [2]. 

The carotid sinus reflex: The direct mechanical trauma to the carotid sinus could trigger the 
reflex cardiac arrest. The mechanical stimulation of baroreceptors and nerve endings in the 
carotid sinus, located in the tunica adventitia of the internal carotid artery just distal from its 
origin, triggers the cardioinhibitory reflex. From the sinus, the afferent impulses are 
transmitted via the sensory fibers of the carotid sinus nerve (Hering’s nerve), the branch of 
the glossopharyngeal nerve (CN IX). These afferent fibers terminate in the nucleus tractus 
solitarii in the medulla oblongata, while the efferent impulses traverse through the n. vagus 
(CN X) [2, 3, 9, 34–37]. 

But in fact, and as previously stated, many evidence-based conclusions on the 
mechanism of death and agonal sequence stem from an analysis of cases of hangings that 
were video-recorded and the recent work on this issue of the Working Group on Human 
Asphyxia [4, 12, 25, 30–33]. The hanged person typically becomes unconscious after about 
ten seconds and then develops generalized tonic-clonic convulsions, followed by 
decerebrate and decorticate rigidity, with the last observable movement about 4 minutes 
after the hanging. There are also periods of deep rhythmic abdominal respiratory 
movements throughout the first two minutes [2, 12]. The exact reported agonal sequence is 
shown in Table 1.2. Previously, it has been reported that cardiac activity was detected for 



7 

up to 20 minutes after suspension. However, the evidence on the “point of irreversibility” 
for now only shows that a person could recover after about 38 s ± 15 s after the suspension 
was initiated, in the period of decorticate rigidity [12, 31]. 

 

Table 1.2. The agonal sequence in strangulation (based on a review of 14 cases of filmed hanging) 

 Average time 
Loss of consciousness  10 s ± 3 s 
Convulsions 14 s ± 3 s 
Decerebrate rigidity 19 s ± 5 s 
Start of deep rhythmic abdominal respiratory movements 19 s ± 5 s 
Decorticate rigidity 38 s ± 15 s 
Loss of muscle tone 1 min 17 s ± 25 s 
End of deep rhythmic abdominal respiratory movements 1 min 51 s ± 30 s 
Last muscle movement 4 min 12 s ± 2 min 29 s 

From: Sauvageau A. Death by Hanging. In: Rutty G.N. (Ed). Essentials of Autopsy Practice. London: 
Springer-Verlage, 2014, p. 28. [12] Reproduced with permission from Springer Nature  
(not part of the governing CC license). 

 

1.2.3. Autopsy evaluation of deaths by hanging 

In evaluating suspected deaths by hanging on autopsy, as in any case in which a neck 
injury is suspected, the general autopsy procedure is modified and supplemented by a so-
called special autopsy of the neck organs [2, 3, 5, 7, 9, 38]. It is, nevertheless, preceded by 
looking at the ligature (if still present) and the detailed routine external examination of the 
whole body, particularly the skin of the neck, and eventually by creating “the artificial 
bloodless field” at the beginning of the internal autopsy examination. This bloodless field is 
achieved by opening the cranial vault, removing the brain and incising the dural sinuses on 
one side, and disconnecting the heart from its major blood vessels on the other [2, 3, 9, 10]. 
By this process, the blood is allowed to drain on both ends passively, rostral and caudal 
from the neck [2, 3, 9], which significantly decreases the possibility of creating artifactual 
hemorrhages in the neck structures (an excellent example of bleeding being a relative vital 
sign). 

The general findings are typical in all deaths preceded by a very short agony and are 
characteristic but non-specific of asphyxia in general and of hanging, for example, the 
fluidity of the blood [6] (considered by some to be irrelevant and a myth [3]), well-
pronounced livores mortis, congestion and edema, cyanosis, and petechial hemorrhages. So, 
observing them in general is of no definite significance alone (for example, many can be 
detected in sudden cardiac deaths) [2, 3, 6, 9]. Their distribution (or even absence) can be of 
more use, as will be pointed out. 

 

 

https://doi.org/10.1007/978-1-4471-5270-5_2
https://doi.org/10.1007/978-1-4471-5270-5_2
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1.2.3.1. Findings on the external examination 

Findings above the level of the ligature: The appearance is directly related to the underlying 
hemodynamic disturbance [9]. If the constriction by ligature causes partial occlusion of the 
major blood vessels of the neck – completely occluding jugular veins but allowing some 
inflow of the blood through the carotid arteries – the previously described congestion 
ensues above the ligature level [2, 3, 7, 9, 10]. The impaired blood outflow, in addition to the 
transudation and consequent tissue edema, probably by combined effects of anoxia and 
shifting of the oxyhemoglobin curve, potentiates the formation of the reduced hemoglobin 
(carbaminohemoglobin) and causes pronounced cyanosis of the head and the segment of 
the neck rostral to the ligature level [3]. The impaired outflow can result in a dramatic 
increase in the intravascular pressure, which can lead to rupture of the venules and/or 
capillaries, appreciable in the conjunctivae, sclerae, and skin of the forehead. This is 
macroscopically observable as a petechial hemorrhage in these regions [2, 3, 6, 9]. Due to the 
same reason, overt bleeding from the ears and nose can occur [7, 9]. The petechial 
hemorrhage appears suddenly but requires compression to last at least 10 – 20 seconds [2, 
3, 9]. These findings are present in cases of incomplete cessation of head circulation and are 
hence observable in incomplete and atypical hangings. Contrary, full suspension with 
typical knot position and complete cessation of blood inflow to the head as a rule results in 
total absence of the described findings (a so-called “pale hangman,” Figure 1.3) [2, 3, 6, 9]. 
In fact, finding them in such a case must raise a suspicion of foul play [3, 9]. Additional 
findings include hypersalivation and saliva dripping from the angle of the lips on a tilted 
side of the head [2, 6, 9, 35]. 

Findings at the level of the ligature: The typical finding at the site of the ligature 
compression is the postmortal formed ligature mark, a parchment-like, brown-yellowish, or 
dark-reddish furrow, due to skin desiccation [3, 6, 9]. This is present only if the ligature is 
not removed quickly and if the constricting force is not minimal [6]. If present, it is usually 
overt and is significant for several reasons. It shows the position of the noose’s loop and the 
position of the knot in a noose – the lowest portion corresponds to the site of the loop, while 
the opposite, highest point indicates the position of the knot (if it was made) or the highest 
level of suspension (Figure 1.5) [9]. If there is no tightly constricted fixed knot or a slip noose, 
the ligature mark does not encircle the entire neck circumference [2, 3, 9, 10]. It is rarely 
placed horizontally, except in a tightly entangled fixed/slip noose, multiple turns of the 
ligature, or a specifically tilted body position in incomplete hanging [3, 9]. There may be 
excoriations around the ligature mark, which are of no value in terms of vitality [9]. If there 
are several turns of the ligature, the skin between them may get pinched. In this skin ridge, 
the presence of hemorrhages is a significant relative sign of vitality [2, 3, 6, 9]. 

Findings below the level of the ligature: Since the hypostasis is typically well-pronounced, 
its distribution can aid in reconstructing the body's position or indicate if the body was 
moved and position manipulated. In complete suspensions, the characteristic “gloves and 
socks” distribution of the hypostasis can be observed [3, 6, 9]. In incomplete hangings, the 
distribution can be more complex and corresponds to the body position, compression points 
and tilting, if livores were fixed. At the most dependent areas, vibices can be observed 
(postmortem phenomenon) [6]. 
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1.2.3.2. Findings on the internal examination 

Findings above the level of the ligature: If the described hemodynamic disturbance – acute 
congestion above the ligature level occurs in the head region, the petechial hemorrhages can 
be detected under the temporal muscles’ fasciae and in the leptomeninges. Congestion can 
also result in appreciable brain edema [2, 3, 6, 7, 9, 10]. All the findings in the neck region 
will be considered separately. 

The special neck autopsy procedure and local findings: The layer-by-layer dissection is 
performed. Below the level of the ligature, subcutaneous tissue emphysema can occur due 
to Macklin effect [39], while at the ligature level, drying out of the soft tissue can be seen  
[6]. Moving to deeper layers of the neck, particular attention should be given to the 
sternocleidomastoid muscles and the upper belly of the omohyoid muscles [2, 3, 6, 9, 38]. 
Hemorrhages can be observed in muscles at the ligature level, but the most important are 
the periosteal hemorrhages of the clavicles at the origin of sternocleidomastoid muscles 
(Figure 1.6) [2, 3, 6, 9]. They represent the local relative vital signs and can be of various 
extents. This injury seems to occur due to hyperextension of the muscle – indicating the site 
of the knot in a noose [3, 40]. Further, in situ dissection includes the search for vessel injuries, 
the Amussat’s sign (transversal intimal tears of carotid arteries), although rare, being the 
most characteristic [41, 42], the analysis of deeper neck muscles, the thyroid gland, and 
larynx (signs of congestion and mechanical trauma) [9]. Then, the en bloc evisceration of the 
tongue, hyoid bone, larynx, and upper segments of the trachea and esophagus is done for 
further inspection (see the next paragraph) [2, 3, 9]. Eventually, the revealed cervical portion 
of the spinal column is inspected. The cervical spine injuries in short drop hangings are 
more often confined to the lower half of the column (between the third and seventh cervical 
vertebra) and range from tearing of the anterior longitudinal ligament, widening of the 
intervertebral space or fractures without a dislocation [43–46]. The injury seems to be the 
most common in anterior atypical hangings. Still, it is different from the cervical spine injury 

Figure 1.5. (a and b) A furrow in the case of a typical hanging – the ligature mark has the lowest point in 
the  anterior neck midline (above the laryngeal prominence) and runs symmetrically backwards and upwards, 
fading behind the earlobes – indicating the highest point or the knot in the noose was in the occipital region. 
(c) A furrow in the case of atypical (left lateral) hanging – the placement of the ligature mark indicates the 
lowest part was on the right lateral side of the neck, while the knot was placed in the left auricular region. The 
white arrow indicates the pinched ridge of the neck skin. 
From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia. 
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in long drop judicial hangings, where the fracture of the upper spine segments occurs, with 
a fragment dislocation (the dens), with medullar injury, or even partial or complete 
decapitation [22, 43]. The Hangman’s fracture, spondylolisthesis of the second cervical 
vertebra, and symmetrical fractures of the pedicles are also characteristic of upper segment 
injuries [6, 22]. The fractures should be considered intravital only if accompanied by a 
hemorrhage in the surrounding soft tissue [6]. 

 

 

The laryngohyoid complex injuries: The typical injuries are confined to the hyoid bone's 
greater horns and the thyroid cartilage's superior horns [3]. Interconnected with ligaments 
and soft tissue, they form an interdependent biomechanical functional unit [6, 9, 47]. The 
more detailed anatomy of the thyrohyoid complex is described in the following subsection 
of the introduction (section 1.3). Of forensic relevance is the detection of fractures, 
recognition of signs of intravital fracture occurrence (Figures 1.7 and 1.8), and familiarity 
with pitfalls – misinterpretation of anatomy variations, such as the Eagle syndrome, the 
hypoplasia or absence of superior thyroid horns, and the misinterpretation of the palpable 
triticeal cartilage as a fracture fragment [3, 6, 9, 38, 48]. Detecting horn fractures on autopsy 
is typically straightforward after the horns are dissected and defleshed (Figure 1.7). To make 
things more straightforward, they are relevant only if surrounded by a soft-tissue 
hemorrhage, making them more easily observable [6, 9]. The extensivity of the bleeding may 
vary, and artificial bloodless field creation is of great importance here, too. The horns can 
fracture by direct compression, laterally oriented or anteroposteriorly oriented force, or by 
an indirectly acting stretching through ligamentous structures (membranes) [2, 3]. The 
displacement direction of the fragments cannot be established on autopsy due to direct 
manipulation and artifactual displacement, but postmortem imaging may prove especially 
useful regarding this [49, 50]. The horns can fracture at any site. However, the hyoid bone’s 

Figure 1.6. Dissection of the neck – white arrows indicate visible collarbones subperiosteal hemorrhages,  
at the origin of sternocleidomastoid muscles. 
From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia. 
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greater horns most often fracture on the borderline between the middle and distal thirds, 
within 1 cm from the tip, and at the junction with the hyoid bone’s body. The superior horns 
of the thyroid cartilage tend to fracture near its base [3, 9]. However, no particular pattern 
in fractures has been established concerning the position of the knot in a noose [46, 51–58]. 
It is well demonstrated that the frequency of horn fractures increases with age (ossification 
and calcification, increased brittleness), but the association with other basic anthropometrics 
– sex, body weight, and body height remain ambiguous [9, 51, 53, 58–61]. To make things 
more complicated, despite numerous autopsy studies, the thyrohyoid complex fracture 
prevalence estimation remains unordinary inconsistent – reported prevalences range from 
less than 5% to over 75% of cases [46, 52, 56–58, 62–73]! 

 

 

Findings below the level of the ligature: The general organ hyperemia is seen in all organs 
and tissues [6]. Particular attention should be given to remote signs of the agonal sequence 
in hanging. Due to hyperextension of the spine and convulsions, the rupture of the vessels 
in the ventral sides of the intervertebral discs in the lumbosacral region can occur, 
particularly in younger individuals. This macroscopically visible bleeding is called Simon’s 
hemorrhage [6, 12, 30, 43, 74]. 

1.3. Hyoid bone and thyroid cartilage anatomy 

The hyoid bone (Latin, os hyoideum) is U- or V-shaped (i.e., curved) and located under 
the base of the tongue, in the body midline [3, 9, 34, 47, 58]. It is the only bone of the human 
skeleton which does not form a direct connection with any other bone [34, 47]. However, it 
forms complex indirect connections with several surrounding structures by fibrous 
connections (Figure 1.8). The stylohyoid ligament connects it with the skull, the glossohyoid 

Figure 1.7. Defleshing the thyrohyoid complex on autopsy. The black arrow shows the site of the fracture  
of the right greater horn of the hyoid bone, with macroscopically visible hemorrhage in the surrounding soft 
tissue. The hemorrhage is a sign of intravital horn injury, and eases detection of the fracture. 
From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia. 
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membrane with the tongue, and, most importantly, a thyrohyoid membrane with the larynx 
(thyroid cartilage). Moreover, many muscles attach to it, including several tongue muscles, 
digastric muscle, stylohyoid muscle, thyrohyoid, sternohyoid, and omohyoid muscle. The 
hyoid bone has a centrally placed body and two sets of horns (Latin, cornua) – greater and 
lesser horns [34, 47]. Of the most significant forensic relevance are the greater horns, as 
previously discussed. They are oriented horizontally backward from the sides of the body 
[47]. At the base, they are articulated with the hyoid bone’s body and only in some entirely 
ossify and fuse with it over time 

The thyroid cartilage (Latin, cartilago thyroidea) is one of the central structures of the 
larynx, which in addition comprises of cricoid and epiglottic cartilage, as well as paired 
structures, arytenoid, corniculate, and cuneiform cartilages. Thyroid cartilage is a hyaline 
cartilage and has two laminas fused at the midline to form the laryngeal prominence  [34, 
47]. The angle of this fusion is more acute in males (about 90 degrees) than in females (about 
120 degrees), making it more prominent in the former case [47]. Superior horns originate 
from the lateral aspects, at the junction of laminar upper and posterior margins, and are 
directed upwards. At the margin of laminar lower and posterior margins, the inferior horns 
originate, directed downwards to articulate with the cricoid cartilage [34, 47], but apart from 
this, they are of no forensic significance.  

The thyrohyoid membrane is a principal structure that interconnects the thyroid 
cartilage and the hyoid bone. In its medial part, it is thicker, while the lateral portions are 
thin. The free posterior margins form a connection between the tip of the thyroid cartilage's 
superior horn and the hyoid bone's greater horn. It traverses by the interior aspect of the 
hyoid bone [47]. The thyrohyoid complex anatomy is shown in Figure 1.8. 

1.4. Medicolegal significance of thyrohyoid complex fractures 

These fractures are nonspecific neck injuries. They occur in other types of strangulation, 
in blunt-force neck  trauma (agonal falls, traffic accidents, falls from height when it is 
typically not an isolated injury but often associated with polytrauma), or can even be 
iatrogenic (endotracheal intubation, Sellick maneuver) [2, 3, 9, 58, 71]. On the evaluation of 
strangulation deaths, including the hangings, the forensic medicine specialist is expected to 
provide direct answers to several important questions, such as were the detected injuries 
sustained while the subject was alive, can a self-infliction be ruled out, and do the autopsy 
findings suggest the particular and expected circumstances or rule them out (including the 
position of the body and hence the knot position) [2, 3, 9]. To provide answers, one relies on 
many findings, including the described autopsy findings such as distribution of the 
postmortem lividity, position and direction of the ligature mark, and potentially thyrohyoid 
fractures, as well. However, currently, the latter can be of significance only to state that such 
an injury (accompanied by the surrounding soft tissue hemorrhage) is consistent with 
strangulation (i.e., hanging). But as a non-specific to hangings, and strangulation in general, 
and without any recognized patterns regarding the knot in a noose position, other than the 
discussed above, the thyrohyoid complex (and cervical spine) fractures are of no other 
medicolegal significance per se. Initial attempts to observe the association of some 
distribution patterns of these fractures with the knot in a noose position were deemed 
unsuccessful, and this topic requires further research. 
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1.5. Machine learning and forensic pathology 

The concept of artificial intelligence (AI) was coined in 1956 and refers to the 
development of computer systems able to perform tasks that require human intelligence 
[75]. For example, this would encompass visual perception, speech recognition, and 
decision-making. The theory defines three main AI stages: 1. Narrow AI (“weak,” capable 
of functioning within a strictly defined narrow function, e.g., Alexa), 2. General AI (“strong” 
machine capable of performing any intellectual task a human can – not yet achieved), and 
3. Super AI (a stage when a computer surpasses human capacities) [75]. AI is an umbrella 
term, while one of its subcategories is called machine learning (ML). ML specifically refers 
to a computer program capable of learning how to produce behavior not explicitly 
programmed by the author (i.e., by a human). In the broadest sense, ML can learn patterns 
from data [75–77]. We can probably see this concept as a set of experience-based learning 
and numerous try-and-error attempts, which improve the capability for a correct final 

Figure 1.8. Predilection sites for fractures of the larynx and hyoid bone from lateral compression. From: Neck 
Trauma. In: Dettmeyer R.B, Verhoff M.A, Shutz H.F. Forensic Medicine Fundamentals and Perspectives. 
Heidelberg: Springer-Verlage, 2014, p. 176. [9] Reproduced with permission from Springer Nature  
(not part of the governing CC license). 

https://doi.org/10.1007/978-3-642-38818-7_11
https://doi.org/10.1007/978-3-642-38818-7_11
https://doi.org/10.1007/978-3-642-38818-7_11
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decision (output) after each step (iteration) based on the previous observation and result. 
This concept of self-improvement by recognizing error and trying to minimize it is termed 
“Error backpropagation” [75]. Machine learning programs can detect non-obvious 
associations between variables, which would remain unobserved by common sense or even 
“conventional” statistical analyses. Patterns can be detected in complex data structures (e.g., 
nonlinear associations, interactions, subgroups). Thus, it can be a handy tool to overcome 
challenges for which traditional statistical methods are not well-suited [75, 76]. 

Each machine learning program is defined by an algorithm (set of rules and statistical 
techniques for learning and decision making), a model (mathematical equation, a formula 
providing output based on the available input), predictor feature(s) (a variable – distinct 
observation of interest), and response variable (the “feature” or the target output – outcome 
that should be predicted/classified) [75, 76]. For the ML program to function, the sample of 
cases from which it will learn needs to be divided into the training set – to train the model 
(learning) and a typically smaller testing set – a subgroup of cases from a sample that will 
be omitted from the “training sessions.” It will contain “unseen” data to test the general ML 
model performance. [75–78]. The sample size ratio is usually 70% to 30% or 80% to 20% for 
training and test subset, respectively [75, 76, 79, 80]. The ML modeling requires a 
significantly large sample size and uniform data, preferably without any missing 
information for every included case in the sample. There are no precise rules for 
determining the required sample size for supervised machine learning model development, 
but a general rule is that the larger the sample is, the more accurate estimation will make 
[75–77]. 

Depending on how the ML models are trained, three distinct types are defined: 
supervised, unsupervised, and reinforcement learning. In the supervised ML, the author 
provides the machine with data on the actual outcome in the analyzed set. In the case of the 
research presented in this thesis, the machine learning program will be “familiar” with the 
position of the knot in a noose for each case, so it can explicitly learn which outcomes should 
be differentiated and would ideally provide high-accuracy classifications in the unseen data 
(Figure 1.7) - learning by example [75, 77]. The two latter ML forms are less interesting for 
the present research. Briefly, the unsupervised learning machine is not provided with the 
outcome for each case (so-called unlabeled data) and should classify by itself, without 
guidance from the author – it should determine how to best categorize dimensions into 
subtypes (e.g., diagnostic groups). It helps understand patterns (e.g., pixel patterns) and 
detect grouping (groups). In reinforcement learning, the essential principle is a trial-and-
error learning method (text and speech understanding is an example of application) [76, 77]. 

Several different “supervised” machine learning algorithms (i.e., different sets of 
decision-making rules) exist, and the basic concepts of some will be described here. 

Logistic regression can be considered as a “rudimental” machine learning algorithm. The 
binary outcome is defined (e.g., the fracture is present or absent, in mathematical terms “1” 
or “0”), and the significance of the input variable with the outcome is calculated and defined 
as an odds ratio. It can be useful to detect significant associations that can point to important 
input variables for other classification algorithms. It is, nevertheless, a “traditional” or a 
“conventional” statistical method [75–77]. 
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Figure 1.9. Illustration of three machine learning problems, left to right: linear and nonlinear regression, 
classification, and clustering. From: Lidströmer N, Aresu F, Ashrafian H. Basic Concepts of Artificial 
Intelligence: Primed for Clinicians. In: Lidströmer N, Ashrafian H. (Eds). Artificial Intelligence in Medicine. 
Cham: Springer, 2022, p. 11. [75] Reproduced with permission from Springer Nature  
(not part of the governing CC license). 

Decision Tree is an algorithm whose model provides a branching set of rules in decision-
making that resemble the inverted tree (Figure 1.10). If adequately modeled, it can perform 
classification tasks in a stepwise manner by several if-then decision steps, which is quite 
useful as it is easily understandable by common sense and directly points to the most 
significant inputs, with high visual interpretability – it is useful for identifying complex 
associations [75–77, 81]. 

 

 
Figure 1.10. A scheme of a simple “branching” decision tree machine learning model – a series  
of understandable if-then decision-making stops. 

Naïve Bayes is based on the Bayes’ theorem, a distinct set of rules based on the 
probabilistic approach. The algorithm’s initial assumption is that none of the inputs are 
interdependent (change in the value of one variable does not affect other variables) [75, 82]. 

K-Nearest Neighbor (k-NN) classifies cases based on the “distance” to the closest (most 
similar) neighbor points. It is referred to as a lazy algorithm because it memorizes the training 
set and does not learn a discriminative function [75, 83]. 

https://doi.org/10.1007/978-3-030-64573-1_1
https://doi.org/10.1007/978-3-030-64573-1_1
https://doi.org/10.1007/978-3-030-64573-1_1
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The artificial neural network (ANN) is probably the most complex of the algorithms. The 
inspiration for their design is based on the biological organization of neurons (synapses). 
Each neuron performs the calculation and provides individual output delivered to the next 
neuron. This one independently analyzes the output as a new input. Eventually, the single 
final output of the model is provided. During the training process, the weights are 
calculated for each transfer function and the best of many pathways in the network is 
selected. Several factors define the complexity of ANN, the most significant being the 
number of hidden layers – defining the number of interconnections and pathway 
complexity [75–77, 79, 80, 84]. 

 However, the way the training is carried out is defined by the set of parameters (so-
called hyperparameters) that are not learned but are predefined manually (before training) 
[75, 76]. These define how to optimize the weights (variable importance), how many times 
the algorithm can pass through the training data, and limiting the complexity of a model 
(e.g., number of hidden layers and neurons in ANN, number of nodes and a minimum 
sample size of the parent node in decision tree model) [75–77]. There are means by which 
this process of manual hyperparameter adjustment can be automatized and systematized – 
using a so-called genetic algorithm, which is inspired by the biological evolution process: 
the best model achieved in a single generation will be the starting point for the next one [79, 
80, 84–86]. Of note is that there is no standardized set of these values that is uniformly 
appropriate – one of the reasons why this is an experimental method [76, 77]. 

A well-trained model should perform against the test data similarly to its average 
performance against the training data. The metrics for evaluation can be those dependent 
on the defined cutoff point (accuracy, sensitivity, specificity, positive and negative 
predictive value), as well as those independent of this – most notably the Receiver operating 
characteristics curve analysis [76]. 

 In medicine, the primary interest is in AI-based (ML-based) image analysis (for example, 
radiology, histology, and dermatoscopy), which could improve or speed up diagnostics. For 
example, a highly accurate automated model that differentiates between benign and 
malignant lesions based on a routinely analyzed microscopy slide scan or some other 
macroscopic image would be of great direct clinical value. But it can also be useful for the 
classification based on non-image data (sets of numerical and categorical data) [75–78, 87]. 
In forensic medicine, AI-based problem solving was attempted, for example, in research on 
the sex and age estimation, dating of bruises, detection and classification of the pulmonary 
fat embolism, reconstruction of the pedestrian strike regarding the vehicle type, estimation 
of the postmortem interval, toxicology analysis [88–96].  

 

However, up to the author’s best knowledge, no attempts to classify the position of the 
knot in a noose in hanging by distribution and pattern of the fractures of the thyrohyoid 
complex and the cervical spine have been performed previously [62]. As the previous 
subsections of the introduction suggest, this type of research could have important 
implications for forensic pathology research and practice in death-by-hanging evaluation.
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2. RESEARCH AIMS 

 

 

I To analyze characteristics and distribution of thyrohyoid complex and cervical spine 
fractures with regards to the position of the knot in a noose in suicidal hangings  
by basic descriptive and inferential statistical methods. 
 
 
 

II To determine the performance of machine learning algorithms in assessing the knot in a 
noose position based on the thyrohyoid complex and cervical spine fracture patterns  
in suicidal hangings. 
 
 
 

III To determine the performance of machine learning algorithms in assessing the knot in a 
noose position while taking into account the body weight of hanged subjects,  
in addition to the fractures. 
 
 
 

IV To determine the performance of machine learning algorithms in assessing the knot in a 
noose position while taking into account the presence of hemorrhages at the origin of 
sternocleidomastoid muscles on the clavicles, in addition to the fractures  
and the body weight of hanged subjects. 
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3. MATERIAL AND METHODS 

 

This is a single-institution retrospective observational autopsy study on cases of suicidal 
hangings autopsied at the Institute of Forensic Medicine of the Faculty of Medicine of the 
University of Belgrade, Serbia. The data on autopsy cases relevant to the study was 
systematically collected for the period from 1995 to 2023, with several additional sporadic 
cases from the later period, which were observed during the conduction of the research. The 
data was obtained from autopsy records and supplementary documentation (police reports, 
photo documentation, and heteroanamnestic data), all archived at the Institute of Forensic 
Medicine. The study was approved by the Ethics Committee of the Faculty of Medicine, 
University of Belgrade, Serbia (N0 25/V-7). 

The entire study presented in this thesis is structured into three separate parts. 
Therefore, the general research structure and characteristics common for all three parts are 
described in the following sections of the Materials and Methods (from section 3.1. to section 
3.3.). After these sections, the detailed design and any additional methodology or data 
analyses are described separately in a successive and logical order for each part of the study. 
If not otherwise mentioned, the principles described in the general methodology sections 
(3.1. – 3.3.) hold for each part of the study. 

3.1. General case selection criteria and study sample 

The study sample comprised autopsied cases of suicidal hanging with a short drop or 
without a drop, in whom autopsy findings, police investigation and report, circumstances, 
and heteroanamnestic data excluded potential foul play and concluded the hanging event 
and death were of suicidal manner. In all the cases, autopsy findings were consistent with 
hanging as a cause of death, and in those cases in whom the fractures of the thyrohyoid 
complex or cervical spine were observed on autopsy, the presence of a macroscopically 
visible soft-tissue hemorrhage surrounding these fractures was considered a sign of 
intravital injury (fracture) occurrence. Exclusion criteria in the case selection were: subject’s 
age of fewer than 15 years, a long drop hanging, anatomy variations (congenital or acquired) 
of the thyrohyoid complex in which one or more horns – greater hyoid bone horns, and 
superior thyroid cartilage horns are absent or hypoplastic, Eagle syndrome, fractures of 
other laryngohyoid structures (for example, cricoid cartilage, hyoid bone body, lesser horns 
of the hyoid bone), pronounced putrefactive changes, as well as all the cases in which the 
position of the knot in a noose could not be determined by autopsy examination and police 
investigation.  

Based on the assessed knot in a noose localization regarding the head anatomy, each 
included case was assigned to one of the four groups (Figure 3.1): 

• Posterior knot position, 

• Anterior knot position, 

• Left lateral knot position, 

• Right lateral knot position. 
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The position of the knot in a noose was classified as the posterior if the knot was estimated 
to be in the region behind the mastoid processes’ projections, at the back side of the neck; as 
the anterior if the knot was located anteriorly to the projection of mandible angles; and, as 
the left or right lateral if the knot was located between the projections of an ipsilateral mastoid 
processus and mandible angle, as shown on Figure 3.2 (see section 3.2.1. The knot in a noose 
position assessment). In this manner, the cases were divided into typical (posterior) hangings 
and atypical (anterior, left lateral, and right lateral) hangings. 

 

 

 

 

3.2. Autopsy technique standard and uniformity of documented findings 

At the Institute of Forensic Medicine in Belgrade, all autopsies are performed or 
supervised by at least two forensic pathologists, university teachers, with at least five years 
but usually more than ten years of forensic pathology practice as forensic medicine 
specialists. Moreover, at the Institute, all forensic pathologists perform the identical autopsy 
standard procedure, which in cases of suspected hanging deaths invariably includes a 
mandatory and detailed external neck examination followed by a standard layer-by-layer 
neck dissection. Therefore, the uniformity of recorded findings is ensured, as described in 
the following text. 

Figure 3.1. The subjects were assigned to one of the four groups depending on the knot in a noose position:  
It can be in a typical (posterior) or atypical position (anterior or left/right lateral). 
Adopted from: Leković et al. [62] 
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3.2.1. External neck examination – the knot in a noose position assessment 

On the external neck examination, if the fixed-knot noose is still in place, the position of 
the knot is noted. Regardless of this, the ligature skin mark (a furrow) is always precisely 
measured (width, depth) and described considering the distance from the fixed anatomical 
points of the head: chin tip, mandible angles, lower poles of earlobes’ radices, and external 
occipital protuberance (if a furrow was present). In this manner, even if the noose was 
absent at the time of the autopsy examination, the position of the knot could be determined: 
it represents the point opposing the lowest and the deepest part of the ligature mark 
(illustrative example shown in Figure 1.5). If the mark in the form of the knot’s impression 
is visible, this is noted, too. So, the noose knot’s position is estimated based on the 
appearance and position of the skin ligature mark on the neck or by noting the position of 
the knot on autopsy if the noose was not removed before it. 

 

Figure 3.2. Scheme of the knot in a noose position classification as anterior (A), posterior (P), or lateral (L). 
The head is viewed from the top, ears can be seen on the sides and the nose in front. The drawn lines are 
crossing the mastoid processes in the back, and mandible angles in front (not directly visible from the top but 
crossing points are corresponding to their positions). Reproduced from: Leković et al. [62] 
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3.2.2. Neck dissection – detection of the thyrohyoid complex and cervical spine fractures 

The neck dissection is preceded by the autopsy of the head and cranial vault to ensure 
the so-called ‘dry’ neck dissection. Then, a standard layer-by-layer dissection of the 
anterolateral neck is performed. For this research, the following segments of this neck 
dissection technique should be highlighted:  

• A layer-by-layer dissection of the skin and soft tissues, including each muscle layer 
of the anterolateral neck, is performed to expose the larynx. Then, the tongue, 
oropharynx, larynx, and initial tracheal segments are dissected and removed en bloc 
after in situ inspection. Afterward, the thyrohyoid structures are separated 
(‘defleshed’) from the soft tissue to reveal any fractures by inspection and palpation. 
The thyroid cartilage’s superior horns and the hyoid bone’s greater horns are 
invariably inspected, palpated, and checked for mobile fragments and fissures.  

• After this, the cervical spine is exposed, and this segment is checked for the presence 
of an injury—a fracture. 

• As previously mentioned, the fractures of the thyrohyoid complex and the cervical 
segment of the spinal column were considered to be intravital (that is, to have 
occurred due to hanging and neck compression by the noose) only if accompanied 
by the surrounding soft tissue hemorrhage. This prevented misinterpretation of 
artifactual fractures due to body transport or ma autopsy-related postmortem injury. 
 

3.3. General variable selection and coding 

For all the included cases, the following data were noted: sex, age, position of the knot 
in a noose, and presence of the fracture of each (left and right) greater hyoid bone’s horn, 
the fracture of each (left and right) superior thyroid cartilage’s horn, and the fracture of the 
cervical spine, as per criteria described in the previous methodology (sub)sections. So, for 
each included case, it was determined if thyrohyoid complex fractures were present and 
exactly which horns were fractured (defining the side – left or right lateral). Based on the 
presence or absence of the mentioned thyrohyoid complex and cervical spine fractures, the 
following variables were coded for analysis: 

• Unilateral superior thyroid horn fracture (Yes / No), 

• Bilateral superior thyroid horn fractures (Yes / No), 

• Total number of superior thyroid horn fractures (range 0 – 2), 

• Unilateral greater hyoid horn fracture (Yes / No), 

• Bilateral greater hyoid horn fractures (Yes / No), 

• Total number of greater hyoid horn fractures (range 0 – 2), 

• Total number of thyrohyoid fractures (a sum of variables listed 3rd and 6th, range 0 – 4), 

• Isolated superior thyroid horn fracture(s) (Yes / No) 

• Isolated greater hyoid horn fracture(s) (Yes / No) 

• Simultaneous superior thyroid horn and greater hyoid horn fractures (Yes / No) 

• Cervical spine fracture (Yes / No) 
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The coded variables and other noted data were used in all three parts of this study. Their 
further analyses are described in detail in the following (sub)sections of the Material and 
Methods for each study part separately. Again, if overlapping in terms of methodology, these 
analyses of the obtained data will be described in detail in the part where these are first 
applied, with subsequent briefer comments on any modifications in the following segments 
of the entire research. 

3.4. PARTI I of the study: 
Separate analysis of the fracture patterns in knot’s position assessment 
 

3.4.1. Study design 

The first part of the study represents analysis, which investigated the association of the 
noose knot’s position with the subject’s sex, age, and the presence of fractures of the superior 
horns of the thyroid cartilage (STH), greater horns of the hyoid bone (GHH), and the cervical 
spine. For the descriptive, inferential statistics analyses, as well as for machine learning 
models development, to determine the thyrohyoid and cervical spine fracture patterns with 
regards to the knot’s position, this part of the study comprised stepwise, similar analyses of 
the entire study sample and three derived subsets, as described below: 

• Dataset I — The entire sample – all cases that fulfilled the defined study criteria. A total 
of 1235 subjects were included. Therefore, this Dataset (I) comprised the cases without 
any thyrohyoid and cervical spine fractures and cases with these fractures. The subjects 
were divided into two groups to be compared based on the noose knot’s position: (1) 
typical (posterior) hangings and (2) atypical (lateral and anterior) hangings. 

• Dataset II — This is a subgroup of the entire sample, including only cases with at least 
one thyrohyoid or cervical spine fracture. A total of 773 subjects were included in this 
subgroup. The exclusion of subjects without thyrohyoid and cervical spine fractures may 
eliminate potential failure of fracture pattern detection or underestimation. The cases 
were divided into the same two groups for comparison (typical and atypical hangings). 

• Dataset III — The subgroup comprised only atypical hanging cases with at least one 
thyrohyoid or cervical spine fracture and comprised 340 subjects. The subjects were 
divided into two groups to be compared based on the noose knot’s position: (1) anterior 
hangings and (2) lateral hangings.  

• Dataset IV — The subgroup comprised only lateral hanging cases with at least one 
thyrohyoid or cervical spine fracture and included 286 subjects. The subjects were 
divided into two groups to be compared based on the knot position: (1) left lateral and 
(2) right lateral hangings. To try to discriminate between the two groups, additional 
variables needed to be coded, defining on which side the fractures occurred: left or right 
superior thyroid and greater hyoid horns. Furthermore, based on the statistical analysis 
results of the machine learning model experiments, we included two additional 
variables: (1) the presence of a single (unilateral) greater hyoid bone horn fracture 
ipsilateral to the knot position and (2) the presence of a single (unilateral) superior 
thyroid cartilage horn fracture contralateral to the position of the knot. 
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3.4.2. Statistical analysis 

Descriptive statistics were used to analyze the samples (datasets) and assess the 
frequency and distribution of thyrohyoid and cervical spine fractures regarding the position 
of the knot in a noose. Nominal data were represented as absolute frequencies and 
proportions (%), and numerical data as mean (± SD) or median (range), as appropriate per 
type (categorical or continuous) and normality of distribution. The normality of the 
continuous numerical data distribution was analyzed by Q-Q plots and the Kolmogorov-
Smirnov test. Inferential statistical analysis of the coded variables and other obtained data 
between the defined study groups was performed using Pearson’s χ2 test, Student's t-test 
for two independent samples, and the Mann-Whitney U test. To determine the association 
between the thyrohyoid and cervical spine fracture patterns with the position of the knot in 
a noose, each of the four datasets was analyzed separately in the noted order (I to IV). The 
χ² test, t-test for two independent samples, Mann-Whitney U test, and Student's t-test for 
two independent samples were used.  

For each dataset, the univariable logistic regression analysis was performed to detect 
whether the dichotomous variables coded above, and the subjects' age were associated with 
the position of the knot in the noose. Variables with p-values ≤ 0.1 on univariable analysis 
were included in the multivariable analysis. Results were expressed as odds ratio (OR) with 
95% confidence interval (CI). Additionally, a Receiver Operating Characteristic (ROC) 
Curve analysis was performed to assess the predictive value of subjects’ age on the 
occurrence of thyrohyoid fracture in general and, separately, on the occurrence of superior 
thyroid cartilage horn fractures and greater hyoid horn fractures. The highest Youden’s 
index [97] was criterion for selection of a threshold value. Separately from these analyses, 
occurrence of the fractures was analyzed between the subjects older than 40 years of age 
and the younger – previous studies reported the fractures tend to occur more often above 
this threshold. A two-tailed p-value < 0.05 was considered statistically significant. 

Finally, using the same coded variables and case group divisions, the machine learning 
algorithm models were assessed for classification – predicting the knot position (see below). 

3.4.3. Machine learning algorithms development and assessment 

According to the aim of this study, using the age, sex, coded variables, and case group 
divisions, the machine learning algorithm models were developed for each of the four 
datasets and assessed for classification performance – predicting the knot in a noose 
position. All the coded variables were included as potential inputs for the training of 
considered algorithms. Before the training, if necessary, the unbalanced dataset was 
balanced using the Synthetic Minority Oversampling Technique (SMOTE) algorithm in the 
Weka software (v. 3.8): we used the ten nearest neighbors and set the seed for random 
sampling to 4. Each dataset was divided into Training and (independent) Test groups, with 
a ratio of 70% to 30%, respectively, by manually repeating the randomization until there 
were no statistically significant differences in the analyzed variables between the two 
groups. The characteristics and comparison of the variables between the training and test 
groups are reported in the Supplementary material. 
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For each developed dataset, the Artificial Neural Network (ANN) model with 
hyperparameter setting finetuning by Genetic algorithm (GA), previously utilized, 
modified and provided to the PhD candidate by Vukićević AM [79, 80, 84], was developed 
in MATLAB (v. 2021b). Finetuning of the algorithm by the GA is done in an evolutionary 
manner – the GA starts a model optimization from an initial guess of hyperparameters 
(initial population), which are used as inputs for the objective function (OF). The OF 
ensembles the model with respect to the current guess of hyperparameters and computes 
the model accuracy – aiming to maximize it [79, 80, 85]. The number of generations of the 
GA optimization was set to 10. Of the developed models, the one with the highest accuracy 
in the test sample was selected, with the condition that there was no statistically significant 
difference in the ROC curve analysis of the outcome predicted probabilities between the 
training and test group. In a case where no model with insignificantly different performance 
between the training and test groups was achieved, the GA-optimized ANN development 
process was repeated until the criteria were met. The ANN developed in this manner also 
selects input variables that were considered and included in the final model, and the 
selected variables are reported in the results section.  

Then, using SPSS software (IBM, v. 29), for each dataset, another ANN (Multilayer 
Perceptron – Artificial Neural Network, MLP-ANN) was developed, as well as the 
following machine learning algorithms: k - Nearest Neighbors (k-NN), Decision Tree (DT), 
and Naïve Bayes (NB). The development of the machine learning models in SPSS was done 
by repeated manual or automatic hyperparameter settings. As previously stated, each 
dataset used for machine learning models’ analysis was divided into a training group (70% 
of the dataset) and an independent test group (30% of the dataset) by repeated 
randomization until no statistically significant difference between analyzed variables exists, 
and this division was also used in SPSS, in any developed machine learning model for which 
the statistical program allows the setting to be modified. Again, the model with the highest 
accuracy in the test group with no statistically significant difference in the ROC curve 
analysis of the outcome predicted probabilities between the training and test groups was 
selected. During the analysis in SPSS, at least ten repeated model development attempts 
were made using the same available settings adjustment for each selected model. Up to the 
top five ranked variables for each developed model are also reported based on their relative 
importance in the model. The utilized models’ developed in SPSS basic hyperparameter 
settings are reported: for MLP-ANN number of hidden layers, number of neurons in a 
hidden layer, activation function, training type, training algorithm, initial learning rate, and 
momentum; for DT growing method, tree depth, min. samples of parent node, min. samples 
of child node, number of nodes, and number of terminal nodes; for k-NN number of 
neighbors to consider, distance metrics, and search algorithm (feature selection – stopping 
criterion); and for NB maximum memory, number of bins for scale predictors, and number 
of selected predictors. 

All the developed ML models' performances were evaluated by calculating the accuracy, 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 
positive (LR+) and negative likelihood ratio (LR-), and Area Under the Receiver Operating 
Characteristic (ROC) curve (AUC), overall, and for the test and train group. The ROC curve 
analysis of the outcome predicted probabilities for each dataset was compared between the 
ANN developed in MATLAB and the ANN developed in SPSS. Statistical analysis was 
performed using SPSS software (IBM, v. 29). The calculation of the ML models’ 
performances and the ROC curve comparisons were done in R (v. 4.2) using the EZR GUI. 
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3.5. PART II of the study: 
Analysis of the body weight’s significance  
in knot position-related fracture patterns assessment 
 

3.5.1. Study design 

The second part of the study represents a similar analysis but only of cases in which, in 
addition to the subjects’ sex, age, and thyrohyoid and cervical spine fractures, data on their 
body weight and height could be obtained (the body weight has been measured 
systematically and accurately only for the past ten years at the Institute). Therefore, this 
study part's entire sample was smaller than the previous part and comprised 368 included 
cases. Analyses were focused on the contribution of body weight to predicting the knot in a 
noose position through the thyrohyoid and cervical spine fracture patterns. So, the cases 
were again analyzed stepwise, firstly on the entire sample (with data on the body weight 
and height) and then on subsets formed identically to the previous study part (Dataset I – 
IV; see Section 3.4.1.). For discrimination between datasets of the first study part,  the 
datasets in the second part were labeled with the suffix ‘-w’ (e.g., Dataset I-w), indicating 
analysis of the weight’s significance. The following sample subsets were formed: 

• Dataset I-w – a total of 368 cases were included. Again, it included the cases without 
thyrohyoid and cervical spine fractures and cases with these fractures. The subjects were 
divided into the same two groups to be compared: (1) typical (posterior) hangings and 
(2) atypical (lateral and anterior) hangings. 

• Dataset II-w – a total of 242 cases were included. It is a subgroup that included only cases 
with at least one thyrohyoid or cervical spine fracture. The subjects were divided into 
the same two groups to be compared: (1) typical (posterior) hangings and (2) atypical 
(lateral and anterior) hangings. 

• Dataset III-w – a total of 114 cases were included. There were only atypical hanging cases 
with at least one thyrohyoid or cervical spine fracture, and the cases were divided into 
two groups to be compared: (1) anterior hangings and (2) lateral hangings.  

• Dataset IV-w – a total of 106 cases were included. There were only lateral hanging cases 
with at least one thyrohyoid or cervical spine fracture, and the subjects were divided 
into the following two groups: (1) left lateral and (2) right lateral hangings. Identically to 
the previous step (as for Dataset IV), additional variables were coded to define on which 
side the fractures occurred and if these were unilateral or contralateral (see Section 
3.4.1.). 

3.5.2. Statistical analysis 

The basic descriptive and inferential statistical analyses of each of the four datasets that 
correspond to the statistical analyses in the first part of the study were performed, with two 
additional variables considered: the subjects’ body weight and height.  

In addition, the ROC curve analyses were performed to assess the predictive value of 
subjects’ age, body weight, and body height on the occurrence of thyrohyoid fracture in 
general and, separately, on the occurrence of superior thyroid cartilage horn fractures and 
greater hyoid horn fractures. 
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3.5.3. Machine learning algorithms development and assessment 

Due to a smaller sample size from the previous part of the research, machine learning 
model development was performed only in the first two steps: for Dataset I-w and Dataset 
II-w. So, cases without fractures and cases with fractures were included in the first step, 
while subjects without any thyrohyoid complex or cervical spine fracture were excluded in 
the second step. Therefore, all machine learning algorithms were assessed in classification 
performances between the cases where the knot was located posteriorly (typical hangings) 
and cases where the knot was located either laterally or anteriorly (atypical hangings).  

The machine learning algorithm development approach was the same as previously 
described (see Section 3.4.3.), with one additional element: for each machine learning 
algorithm, two different models were developed – one that considered subjects’ body 
weight and height and one ‘analogous’ that did not have input on these variables. If the 
settings allowed this, forcing the input variable (subject’s body weight) was performed in 
cases where the model did not automatically consider the variable. The two ‘analogous’ 
models of each algorithm, one taking into account the body weight and one not considering 
it, were also analyzed by comparing their ROC curves on predicted outcome probabilities 
in test samples. This provided additional information on the significance of considering the 
body weight in assessing the knot in a noose position based on the thyrohyoid and cervical 
fracture patterns. 

3.6. PART III of the study: 
Analysis of the sternocleidomastoid muscles’ origin hemorrhage  
in knot position-related fracture patterns assessment 
 

3.6.1. Study design and the sternocleidomastoid muscle origin site hemorrhage detection 

The third part of the study represents an analysis similar to the previous ones but with 
additional variables: in addition to the subject’s age, body weight, body height, and 
presence of the thyrohyoid and cervical spine fractures, the presence of the hemorrhage at 
the origin sites of the sternocleidomastoid muscles at the clavicles was analyzed with 
regards to the knot in a noose prediction. The presence of the macroscopically visible 
hemorrhage at the sternocleidomastoid muscle origin site — the periosteum of the clavicles, 
left and right — was noted only in cases in which the presence or absence of these 
hemorrhages was explicitly documented in the autopsy report or by the analyzed autopsy 
photographs. This was done to obtain as uniform and as reliable data as possible. Because 
of this, this sample was the smallest of the three study parts and comprised 126 cases. For 
statistical analysis of these muscle hemorrhages, the following additional variables were 
coded: 

• Unilateral sternocleidomastoid muscle hemorrhage (Yes / No) 

• Bilateral sternocleidomastoid muscle hemorrhages (Yes / No) 

• Total number of sternocleidomastoid muscle hemorrhages (range, 0 – 2) 

The cases were again analyzed stepwise, firstly on the entire sample and then on subsets 
formed identically as in the previous two study parts. For discrimination between the 
marking of datasets of the preceding study parts,  the datasets in the third part were labeled 
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with the suffix ‘-m’ (e.g., Dataset I-m), indicating analysis of the muscles’ hemorrhage 
significance. The following sample subsets were formed: 

• Dataset I-m – a total of 126 cases were included. Identically to the previous parts of the 
study, the cases without thyrohyoid and cervical spine fractures and cases with these 
fractures were included. 

• Dataset II-m – a total of 117 cases were included. It is a subgroup that included only cases 
with at least one thyrohyoid or cervical spine fracture or hemorrhage of at least one 
sternocleidomastoid muscle, and these cases were divided into the same two groups to 
be compared: (1) typical and (2) atypical hangings. 

• Dataset III-m - a total of 58 cases were included. There were only atypical hanging cases 
with at least one thyrohyoid or cervical spine fracture or hemorrhage of at least one 
sternocleidomastoid muscle, and the cases were divided into the same two groups to be 
compared: (1) anterior hangings and (2) lateral hangings. 

• Dataset IV-m – a total of 52 cases were included. There were only lateral hanging cases 
with at least one thyrohyoid or cervical spine fracture or hemorrhage of at least one 
sternocleidomastoid muscle’s origin site at the clavicle, and the cases were divided into 
the following two groups: (1) left lateral and (2) right lateral hangings. In addition to the 
variable coding for the fourth dataset, which was identical to the previous study parts, 
additional variables were defined – indicating if each (left and right) 
sternocleidomastoid muscle had visible hemorrhage and if the hemorrhage occurred at 
the side ipsilateral to the position of the knot in a noose. 

3.6.2. Statistical analysis 

The basic descriptive and inferential statistical analyses of each of the four datasets that 
correspond to the statistical analyses in the second part of the study were performed, with 
additional variables considered: regarding the presence of the sternocleidomastoid muscle 
origin site hemorrhages. In addition, the ROC curve analyses were performed to assess the 
predictive value of subjects’ age, body weight, and body height on the occurrence of the 
sternocleidomastoid muscle origin site hemorrhages. 

3.6.3. Machine learning algorithms development and assessment 

Because of the size of the sample in the third study part, machine learning model 
development was limited to and performed only in the first step: for Dataset I-m. So, the 
algorithms were developed to attempt classification between the atypical and typical knot 
in a noose position on the sample that included subjects with thyrohyoid and cervical spine 
fractures, as well as the subjects without these fractures. But in each considered case, there 
was information on the presence of the sternocleidomastoid muscle origin hemorrhages. 
Similarly to the second part of the study, in the machine learning algorithms analysis, two 
‘analogous’ models were developed: one machine learning model that took into account the 
presence of sternocleidomastoid muscle hemorrhages and one machine learning model that 
did not have data (variables) regarding the hemorrhages. These two ‘analogous’ models of 
each algorithm were analyzed by comparing their ROC curves on predicted outcome 
probabilities in the test samples. This provided additional information on the significance 
of sternocleidomastoid origin site hemorrhages in assessing the knot in a noose position 
based on the thyrohyoid and cervical fracture patterns. 
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4. RESULTS 

 

The results are reported for each study part separately, in the order following the one in 
the Material and Methods. 

 
 

4.1. PART I of the study: 
Separate analysis of the fracture patterns in knot’s position assessment 

The basic subjects’ characteristics: sex, age, overall thyrohyoid and cervical spine 
fracture occurrence, and ligature knot position prevalence in all the subjects included in this 
study are shown in Table 4.1.1. 

4.1.1. Descriptive, basic inferential, and logistic regression analysis 
   of the thyrohyoid and cervical spine fracture patterns 

The distribution of the analyzed thyrohyoid and cervical spine fractures in terms of the 
coded variables (see section 3.3. of the Material and Methods) for study subgroups (Datasets 
I – III) is shown in Table 4.1.2. Due to the additional variable coding, the analysis of the 
subgroup of subjects with lateral knot position (Dataset IV) is shown separately in Table 
4.1.3. As most of the descriptive information is given in these tables, only the additional 
statistically significant associations and binary logistic regression analyses are highlighted 
here. 

4.1.1.1. The entire sample (hangings with and without fractures) – Dataset I 

Considering the entire sample (all 1,235 cases), the fractures of the thyrohyoid complex 
were significantly more frequent in those older than 40 years of age compared to the 
younger (N = 591, 63.8% subjects older than 40 years of age vs. N = 158, 51.3% subjects 
younger than 40 years of age, χ² = 15.03, p < 0.001). And, this was true for occurrence of STH 
fractures considered separately (N = 430, 46.4% of subjects older than 40 years vs. N = 120, 
39.0% of subjects younger than 40 years of age, χ² = 5.16, p < 0.05), as well as for the 
occurrence of GHH fractures considered separately (N= 352, 38.0% of subjects older than 40 
years of age vs. N=73, 23.7% of subjects younger than 40 years of age). The cervical spine 
fractures were significantly more frequent in cases older than 40 years of age, as well (N = 
40, 4.3% vs. N = 4, 1.3%, χ² = 6.12, p < 0.05). The overall occurrence of thyrohyoid fractures 
did not significantly differ between the two groups (typical vs. atypical hangings, χ² = 0.001, 
df = 1, p > 0.05) and the distribution of subjects older than 40 years of age was equal between 
these groups (χ² = 3.31, df = 1, p > 0.05). 

On the ROC analysis, age was a statistically significant predictor of the thyrohyoid 
fracture occurrence in general, as well as for the occurrence of GHH fractures considered 
separately but was not a statistically significant predictor for STH fracture occurrence alone 
– the ROC curve analyses are shown in Figure 4.1.1.  
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Table 4.1.1. Basic subjects’ and injury characteristics – the entire study sample (Dataset I). 

N = 1,235 

Sex Male 937 (75.9%) 
Female 298 (24.1%) 

Age (years) 54.3 ± 17.9 

THYROHYOID AND CERVICAL SPINE FRACTURES 

Thyrohyoid fractures present Yes 749 ( 60.6 %) 
No 486 (39.4 %) 

STH fracture present Yes 550 (44.5%) 
No 685 (55.5%) 

GHH fracture present Yes 425 (34.4%) 
No 810 (65.6%) 

Isolated STH fracture(s)  Yes 324 (26.2%) 
No 911 (73.8%) 

Isolated GHH fracture(s) Yes 199 (16.1%) 
No 1,036 (83.9%) 

Simultaneous STH and GHH fractures Yes 226 (18.3%) 
No 1,009 (81.7%) 

Left GHH fracture Yes 248 (20.1 %) 
No 987 (79.9 %) 

Right GHH fracture Yes 263 (21.3%) 
No 972 (78.7%) 

Left  STH fracture Yes 371 (30.0%) 
No 864 (70.0%) 

Right  STH fracture Yes 360 (29.1%) 
No 875 (70.9%) 

Cervical Spine fracture Yes 44 (3.6%) 
No 1,191 (96.4%) 

KNOT POSITION 

Anterior 116 (9.4%) 

Posterior 707 (57.2%) 

Left lateral 208 (16.8%) 

Right lateral 204 (16.6%) 

 
Note: The data is presented as frequency and ratio.  
Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn.  
Most of the data previously reported and table adopted from: Leković et al. [62] 

 

Age was fair but significant predictor for thyrohyoid fracture occurrence (AUC 0.557, 
95% CI 0.524 – 0.591, p <0.05) – cutoff value was age of ≥ 36.5 years (sensitivity 85.7%, 
specificity 27.0%), as well as for GHH fractures alone (AUC 0.571, 95% CI 0.538 – 0.601, p 
<0.001) – cutoff value was age of ≥ 37.5 years (sensitivity 87.8%, specificity 25.6%). Contrary, 
age was not a significant predictor in STH fracture occurrence (AUC 0.518, 95% CI 0.486 – 
0.550, p >0.05). Considering the entire sample, age was a good predictor of cervical spine 
fracture occurrence – with AUC of 0.709 (95% CI 0.639 – 0.779), p < 0.001. This ROC analysis 
is shown in the same figure. Regarding the cervical spine fracture occurrence, the threshold 
value was the age of ≥ 64.5 years, with a sensitivity of 65.9%, and a specificity of 70.6%. 
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On the univariable binary logistic regression analysis, significantly associated with the 
atypical knot position were older age (OR = 1.008, 95% CI 1.002 – 1.015; p < 0.05), cervical 
spine fracture (OR = 4.797, 95% CI 2.348 – 9.801; p < 0.001), unilateral GHH fracture (OR = 
1.615, 95% CI 1.255 – 2.076; p < 0.001), simultaneous STH and GHH fractures (OR = 1.528, 
95% CI 1.144 – 2.041; p < 0.01), and absence of isolated STH fractures (OR = 0.640, 95% CI 
0.492 – 0.833; p < 0.001).  

On the multivariable logistic regression analysis, the cervical spine fracture (aOR = 4.326, 
95% CI 2.097 – 8.927; p < 0.001) and unilateral GHH fracture (aOR = 1.368, 95% CI 1.004 – 
1.863 p < 0.05) remained significantly associated with the atypical knot position, adjusted 
for subjects age (aOR = 1.005, 95% CI 0.999 – 1.012; p > 0.05), simultaneous STH and GHH 
fractures (aOR 1.166, 95% CI 0.827 – 1.643), and isolated STH fractures (aOR 0.790, 95% CI 
0.553 – 1.054). This model correctly classified 60.7% of cases (χ² = 52.94, df = 5, p < 0.001; 
Hosmer & Lemeshow Test: χ² =  13.61, df = 8, p > 0.05). 

Figure 4.1.1. The ROC curve analyses of the subjects’ age as a predictor for (a) the occurrence of GHH 
fractures, (b) the occurrence of STH fractures (c) the occurrence of thyrohyoid fractures in general, and (d) 

the cervical spine fracture occurrence, in the entire study sample (Dataset I). 
Abbreviations: GHH – Greater hyoid bone horn, STH – Superior thyroid cartilage horn. 
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4.1.1.2. The hangings with thyrohyoid or cervical spine fractures – Dataset II 

In the subgroup of subjects in which at least one thyrohyoid or cervical spine fracture 
was observed, subjects older than 40 years were equally distributed between the two groups 
(typical vs. atypical hangings, χ² = 0.001, df = 1, p > 0.05).  

On the univariable logistic regression analysis, significantly associated with the atypical 
knot position were older age (OR = 1.012, 95% CI 1.003 – 1.020; p < 0.05), unilateral GHH 
fracture (OR = 1.703, 95% CI 1.277 – 2.270; p < 0.001), simultaneous STH and GHH fractures 
OR = 1.521, 95% CI 1.114 – 2.077; p < 0.01, cervical spine fracture (OR = 4.700, 95% CI 2.287 
– 9.658; p < 0.001), and absence of isolated STH fractures (OR = 0.524, 95% CI 0.390 – 0.703; 
p < 0.001).  

On the multivariable logistic regression analysis, the cervical spine fracture (OR = 5.085, 
95% CI 2.281 – 11,337; p < 0.001), and unilateral GHH fracture (OR = 1.674, 95% CI 1.033 – 
2.712; p < 0.05) remained significantly associated with the atypical knot position, 
independently of subjects age (OR = 1.008, 95% CI 0.999 – 1.017; p > 0.05), simultaneous STH 
and GHH fractures (OR = 1.284, 95% CI 0.873 – 1.980; p > 0.05), or isolated STH fractures 
(OR = 1.025, 95% CI 0.593 – 1.769; p > 0.05). This model correctly classified 61.8% of cases 
(χ² = 42.98, df = 5, p < 0.001; Hosmer & Lemeshow Test: χ² = 12.85, df = 8, p > 0.05). 

 

4.1.1.3. The atypical hangings with thyrohyoid or cervical spine fractures – Dataset III 

The subgroup of Dataset III comprised only atypical hanging cases with at least one 
thyrohyoid or cervical spine fracture, and here, the anterior and lateral hanging groups were 
compared in between. Subjects older than 40 years of age were equally distributed between 
the two groups (χ² = 0.25, df = 1, p > 0.05).  

On the univariable binary logistic regression analysis, significantly associated with the 
anterior knot position were cervical spine fracture (OR = 15.698, 95% CI 7.103 – 34.692; p < 
0.001) and the absence of unilateral and isolated STH fractures (OR = 0.536, 95% CI 0.291 – 
0.988; p < 0.05, and OR = 0.404, 95% CI 0.195 – 0.836; p < 0.05, respectively). The presence of 
unilateral GHH fracture was not significantly different between the groups but was 
included in multivariable logistic regression analysis since the p-value was less than 0.1 in 
univariable binary logistic regression analysis.  

On the multivariable binary logistic regression analysis, the cervical spine fracture (aOR 
= 10.157, 95% CI 4.032 – 25.588; p < 0.001) remained significantly associated with the anterior 
knot position, independently of the unilateral and isolated STH fractures (aOR = 1.066, 95% 
CI 0.509 – 2.231; p > 0.05, and aOR = 0.398, 95% CI 0.133 – 1.195; p > 0.05, respectively), as 
well as of the unilateral GHH fracture (aOR = 0.508, 95% CI 0.209 – 1.236; p > 0.05). This 
model correctly classified 87.4 % of cases (χ² = 51.41, df = 4, p < 0.001; Hosmer & Lemeshow 
Test: χ² = 2.21, df = 4, p > 0.05).



32 

Table 4.1.2. The descriptives of the coded variables: thyrohyoid and cervical fractures and basic subject characteristics for Datasets I, II, and III. 

 DATASET I 
THE ENTIRE SAMPLE 

 DATASET II 
HANGINGS WITH FRACTURES 

 DATASET III 
ATYPICAL HANGINGS 

Knot Position Knot Position Knot Position 
Typical 
N = 707 
(57.3 %) 

Atypical 
N = 528 
(42.7 %) 

p-value  Typical 
N = 433 
(56.0%) 

Atypical 
N = 340 
(44.0%) 

p-value Anterior 
N = 54 

(15.9 %) 

Lateral 
N = 286 
(84.1 %) 

p-value 

Sex Male 527 ( 74.5%) 410 (77.7%) 
 

329 (76.0%) 271 (79.7%) 
 

38 (70.4%) 233 (81.5%) 
 Female 180 (25.5%) 118 (23.3%) 104 (24.0%) 69 (20.3%) 16 (29.6%) 53 (18.5%) 

Age (years) 53.1 ± 18.1 55.7 ± 17.5 < 0.05 54.6 ± 17.2 57.9 ± 16.4 < 0.05 60.5 (28 – 88) 57.0 (16 – 94) 
THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS 
Isolated  
STH fracture(s) 

Yes 211 (29.8%) 113 (21.4%) 
< 0.001 

 211 (48.7%) 113 (33.2%) 
< 0.001 

 10 (18.5%) 103 (36.0%) 
< 0.05 

No 496 (70.2%) 415 (78.6%) 222 (51.3%) 227 (55.8%) 44 (81.5%) 183 (64.0%) 
Unilateral  
STH fracture 

Yes 213 (30.1%) 156 (29.5%) 

 

 213 (49.2%) 156 (45.9%) 

 

 18 (33.3%) 138 (48.3%) 
< 0.05 

No 494 (69.9%) 372 (70.5%) 220 (50.8%) 184 (54.1%) 36 (66.7%) 148 (51.7%) 
Bilateral  
STH fracture 

Yes 108 (15.3%) 73 (13.8%) 108 (24.9%) 73 (21.5%) 8 (14.8%) 65 (22.7%) 
 

No 599 (84.7%) 455 (86.2%) 325 (75.1%) 267 (78.5%) 46 (85.2%) 221 (77.3%) 
Total N0 of STH fractures 
(0 – 2) 

0 (0 – 2) 0 (0 – 2) 1 (0 – 2) 0 (0 – 2) < 0.05 0 (0 – 2) 1 (0 – 2) < 0.05 

Isolated  
GHH fracture(s) 

Yes 108 (15.3%) 91 (17.2%) 108 (24.9%) 91 (26.8%) 
 

13 (24.1%) 78 (27.3%) 

 

No 599 (84.7%) 437 (82.8%) 325 (75.1%) 249 (73.2%) 41 (75.9%) 208 (72.7%) 
Unilateral  
GHH fracture 

Yes 165 (23.3%) 174 (30.0%) 
< 0.001 

165 (38.1%) 174 (51.2%) 
< 0.001 

22 (40.7%) 152 (53.1%) 
No 542 (76.6%) 354 (67.0%) 268 (61.9%) 166 (48.8%) 32 (53.1%) 134 (46.9%) 

Bilateral   
GHH fracture 

Yes 53 (7.5%) 33 (6.3%) 
 

53 (12.2%) 33 (9.7%) 
 

7 (13.0%) 26 (9.1%) 
No 654 (92.5%) 495 (93.8) 380 (87.8%) 307 (90.3%) 47 (87.0%) 260 (90.9%) 

Total N0 of  GHH fractures 
(0 – 2) 

0 (0 – 2) 0 (0 – 2) < 0.05 1 (0 – 2) 0 (0 – 2) < 0.001 1 (0 – 2) 1 (0 – 2) 

Total N0 of TyHy fractures 
(0 – 4) 

1 (0 – 4) 1 (0 – 4)  1 (0 – 4) 1 (0 – 4)  1 (0 – 4) 1 (0 – 4) < 0.05 

Simultaneous 
STH and GHH 
fractures 

Yes 110 (15.6%) 116 (22.0%) 
< 0.01 

 110 (25.4%) 116 (34.1%) 
< 0.01 

 16 (29.6%) 100 (35.0%) 

 
No 

597 (84.4%) 412 (78.0%) 323 (74.6%) 224 (65.9%) 38 (70.4%) 186 (65.0%) 

Contralateral thyrohyoid fracture 
Yes 2 (3.7%) 28 (9.8%) 
No 52 (96.3%) 258 (90.2%) 

Cervical spine 
fracture 

Yes 10 (1.4%) 34 (6.4%) 
< 0.001 

 10 (2.3%) 34 (10.0%) 
< 0.001 

 22 (40.7%) 12 (4.2%) 
< 0.001 

No 697 (98.6%) 494 (93.6%)  423 (97.7%) 306 (90%) 32 (59.3%) 274 (95.8%) 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard deviation or median and range. For comparison of 
categorical data, the χ² test was performed, while the Student’s t-test for two independent samples or Mann-Whitney U test were performed for 
numerical data. The missing p values are > 0.05. Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TyHy – 
Thyrohyoid. From:  Leković et al. [62]
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4.1.1.4. The lateral hangings with thyrohyoid or cervical spine fractures – Dataset IV 

Subjects older than 40 years of age were equally distributed between the two groups 
(χ² = 1.16, df = 1, p > 0.05).  

On the univariable binary logistic regression analysis, significantly associated with 
the left lateral hangings were fractures of the left greater hyoid horn (OR = 1.701, 95% CI 
1.040 – 2.781; p < 0.05), and right superior thyroid horn (OR = 1.607, 95% CI 1.006 – 2.566; p 
< 0.05).  

On the multivariable logistic regression analysis, both variables remained 
independently associated with the left lateral hangings (aOR = 1.832, 95% CI 1.126 – 2.979, 
p < 0.05, and aOR = 1.940, 95% CI 1.164 – 3.232, p < 0.05, for right STH, and left GHH, 
respectively). This model correctly classified 55.9 % of cases (χ² = 10.566, df = 2, p < 0.05; 
Hosmer & Lemeshow Test: χ² = 0.965, df = 2, p > 0.05). 

 

Table 4.1.3. Characteristics of lateral hanging cases with thyrohyoid or cervical spine fractures (Dataset IV). 

N = 286 Left lateral 
N = 140 (49.0%) 

Right lateral 
N = 146 (51.0%) 

p-
value 

Sex 
Male 233 (81.5%) 119 (85.0%) 114 (78.1%)  
Female 53 (18.5%) 21 (15.0%) 32 (21.9%) 

Age (years) 57.0 (16 – 94) 57.0 (18 – 94) 59.0 (16 – 94) 

THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS 

Thyrohyoid fractures present 
Yes 281 (98.3%) 137 (97.9%) 144 (98.6%) 
No 5 (1.7%) 3 (2.1%) 2 (1.4%) 

GHH fracture present 
Yes 178 (62.2%) 87 (48.9%) 91 (51.1%)  
No 108 (37.8%) 53 (49.1%) 55 (50.9%)  

STH fracture present 
Yes 203 (71.0%) 105 (51.7%) 98 (48.3%)  
No 83 (29.0%) 35 (42.2%) 48 (57.8%)  

Ipsilateral GHH fracture 
Yes 90 (31.5%) 41 (45.6%) 49 (54.4%)  
No 196 (68.5%) 99 (50.5%) 97 (49.5%)  

Contralateral STH fracture 
Yes 80 (28.0%) 41 (51.2%) 39 (48.8%)  
No 206 (72.0%) 99 (48.1%) 107 (51.9%)  

Left GHH fracture 
Yes 99 (34.6%) 57 (40.7%) 42 (28.8%) 

< 0.05 
No 187 (65.4%) 83 (59.3%) 104 (71.2%) 

Right GHH fracture 
Yes 105 (36.7%) 46 (32.9%) 59 (40.4%) 

 
No 181 (63.3%) 94 (67.1%) 87 (59.6%) 

Left STH fracture 
Yes 136 (47.6%) 64 (45.7%) 72 (49.3%) 
No 150 (52.4%) 76 (54.3%) 74 (50.7%) 

Right STH fracture 
Yes 132 (46.2%) 73 (52.1%) 59 (40.4%) 

< 0.05 
No 154 (53.8%) 67 (47.9%) 87 (59.6%) 

Cervical spine fracture 
Yes 12 (4.2%) 7 (5.0%) 5 (3.4%)  
No 274 (95.8%) 133 (95.0%) 141 (96.6%) 

 
Note: The categorical data is presented as frequency and ratio, and numerical as median and range. For comparison of categorical data, 
the χ² test was performed, while the Mann-Whitney U test was performed for numerical data. The missing p values are > 0.05. 
Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn. 
Most of the data previously published in: Leković et al. [62]
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4.1.2. Machine learning algorithms 

The characteristics of all the datasets and the coded variables used in the algorithms 
considering the training and test groups are given in Supplement A. The distribution of the 
subjects in Datasets I, II, and IV regarding the frequencies of two defined outcomes (knot 
position) did not require these samples to be balanced (see Tables 4.1.2, and 4.1.3, and 
Supplement A for sample sizes and proportions). In Dataset III the SMOTE algorithm was 
performed to oversample the significantly less frequent group of cases of anterior hangings 
and reduce the frequency disproportion: the initial ratio of 1:5.3 (54 (15.9%) anterior 
hangings to 286 (84.1%) lateral hangings) was preprocessed to form the sample of 371 cases 
with the ratio of 1:4.4 (85 (22.9%) anterior hangings to 286 (77.1%) lateral hangings). 

In the following text, the results for all the four Datasets (I – IV) will be presented in the 
following order: (1) performance characteristics of the GA-optimized Artificial Neural 
Network developed in MATLAB, (2) performance characteristics of all machine learning 
algorithms developed in SPSS, followed by ROC analysis comparisons between the GA-
optimized ANN models developed in MATLAB and the MLP-ANN models developed in 
SPSS. At the end of the results section of the first study part, the variable ranking in the 
machine learning models developed in SPSS, and the hyperparameter settings of these 
models will be reported. 

 

4.1.2.1. Genetic Algorithm-optimized Artificial Neural Networks 

In accordance with the previous paragraph, Tables from 4.1.4 to 4.1.7. show performance 
characteristic analysis of the GA-optimized ANNs, for Datasets I – IV, respectively. 

Table 4.1.4. Performance characteristics of ANN developed in MATLAB for knot position classification in 
the entire sample (Dataset I). 

GA-optimized ANN 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

DATASET I 
 

Whole sample 
(w&w/o 

fractures) 

Overall 
60.6%  

(57.8–63.3) 
25.2% 87.0% 0.6 0.6 1.9 0.9 

0.61 
(0.58–0.64) 

Test 
60.5% 

(55.4–65.6) 
24.4% 88.1% 0.6 0.5 2.0 0.9 

0.60 
(0.54–0.66) 

Training 
60.6% 

(57.2–63.9) 
25.5% 86.5% 0.6 0.6 1.9 0.9 

0.62 
(0.58–0.65) 

Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There 
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the 
training and the test group (p > 0.05). 
Abbreviations:  GA – Genetic algorithm; w&w/o – with and without; Sn – sensitivity; Sp – specificity; PPV – positive 
predictive value, NPV – negative predictive value, LR+ – positive likelihood ratio, negative LR- – negative likelihood 
ratio, AUC – Area under the curve, CI – Confidence Interval. 

 

The GA-optimized ANN for Dataset I selected following variables (n = 6) to be included 
in the model: subject’s sex and age, presence of unilateral GHH fracture, presence of 
bilateral GHH fracture, the total number of GHH fractures, and the total number of 
thyrohyoid fractures. 
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Table 4.1.5. Performance characteristics of ANN developed in MATLAB for knot position classification in 
atypical hangings (Dataset II). 

GA-optimized ANN 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

DATASET II 

Hangings with 

fractures 

Overall 62.6% 
(59.1-66.0) 

45.0% 76.4% 60.0% 63.9% 1.9 0.7 
0.64 

(0.60-0.68) 
Test 62.7% 

(56.1-68.9) 
49.0% 72.6% 56.5% 66.2% 1.7 0.7 

0.64 
(0.57-0.71) 

Training 62.6% 
(58.4-66.7) 

43.4% 78.2% 61.8% 63.0% 1.9 0.7 
0.64 

(0.59-0.69) 
Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There 
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the 
training and the test group (p > 0.05). 
Abbreviations:  GA – Genetic algorithm; Sn – sensitivity; Sp – specificity; PPV – positive predictive value, NPV – 
negative predictive value, LR+ – positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under 
the curve, CI – Confidence Interval. 

 

The GA-optimized ANN for Dataset I selected following variables (n = 6) to be included 
in the model: subject’s age, presence of bilateral STH fracture, the total number of STH 
fractures, presence of unilateral GHH fracture, presence of simultaneous STH and GHH 
fractures, and the presence of the cervical spine fracture. 

 
 

Table 4.1.6. Performance characteristics of ANN developed in MATLAB for knot position classification in 
the atypical hangings with fractures (Dataset III). 

GA-optimized ANN 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

DATASET III 

Atypical 
hangings  

with fractures 

Overall 
84.4% 

(80.3-87.9) 
42.4% 96.9% 80.0% 85.0% 13.5 0.6 

0.78 
(0.72-0.84) 

Test 
85.0% 

(77.0-91.0) 
40.0% 97.7% 83.3% 85.1% 17.6 0.6 

0.74 
(0.61-0.86) 

Training 
84.1% 

(79.1-88.3) 
43.3% 96.5% 84.9% 84.1% 12.3 0.6 

0.80 
(0.73-0.87) 

Note: The anterior knot position was considered as the positive state in confusion matrix performance calculations. There was no 
statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the training and the test group 
(p > 0.05). 
Abbreviations:  GA – Genetic algorithm Sn – sensitivity; Sp – specificity; PPV – positive predictive value, NPV – negative predictive 
value, LR+ – positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence Interval. 

 
The GA-optimized ANN for Dataset II selected following variables (n = 7) to be included 

in the model: subject’s sex and age, presence of unilateral and bilateral STH fractures, 
presence of unilateral GHH fracture, the total number of thyrohyoid fractures, as well as the 
cervical spine fracture.  
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Table 4.1.7. Performance characteristics of ANN developed in MATLAB for knot position classification in 
atypical hangings with fractures (Dataset IV). 

GA-optimized ANN 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

DATASET IV 

Lateral 
hangings  

with fractures 

Overall 
92.3% 

(88.6-95.1) 
94.3% 90.4% 90.4% 94.3% 9.8 <0.1 

0.96 
(0.93-0.99) 

Test 
91.8% 

(83.8-96.6) 
92.3% 91.3% 90.0% 93.3% 10.6 <0.1 

0.96 
(0.90-1.00) 

Training 
92.5% 

(88.0-95.8) 
95.0% 90.0% 94.7% 92.5% 9.5 <0.1 

0.96 
(0.93-0.99) 

Note: The left lateral knot position was considered as the positive state in confusion matrix performance calculations. There was no 
statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the training and the test group 
(p > 0.05).  
Abbreviations:  GA – Genetic algorithm; Sn – sensitivity; Sp – specificity; PPV – positive predictive value, NPV – negative predictive 
value, LR+ – positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence Interval. 

 
 
The GA-optimized ANN for Dataset IV selected following variables (n = 13) to be 

included in the model: subject’s sex and age, presence of right STH fracture, presence of 
unilateral STH fracture, presence of bilateral STH fracture, presence of STH fracture 
contralateral to the knot position, presence of left GHH fracture, presence of right GHH 
fracture, presence of unilateral GHH fracture, presence of bilateral GHH fracture, presence 
of isolated GHH fracture, presence of GHH fracture ipsilateral to the knot position, and 
presence of simultaneous STH and GHH fracture. 

 
 

4.1.2.2. MLP-ANN, Decision Tree, k-NN, and Naïve Bayes algorithms 

Tables 4.1.8 – 4.1.11. provide information on the performance characteristics of the 
machine learning algorithms developed in SPSS software, for Datasets I – IV, respectively. 

Table 4.1.8. The performance characteristics of the machine learning models developed in SPSS, for the knot 
in a noose position classification in Dataset I. 

MLAs – Dataset I 
The entire sample  
(w & w/o fractures) 

Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

MLP-ANN 
 

Overall 
60.3% 

(57.5-63.1) 
14.4% 94.6% 66.7% 59.7% 2.7 0.9 

0.59  
(0.56-0.63) 

Test 
60.0% 

(54.8-65.0) 
13.1% 95.7% 70.9% 50.6% 3.1 0.9 

0.57 
(0.51-0.63) 

Training 
60.5% 

(57.1-63.7) 
14.9% 94.2% 65.5% 59.9% 2.6 0.9 

0.61 
(0.57-0.63) 

Decision 
Tree 
 

Overall 
61.7% 

(58.9-64.4) 
24.1% 89.8% 63.8% 61.3% 2.4 0.8 

0.59 
(0.56-0.62) 

Test 
59.2 

(54.0-64.2) 
18.8% 90.0% 58.5% 59.2% 1.9 0.9 

0.57  
(0.51-0.63) 

Training 
62.8% 

(59.5-66.0) 
26.4% 89.7% 65.5% 62.2% 2.6 0.8 

0.60 
(0.56-0.64) 
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MLAs – Dataset I 
The entire sample  
(w & w/o fractures) 

Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

k-NN 
 

Overall 
62.1% 

(59.3-64.8) 
43.8% 75.8% 57.5% 64.3% 1.8 0.7 

0.59  
(0.56-0.62) 

Test 
60.0% 

(54.8-65.0) 
41.9% 73.8% 54.9% 62.5% 1.6 0.8 

0.59 
(0.53-0.65) 

Training 
63.0% 

(59.7-66.2) 
44.6% 76.7% 58.6% 65.1% 1.9 0.7 

0.58  
(0.55-0.63) 

Naïve Bayes 
 

Overall 
62.5% 

(59.7-65.2) 
40.3% 79.1% 59.0% 64.0% 1.9 0.8 

0.64 
(0.61-0.67) 

Test 
61.2% 

(56.2-66.0) 
38.3% 78.0% 56.1% 63.2% 1.7 0.8 

0.64 
(0.58-0.70) 

Training 
63.1% 

(59.8-66.4) 
41.3% 79.6% 60.3% 64.3% 2.0 0.7 

0.64  
(0.60-0.67) 

Logistic 
Regression 
 

Overall 
60.7% 

(57.9-63.5) 
25.6% 87.7% 59.5% 61.0% 2.0 0.8 

0.59  
(0.56-0.62) 

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no 
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Some data 
previously published in Leković et al. [62]  
Abbreviations: MLP–ANN – Multilayer Perceptron – Artificial Neural Network, k-NN – k Nearest Neighbors, Logistic Regression 
– Multivariable Logistic Regression analysis, w&w/o – with and without, Sn – sensitivity, Sp – specificity, PPV – positive predictive 
value, NPV – negative predictive value, LR+ – positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under 
the curve, CI – Confidence Interval. 

 

Table 4.1.9. The performance characteristics of the machine learning models developed in SPSS, for the knot 
in a noose position classification in Dataset II. 

MLAs – Dataset II 
Hangings with fractures 

Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

MLP-ANN 
 

Overall 
62.2% 

(58.7-65.7) 
39.4% 80.1% 60.9% 62.7% 1.9 0.8 

0.64 
(0.60-0.68) 

Test 
62.2% 

(55.7-68.5) 
44.9% 74.8% 56.4% 65.2% 1.8 0.7 

0.65 
(0.58-0.72) 

Training 
62.2% 

(58.0-66.3) 
37.2% 82.6% 63.4% 61.8% 2.1 0.8 

0.64 
(0.59-0.69) 

Decision 
Tree 
 

Overall 
62.0% 

(58.4-65.4) 
37.9% 80.8% 60.8% 62.4% 2.0 0.8 

0.62 
(0.58-0.66) 

Test 
62.2% 

(55.7-68.5) 
42.9% 76.3% 56.8% 64.8% 1.8 0.7 

0.63 
(0.56-0.70) 

Training 
61.9% 

(57.6-66.0) 
36.0% 82.9% 63.0% 61.4% 2.1 0.8 

0.62 
(0.57-0.66) 

k-NN 
 

Overall 
62.1% 

(58.6-65.5) 
44.7% 75.8% 59.1% 63.6% 1.8 0.7 

0.61 
(0.57-0.65) 

Test 
60.9% 

(54.4-67.2) 
45.9% 71.9% 54.2% 64.7% 1.6 0.8 

0.64 
(0.56-0.71) 

Training 
62.6% 

(58.4-66.7) 
44.2% 77.5% 61.5% 63.1% 2.0 0.7 

0.59 
(0.54-0-64) 

Naïve Bayes 
 Overall 

65.6% 
(62.1-68.9) 

51.8% 76.4% 63.3% 66.9% 2.2 0.6 
0.70 

(0.66-0.73) 
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MLAs – Dataset II 
Hangings with fractures 

Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

Naïve Bayes 
 

Test 
61.7% 

(55.2-67.8) 
44.0% 74.3% 55.0% 65.0% 1.7 0.8 

0.73  
(0.67-0.80) 

Training 
67.4% 

(63.2-71.3) 
55.0% 77.5% 66.7% 67.8% 2.4 0.6 

0.68 
(0.64-0.73) 

Logistic 
Regression 
 

Overall 
61.8% 

(58.3-65.3) 
39.1% 79.7% 60.2% 62.5% 1.9 0.8 

0.65 
(0.58-0.72) 

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no 
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05).  
Abbreviations: MLP–ANN – Multilayer Perceptron – Artificial Neural Network, k-NN – k Nearest Neighbors, Logistic Regression 
– Multivariable Logistic Regression analysis, Sn – sensitivity, Sp – specificity, PPV – positive predictive value, NPV – negative 
predictive value, LR+ – positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence 
Interval. Some data was previously published in Leković et al. [62] 

 
Table 4.1.10. The performance characteristics of the machine learning models developed in SPSS, for the knot 
in a noose position classification in Dataset III. 

MLAs – Dataset III 
Atypical hangings  

with fractures 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

MLP-ANN 
 

Overall 
84.6% 

(80.6-88.2) 
42.4% 97.2% 81.8% 85.0% 15.1 0.6 

82.4 
(0.75-0.87) 

Test 
84.1% 

(76.0-90.3) 
40.0% 96.6% 85.0% 84.1% 11.7 0.6 

0.81 
(0.72-0.90) 

Training 
84.9% 

(79.9-89.0) 
43.3% 97.5% 83.9% 85.0% 17.1 0.6 

0.83 
(0.77-0.89) 

Decision 
Tree 
 

Overall 
83.6% 

(79.4-87.2) 
42.4% 95.8% 75.0% 84.8% 10.1 0.6 

0.69 
(0.62-0.76) 

Test 
83.2% 

(75.0-89.6) 
40.0% 95.5% 71.4% 84.8% 8.8 0.6 

0.68  
(0.54-0.81) 

Training 
83.7% 

(78.6-88.0) 
43.3% 96.0% 76.5% 84.8% 10.7 0.6 

0.70 
(0.61-0.78) 

k-NN 
 

Overall 
84.4% 

(80.3-87.9) 
42.4% 96.9% 80.0% 85.0% 13.5 0.6 

0.69 
(0.62-0.76) 

Test 
83.2% 

(75.0-89.6) 
40.0% 95.5% 71.4% 84.8% 8.8 0.6 

0.68  
(0.54-0.81) 

Training 
84.9% 

(79.9-89.0) 
43.3% 97.5% 83.9% 85.0% 17.2 0.6 

0.70 
(0.61-0.79) 

Naïve Bayes 
 

Overall 
87.1% 

(83.0-90.4) 
40.7% 95.8% 64.7% 89.5% 9.7 0.6 

0.68 
(0.59-0.77) 

Test 
86.7% 

(78.4-92.7) 
41.2% 96.3% 70.0% 88.6% 11.1 0.6 

0.62 
(0.46-0.78) 

Training 
87.2% 

(82.3-91.1) 
40.5% 95.6% 62.5% 89.9% 9.2 0.6 

0.71 
(0.60-0.82) 

Logistic 
Regression 
 

Overall 
87.4% 

(83.3-90.7) 
40.7% 96.2% 66.7% 89.6% 10.6 0.6 

0.72 
(0.63-0.81) 

Notes: The anterior knot position was considered as a positive state in confusion matrix performance calculations. There was no 
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations: 
MLP–ANN – Multilayer Perceptron – Artificial Neural Network, k-NN – k Nearest Neighbors, Logistic Regression – Multivariable 
Logistic Regression analysis, Sn – sensitivity, Sp – specificity, PPV – positive predictive value, NPV – negative predictive value, LR+ 
– positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence Interval.  Some data 
was previously published in Leković et al. [62] 
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Table 4.1.11. The performance characteristics of the machine learning models developed in SPSS, for the knot 
in a noose position classification in Dataset IV. 

MLAs – Dataset IV 
Lateral hangings  

with fractures 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

MLP-ANN 
 

Overall 
94.1% 

(90.7-96.5) 
95.0% 93.2% 93.0% 95.1% 13.9 <0.1 

0.99 
(0.99-1.00) 

Test 
91.8% 

(83.8-96.6) 
92.3% 91.3% 90.0% 93.3% 10.6 <0.1 

0.98  
(0.96-1.00) 

Training 
95.0% 

(91.0-97.6) 
96.0% 94.0% 94.2% 95.9% 16.0 <0.1 

0.99 
(0.99-100) 

Decision 
Tree 
 

Overall 
79.4% 

(74.2-83.9) 
85.7% 73.3% 75.5% 84.3% 3.2 0.2 

0.89 
(0.85-0.92) 

Test 
77.6% 

(67.3-86.0) 
82.1% 73.9% 72.7% 82.9% 3.1 0.2 

0.87  
(0.80-0.94) 

Training 
80.1% 

(73.9-85.4) 
87.1% 73.0% 76.5% 84.9% 3.2 0.2 

0.90 
(0.85-0.94) 

k-NN 
 

Overall 
88.8% 

(84.6-92.2) 
97.9% 80.1% 82.5% 97.5% 4.9 <0.1 

0.96 
(0.94-0.98) 

Test 
90.6% 

(82.3-95.8) 
100% 82.6% 83.0% 100% 5.8 <0.1 

0.97 
(0.93-1.00) 

Training 
88.1% 

(82.8-92.2) 
97.0% 79.0% 82.4% 96.3% 4.6 <0.1 

0.95 
(0.93-0.98) 

Naïve  
Bayes 
 

Overall 
60.8% 

(54.9-66.5) 
58.6% 63.0% 60.3% 61.3% 1.6 0.7 

0.63 
(0.57-0.66) 

Test 
56.5% 

(45.3-67.2) 
59.1% 53.7% 57.8% 55.0% 1.3 0.8 

0.59 
(0.47-0.71) 

Training 
62.7% 

(55.6-69.4) 
58.3% 66.7% 61.5% 63.6% 1.7 0.6 

0.64 
(0.57-0.72) 

Logistic 
Regression 
 

Overall 
55.9% 

(50.0-61.8) 
75.7% 37.0% 53.5% 61.4% 1.2 0.7 

0.59 
(0.53-0.66) 

 
Notes: The left lateral knot position was considered as a positive state in confusion matrix performance calculations. There was no 
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations: 
MLP–ANN – Multilayer Perceptron – Artificial Neural Network, k-NN – k Nearest Neighbors, Logistic Regression – Multivariable 
Logistic Regression analysis, Sn – sensitivity, Sp – specificity, PPV – positive predictive value, NPV – negative predictive value, LR+ 
– positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence Interval. Some data 
was previously published in Leković et al. [62] 

 
  



40 

 
 
 
Figure 4.1.2. shows ROC curve analysis of each reported ML algorithm, separately for 

all four datasets (I – IV). 
 
 

 

 

Figure 4.1.2. The Receiver Operating Characteristic (ROC) and Area under the curve (AUC) analysis of 
developed machine learning models in Test samples of each of four datasets. The AUCs with 95% Confidence 
Intervals are listed in Tables 4.1.8 – 4.1.11. There was no statistically significant difference in analysis between 
any Training and Test sample (p > 0.05). Abbreviations: MLP – Multilayer Perceptron- Artificial Neural 
Network, k-NN – k Nearest Neighbors, Log. Reg. – Multivariable logistic regression analysis. Previously 
published in: Leković et al. [62] 

 

4.1.2.3. GA-optimized ANN and MLP-ANN ROC analysis comparison 

There comparison analysis between the ROC curves of the GA-optimized ANN models 
and the ROC curves of the MLP-ANN models for all four datasets are shown in Figure 4.1.3. 
(all p-values were > 0.05). 

 

4.1.2.4. Machine learning models’ variable importance and settings 

Table 4.1.12. lists up to the top five ranked input variables for each of these algorithms, 
according to the variable’s independent importance. 

The hyperparameters settings for all used algorithms developed in SPSS (MLP-ANN, 
DT, k-NN, and NB), in all four datasets (I – IV, respectively) are shown in Table 4.1.13.  
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Figure 4.1.3. The comparison of the ROC curves of two Artificial Neural Network models developed for the 
knot position classification (atypical vs. typical hangings) in Datasets I and II (a and b, respectively), (c) in 
Dataset III (anterior vs. lateral hangings), and (d) in Dataset IV (left lateral vs. right lateral hangings): the 
GA-optimized ANN developed in MATLAB and the MLP-ANN developed in SPSS.  

 
There was no statistically significant difference between any of the two ROC curves:  

Dataset I, Z = 1.2835, p > 0.05;  
Dataset II, Z = -0.48081, p > 0.05; 
Dataset III, Z = -1.6003, p > 0.05; 
Dataset IV, Z = -1.2091, p > 0.05.
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Table 4.1.12. The top five ranked input variables based on their relative importance for utilized machine learning models. 
 
 

 
DATASET I DATASET II DATASET III DATASET IV 

MLP DT k-NN NB MLP DT k-NN NB MLP DT k-NN NB MLP DT k-NN NB 

1st Tot.Fr.N0 Spine sTy&Hy iTy iTy sTy&Hy sTy&Hy 
BL-
Ty 

Spine Spine BL-Ty Spine IL-Hy IL-Hy Tot.Fr.N0 Sex 

2nd Spine sTy&Hy Spine Hy N0 Ty N0 Tot.Fr.N0 Spine 
BL-
Hy 

Age Tot.Fr.N0 Tot.Fr.N0 Age CL-Ty 
Hy 
N0 

L-Hy L-Hy 

3rd  Age UL-Hy BL-Hy Sex Age UL-Hy BL-Hy Sex Ty N0 / Spine Sex R-Hy 
UL-
Hy 

Spine 
Hy 
N0 

4th Hy N0 Age Age Tot.Fr.N0 sTy&Hy Spine Age 
UL-
Ty 

iTy / / 
BL-
Hy 

Tot.Fr.N0 R-Hy IL-Hy Age 

5th BL-Ty Tot.Fr.N0 / BL-Hy Tot.Fr.N0 Hy N0 / Spine Tot.Fr.N0 / / iHy L-Hy iTy sTy&Hy L-Ty 

 

Note: Some models included less than 5 variables, and these empty fields in table are labeled by “/” sign. 
 
Abbreviations: BL-Hy – bilateral greater hyoid horn fractures, BL-Ty – bilateral superior thyroid horn fractures, CL-Ty - superior thyroid cartilage horn contralateral 
to the knot position, Hy N0 – Total number of greater hyoid horn fractures, iTy – isolated superior thyroid horn fracture(s), IL-Hy - greater hyoid bone horn ipsilateral 
to the knot position, IL-Ty – superior thyroid cartilage horn ipsilateral to the knot position, L-Hy – left greater hyoid bone horn, L-Ty – left superior thyroid cartilage 
horn, R-Hy – right greater hyoid bone horn, sTy&Hy – simultaneous superior thyroid horn and greater hyoid horn fractures, Spine – Cervical spine fracture, Tot.Fr.N0 

– Total number of thyrohyoid fractures, Ty N0 – Total number of superior thyroid horn fractures, UL-Hy – unilateral greater hyoid horn fracture, UL-Ty – unilateral 
superior thyroid horn fracture. From: Leković et al. [62] 
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Table 4.1.13. Hyperparameter settings in the reported machine learning algorithms (developed in SPSS).  

 N0 of  
hidden layers 

N0 of neurons in  
a hidden layer 

Activation function  
Training 

type 
Training 

algorithm 
Initial  

learning rate 
Momentum 

MLP 
ANN  

DATASET I 
1 9 Hyperbolic tangent Online 

Gradient 
descent 

0.4 0.78 

DATASET II 
1 8 Hyperbolic tangent 

Mini 
batch 

Gradient 
descent 

0.4 0.85 

DATASET III 
1 6 

Scale  
conjugate gradient 

Batch 
Gradient 
descent 

0.54 0.321 

DATASET IV 
1 7 Hyperbolic tangent Online 

Gradient 
descent 

0.54 0.321 

 
 

Growing method Tree depth 
Min. samples 
of parent node 

Min. samples 
of child node 

No of nodes 
No of terminal 

nodes 

Decision 
Tree 

DATASET I CRT 4 100 10 9 5 
DATASET II CRT 3 100 10 7 4 
DATASET III CRT 2 65 10 7 4 
DATASET IV CRT 4 50 7 11 6 

 
 No  of Neighbors  

to consider 
Distance metrics 

Search Algorithm  
(Feature selection - Stopping criterion) 

 

k-NN DATASET I 13 Euclidean Change in Absolute Error Ratio ≤0.01 
DATASET II 12 Euclidean Change in Absolute Error Ratio ≤0.01 
DATASET III 12 Euclidean Change in Absolute Error Ratio ≤0.01 
DATASET IV 4 Euclidean Select all features 

 
 Maximum 

memory (Mb) 
N0 of bins  

for scale predictors 
N0  

of selected predictors 
 

Naïve 
Bayes 

DATASET I 1024 50 10 
DATASET II 1024 50 6 
DATASET III 1024 12 1 
DATASET IV 1024 10 5 

 
 

Abbreviations: MLP-ANN - Multilayer Perceptron – Artificial neural network, k-NN – k Nearest Neighbors. From: Leković et al. [62] 
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4.2. PART II of the study:  
Analysis of the body weight’s significance  
in knot position-related fracture patterns assessment 

The basic subjects’ characteristics: sex, age, body weight and body height, overall 
thyrohyoid and cervical spine fracture occurrence, and ligature knot position prevalence in 
the subjects included in this study part are shown in Table 4.2.1. 

 

Table 4.2.1. Basic subjects’ and injury characteristics – the study sample of Dataset I-w. 

N = 368 

Sex Male 283 (76.9%) 
Female 85 (23.1%) 

Age (years) 57.0 (16-94) 

Body weight (kg) 70 (34-148) 

Body height (cm) 176.0 (145-205) 

THYROHYOID AND CERVICAL SPINE FRACTURES 

Thyrohyoid fractures present Yes 236 (64.1%) 
No 132 (35.9%) 

STH fracture present Yes 178 (48.4%) 
No 190 (51.6%) 

GHH fracture present Yes 133 (36.1%) 
No 235 (63.9%) 

Isolated STH fracture(s)  Yes 103 (28.0%) 
No 265 (72.0%) 

Isolated GHH fracture(s) Yes 58 (15.8%) 
No 310 (84.2%) 

Simultaneous STH and GHH fractures Yes 75 (20.4%) 
No 293 (79.6%) 

Left GHH fracture Yes 85 (23.1%) 
No 283 (76.9%) 

Right GHH fracture Yes 81 (22.0%) 
No 287 (78.0%) 

Left  STH fracture Yes 116 (31.5%) 
No 252 (68.5%) 

Right  STH fracture Yes 126 (34.2%) 
No 242 (65.8%) 

Cervical Spine fracture Yes 16 (4.3%) 
No 352 (95.7%) 

KNOT POSITION 

Anterior 18 (4.9%) 

Posterior 197 (53.5%) 

Left lateral 82 (22.3%) 

Right lateral 71 (19.3%) 

Note: The data is presented as frequency and ratio.  
Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn. 
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4.2.1. Descriptive, basic inferential, and logistic regression analysis  
   of the thyrohyoid and cervical spine fracture patterns 

Corresponding to the previous part of the study, the distribution of the analyzed 
thyrohyoid and cervical spine fractures in terms of the coded variables for study subgroups 
(Datasets I-w – III-w) is shown in Table 4.2.2, and Table 4.2.3 (Dataset IV-w), while the 
additional statistically significant associations and logistic regression analyses are reported 
here. 

 

4.2.1.1. The entire sample (hangings with and without fractures) – Dataset I-w 

In the Dataset I-w, comprising 368 hangings with and without thyrohyoid complex and 
cervical spine fractures, the fractures of the thyrohyoid complex were, in overall, 
significantly more frequent in subjects older than 40 years of age, compared to the younger 
subjects (N = 192, 69.6% subjects older than 40 years of age vs. N = 44, 47.8% of younger 
subjects, χ² = 14.17, df = 1, p < 0.001). When considered separately, both, STH and GHH 
fractures were significantly more frequent in subjects older than 40 years of age compared 
to younger subjects (N = 144, 52.2% subjects older than 40 years of age vs. N = 34, 37.0% of 
younger subjects, χ² = 6.40, df = 1, p < 0.05; and N = 116, 42.0% subjects older than 40 years 
of age vs. N = 17, 18,5% of younger subjects, χ² = 16.58, df = 1, p < 0.001, respectively). 
However, between these two groups there was no significant difference in the frequency of 
cervical spine fractures (N = 14, 5.1% subjects older than 40 years of age vs. N = 2, 2.2% of 
younger subjects, χ² = 1.39, df = 1, p > 0.05). The overall occurrence of thyrohyoid fractures 
did not significantly differ between the two analyzed groups (typical vs. atypical hangings, 
χ² = 2.655, df = 1, p > 0.05) and the distribution of subjects older than 40 years of age was 
equal between these groups (χ² = 3.31, df = 1, p > 0.05). 

 

On the ROC analysis, subjects’ age and body weight were statistically significant 
predictors for thyrohyoid and cervical fracture occurrence, while the subject’s body height 
was not – the ROC curve analyses are shown in Figures 4.2.1 – 4.2.3. for subjects’ age, body 
weight, and body height, respectively.  

 

Age was a significant predictor for thyrohyoid fracture occurrence (AUC 0.616, 95% CI 
0.556 – 0.677, p < 0.001) – cutoff value was age of ≥ 41.5 years (sensitivity 80.9%, specificity 
39.4%), and for the occurrence of GHH fractures alone (AUC 0.653, 95% CI 0.595 – 0.710, p 
< 0.001) – cutoff value was age of ≥ 52.5 years (sensitivity 76.7%, specificity 51.9%) but, again, 
age was not a good predictor of STH fracture occurrence considered separately (AUC 0.528, 
95% CI 0.469 – 0.587, p > 0.05). In this group of subjects (Dataset I-w), age was not a 
significant predictor of cervical spine fracture occurrence (AUC 0.618, 95% CI 0.490 – 0.746, 
p > 0.05).  

 



46 

 

Age showed a weak statistically significant positive correlation with the total number of 
thyrohyoid fractures (range 0-4 – sum of STH and GHH fractures, ρ = 0.212, p < 0.001), and 
with the total number of GHH fractures (range 0-2, ρ = 0.248, p < 0.001), but did not correlate 
with the number of STH fractures (range 0-2, ρ = 0.183, p > 0.05). 

 

 

 

     

 
Figure 4.2.1. The ROC curve analyses of the subjects’ age as a predictor for (a) the occurrence of GHH 
fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as 
(d) the cervical spine fracture occurrence, in the entire study sample(Part II of the study, Dataset I-w).   
Abbreviations: GHH – Greater hyoid bone horn, STH – Superior thyroid cartilage horn. 
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Figure 4.2.2. The ROC curve analyses of the subjects’ body weight as a predictor for (a) the occurrence of 
GHH fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as 
well as (d) the cervical spine fracture occurrence, in the entire study sample (Part II of the study, Dataset I-
w). Abbreviations: GHH – Greater hyoid bone horn, STH – Superior thyroid cartilage horn. 

 

Body weight was a statistically significant predictor only of STH fracture occurrence 
(AUC 0.573, 95% CI 0.514 – 0.631, p < 0.05) – cutoff value was body weight of ≥ 72.5 kg 
(sensitivity 51.1%, specificity 61.6%). Body weight was not a significant predictor of 
thyrohyoid fracture occurrence in general (AUC 0.520, 95% CI 0.459 – 0.580, p > 0.05), nor 
for the occurrence of GHH fractures alone (AUC 0.461, 95% CI 0.400 – 0.521, p > 0.05), and 
for the cervical spine fracture occurrence (AUC 0.448, 95% CI 0.297 – 0.599, p > 0.05).  

 

Body weight showed significant but negligible positive correlation only with the total 
number of STH fractures (range 0 – 2, ρ = 0.139, p < 0.05). 
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Figure 4.2.3. The ROC curve analyses of the subjects’ body height as a predictor for (a) the occurrence of GHH 
fractures (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as 
(d) the cervical spine fracture occurrence, in the entire study sample (Part II of the study, Dataset I-w). 
Abbreviations: GHH – Greater hyoid bone horn, STH – Superior thyroid cartilage horn. 

 

Body height was not a significant predictor of cervical spine fracture occurrence (AUC 
0.420, 95% CI 0.306 – 0.534, p > 0.05), of overall thyrohyoid fracture occurrence (AUC 0.486, 
95% CI 0.424 – 0.547, p > 0.05), of GHH fracture occurrence considered separately (AUC 
0.494, 95% CI 0.432 – 0.555, p > 0.05), nor of STH fracture occurrence considered separately 
(AUC 0.512, 95% CI 0.453 – 0.571, p > 0.05).  

 

Body height did not significantly correlate with the number of thyrohyoid fractures, 
overall and when considered separately (STH and GHH, p > 0.05 – for all). 
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On the univariable logistic regression analysis, only unilateral GHH fracture was 
statistically significantly associated with the atypical knot position (OR = 1.791, 95% CI 
1.126-2.848, p < 0.05). In the multivariable analysis the following variables were also 
included, as p-values were less than 0.1 in univariable binary logistic regression analyses: 
isolated STH fracture (p = 0.068), and  simultaneous STH and GHH fractures (p = 0.065). 

On the multivariable binary logistic regression analysis, the presence of unilateral GHH 
fracture was not significantly associated with the atypical knot position (aOR = 1.521, 95% 
CI 0.884-2.617, p > 0.05), when adjusted for the presence of isolated STH  fracture (aOR = 
0.803, 95% CI 9.483-1.336, p > 0.05) and for the presence of simultaneous STH ad GHH 
fractures (aOR = 0.803, 95% CI 0.676-2.177, p > 0.05). This model correctly classified 57.3% 
of cases (χ² = 7.481, df = 3, p > 0.05; Hosmer & Lemeshow Test: χ² = 5.044, df = 3, p > 0.05). 

 

 

4.2.1.2. The hangings with thyrohyoid or cervical spine fractures – Dataset II-w 

In the subgroup of subjects in which at least one thyrohyoid or cervical spine fracture 
was observed, subjects older than 40 years were equally distributed between the two groups 
(typical vs. atypical hangings, χ² = 0.829, df = 1, p > 0.05). 

Age showed statistically significant weak positive correlation with the total number of 
GHH fractures (range 0-2, ρ = 0.200, p < 0.05). The positive correlation between subjects’ 
body weight and the total number of STH fractures was statistically significant but 
negligible (range 0-2, ρ = 0.199, p < 0.05). ). Body height did not significantly correlate with 
the number of thyrohyoid fractures, overall and when considered separately (STH and 
GHH, p > 0.05 – for all). 

On the univariable binary logistic regression analysis, a statistically significant 
association with the atypical knot position was observed with the presence of unilateral 
GHH fracture (OR = 1.977, 95% CI 1.176 – 3.321, p < 0.05), and the absence of isolated STH 
fracture (OR = 1.793, 95% CI  1.068 – 3.009, p < 0.05). The presence of simultaneous STH and 
GHH fracture was included in the multivariable analysis, as the p-value was < 0.1. 

On the multivariable binary logistic regression analysis, none of the three considered 
variables were an independent predictor of the atypical knot position: unilateral GHH 
fracture (aOR =  1.775, 95% CI 0.836 – 3.770, p > 0.05), simultaneous STH and GHH fractures 
(aOR = 1.343, 95% CI 0.681 – 2.648, p > 0.05), and the absence of isolated STH fracture (aOR 
= 1.014, 95% CI 0.429 – 2.396, p > 0.05). This model correctly classified 58.7% of cases (χ² = 
7.705, df = 3, p > 0.05; Hosmer & Lemeshow Test: χ² = 5.977, df = 3, p > 0.05). 
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4.2.1.3. The atypical hangings with thyrohyoid or cervical spine fractures –  
       Dataset III-w 

The subgroup of Dataset III-w comprised only atypical hanging cases with at least one 
thyrohyoid or cervical spine fracture, and here, the anterior and lateral hanging groups were 
compared in between. Subjects older than 40 years of age were equally distributed between 
the two groups (χ² = 1.51, df = 1, p > 0.05). 

In Dataset III-w, subjects’ age, body weight, and body height did not correlate 
significantly with the number of thyrohyoid fractures, either combined, or considered 
separately (STH and GHH fractures, p-values > 0.05).  

On the univariable binary logistic regression analysis, a statistically significant 
association with the anterior knot position was observed with the total number of GHH 
fractures (OR =  0.206, 95% CI  0.043 – 0.977, p < 0.05), total number of thyrohyoid fractures 
(OR =  0.143, 95% CI  0.035 – 0.587, p < 0.05), and the presence of the cervical spine fracture 
(OR =  33.667, 95% CI  6.214 – 182.402, p < 0.001). In addition to these variables, subjects’ sex 
was included in the multivariable analysis, as the p-value for this variable was < 0.1. 

On the multivariable binary logistic regression analysis, the presence of cervical spine 
fracture remained independently associated with the anterior knot position, compared to 
the lateral (aOR = 66.829, 95% CI 5.111 – 873.808, p = 0.001), adjusted for subjects’ sex (aOR 
= 0.123, 95% CI 0.011 – 1.334, p > 0.05), as well as for the total number of GHH fractures 
(aOR = 0.274, 95% CI 0.032 – 2.374, p > 0.05) and the total number of thyrohyoid fractures 
(aOR = 0.770, 95% CI 0.187 – 3.174, p > 0.05). This model correctly classified 93.9% of cases 
(χ² = 25.938, df = 4, p < 0.001; Hosmer & Lemeshow Test: χ² = 3.340, df = 7, p > 0.05). 

 

4.2.1.4. The lateral hangings with thyrohyoid and cervical spine fractures –  
       Dataset IV-w 

Subjects older than 40 years of age were equally distributed between the two groups (χ² 
= 0.008, df = 1, p > 0.05).  

Subjects’ age, body weight, and body height did not correlate significantly with the 
number of thyrohyoid fractures, either combined, or considered separately (STH and GHH 
fractures, p-values > 0.05). 

On the univariable binary logistic regression analysis, none of the coded variables was 
significantly associated with the left lateral hangings, and because not a single p-value was 
< 0.1 the multivariable regression analysis was not performed. 
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Table 4.2.2. The descriptives of the coded variables: thyrohyoid and cervical fractures and basic subject characteristics for Datasets I-w, II-w, and III-w. 

 DATASET I-w 
THE ENTIRE SAMPLE 

 DATASET II-w 
HANGINGS WITH FRACTURES 

 DATASET III-w 
ATYPICAL HANGINGS 

Knot Position Knot Position Knot Position 
Typical 
N = 197  
(53.5%) 

Atypical 
N = 171 
(46.5%) 

p-value 
Typical 
N = 128 
(52.9%) 

Atypical 
N = 114 
(47.1%) 

p-value 
Anterior 

N = 8 
(7.0%) 

Lateral 
N = 106  
(93.0%) 

p-value 

Sex Male 155 (78.7%) 128 (74.9%) 

 

99 (77.3%) 88 (77.2%) 

 

4 (50.0%) 84 (79.2%) 

 
Female 42 (21.3%) 43 (25.1%) 29 (22.7%) 26 (22.8%) 4 (50.0%) 22 (20.8%) 

Age (years) 55.0 (18-90) 58.0 (16-94) 57.0 (22-90) 61.5 (16-94) 66.0 (57-82) 60.5 (16-94) 
Body weight (kg) 70 (34-148) 71.0 (38-112)  70 (41-146) 70.5 (38-112)  67.5 (38-94) 70.5 (40-112) 
Body height (cm) 176.0 (145-205) 176.0 (151-195)  175.0 (145-205) 176 (152-195)  172.5 (154-181) 176 (152-195) 
THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS 
Isolated  
STH fracture(s) 

Yes 63 (32.0%) 40 (23.4%) 

 

 
63 (49.2%) 40 (35.1%) 

< 0.05  
3 (37.5%) 37 (34.9%) 

 

No 134 (68.0%) 131 (76.6%) 65 (50.8%) 74 (64.9%) 5 (62.5%) 69 (65.1%) 
Unilateral  
STH fracture 

Yes 63 (32.0%) 51 (29.8%) 

 

63 (49.2%) 51 (44.7%) 

 

 

3 (37.5%) 48 (45.3%) 
No 134 (68.0%) 120 (70.2%) 65 (50.8%) 63 (55.3%) 5 (62.5%) 58 (54.7%) 

Bilateral  
STH fracture 

Yes 33 (16.8%) 31 (18.1%) 33 (25.8%) 31 (27.%) 1 (12.5%) 39 (28.3%) 
No 140 (81.9%) 164 (83.2%) 95 (74.2%) 83 (72.8%) 7 (87.5%) 76 (71.7%) 

Total N0 of STH fractures 
(0 – 2) 

0 (0-2) (0-2) 1 (0-2) 1 (0-2) 0.5 (0-2) 1 (0-2) < 0.05 

Isolated  
GHH fracture(s) 

30 (15.2%) 28 (16.4%) 30 (23.4%) 28 (24.6%) 1 (12.5%) 27 (25.5%) 

 

167 (84.8%) 143 (83.6%) 98 (76.6%) 86 (75.4%) 7 (87.5%) 79 (74.5%) 
Unilateral  
GHH fracture 

Yes 43 (21.8%) 57 (33.3%) 
< 0.05 

43 (33.6%) 57 (50.0%) 
< 0.05 

2 (25.0% 55 (51.9%) 
No 154 (78.2%) 114 (66.7%) 85 (66.4%) 57 (50.0%) 6 (75.0%) 51 (48.1%) 

Bilateral   
GHH fracture 

Yes 20 (10.2%) 13 (7.6%) 

 

20 (15.6%) 13 (11.4%) 

 

0 (0%) 13 (12.3%) 
No 177 (89.8%) 158 (92.4%) 108 (84.4%) 101 (88.6%) 8 (100%) 93 (87.7%) 

Total N0 of  GHH fractures 
(0 – 2) 

(0-2) (0-2) 0 (0-2) 1 (0-2) 0 (0-1) 1 (0-2) 

Total N0 of TyHy fractures 
(0 – 4) 

1 (0-4) 1 (0-4) 1 (0-4) 2 (0-4) 0 (0-2) 2 (0-4) < 0.05 

Simultaneous 
STH and GHH fractures 

Yes 33 (16.8%) 42 (24.6%) 
 

33 (25.8%) 42 (36.8%) 
 

1 (12.5%) 41 (38.7%) 

 No 164 (83.2%) 129 (75.4%) 95 (74.2%) 72 (63.2%) 7 (87.5%) 65 (61.3%) 

Contralateral Thyrohyoid fracture 
Yes 0 (0%) 11 (10.4%) 
No 8 (100%) 95 (89.6%) 

Cervical spine fracture Yes 6 (3.0%) 10 (5.8%) 
 

 6 (4.7%) 10 (8.8%) 
  

5 (62.5%) 5 (4.7%) 
< 0.001 

No 191 (97.0%) 161 (94.2%)  122 (95.3%) 104 (91.2%) 3 (37.5%) 101 (95.3%) 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard deviation or median and range. For comparison of categorical data, the χ² or Fisher’s Exact 
test were performed, while the Mann-Whitney U test was performed for numerical data. The missing p-values are > 0.05.  
Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TyHy – Thyrohyoid.
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Table 4.2.3. Characteristics of the lateral hanging cases with thyrohyoid or cervical spine fractures  
(Dataset IV-w). 

N = 106 
Left lateral 

N = 54 (50.9%) 
Right lateral 

N = 52 (49.1%) 
p-

value 

Sex Male 84 (79.2%) 45 (83.3%) 39 (75.0%) 

> 0.05 

Female 22 (20.8%) 9 (16.7%) 13 (25.0%) 
Age (years) 60.5 (16-94) 60.5 (18-94) 60.5 (16-87) 

Body weight (kg) 70.5 (40-112) 72.5 (49-112) 70.0 (40-103) 

Body height (cm) 176.0 (152-195) 178 (153-195) 174.5 (152-195) 

THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS 

Thyrohyoid fractures present 
Yes 105 (99.1%) 53 (98.1%) 52 (100%) 
No 1 (0.9%) 1 (1.9%) 0 (0%) 

STH fracture present 
Yes 78 (73.6%) 42 (77.8%) 37 (69.2%) 
No 28 (26.4%) 12 (22.2%) 16 (30.8%) 

GHH fracture present 
Yes 68 (64.2%) 35 (64.8%) 33 (63.5%) 
No 38 (35.8%) 19 (35.2%) 19 (36.5%) 

Left GHH fracture 
Yes 41 (38.7%) 24 (44.4%) 17 (32.7%) 
No 65 (61.3%) 30 (55.6%) 35 (67.3%) 

Right GHH fracture 
Yes 40 (37.7%) 19 (35.2%) 21 (40.4%) 
No 66 (62.3%) 35 (64.8%) 31 (59.6%) 

Left STH fracture 
Yes 52 (49.1%) 27 (50.0%) 25 (48.1%) 
No 54 (50.9%) 27 (50.0%) 27 (51.9%) 

Right STH fracture 
Yes 56 (52.8%) 31 (57.4%) 23 (42.6%) 
No 50 (47.2%) 25 (48.1%) 27 (51.9%) 

Isolated GHH fracture 
Yes 27 (25.5%) 11 (20.4%) 16 (30.8%) 
No 79 (74.5%) 43 (79.6%) 36 (69.2%) 

Isolated STH fracture 
Yes 37 (34.9%) 18 (33.3%) 19 (36.5%) 
No 69 (65.1%) 37 (66.7%) 33 (63.5%) 

Simultaneous STH and 
GHH fracture 

Yes 41 (38.7%) 24 (44.4%) 17 (32.7%) 
No 65 (61.3%) 30 (55.6%) 35 (67.3%) 

Unilateral GHH fracture 
Yes 55 (55.9%) 27 (50.0%) 28 (53.8%) 
No 51 (48.1%) 27 (50.0%) 24 (46.2%) 

Unilateral STH fracture 
Yes 48 (45.3%) 26 (48.1%) 22 (42.3%) 
No 58 (54.7%) 28 (51.9%) 30 (57.7%) 

Bilateral GHH fracture 
Yes 13 (12.3%) 8 (14.8%) 5 (9.6%) 
No 93 (87.7%) 46 (85.2%) 47 (90.4%) 

Bilateral STH fracture 
Yes 30 (28.3%) 16 (29.6%) 14 (26.9%) 
No 76 (71.7%) 38 (70.4%) 38 (73.1%) 

Ipsilateral GHH fracture 
Yes 32 (30.2%) 16 (29.6%) 16 (30.8%) 
No 74 (69.8%) 38 (70.4%) 36 (69.2%) 

Contralateral STH fracture 
Yes 26 (24.5%) 15 (27.8%) 11 (21.2%) 
No 80 (75.5%) 39 (72.2%) 41 (78.8%) 

Contralateral thyrohyoid 
fractures 

Yes 11 (10.4%) 7 (13.0%) 4 (7.7%) 
No 95 (89.6%) 47 (87.0%) 48 (92.3%) 

Cervical spine fracture 
Yes 5 (4.7%) 3 (5.6%) 2 (3.8%) 
No 101 (95.3%) 51 (94.4%) 50 (96.2%) 

 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard deviation or median 
and range. For comparison of categorical data, the χ² test or Fisher’s exact test were performed, while the Mann-Whitney 
U test was performed for numerical data. All the p-values are > 0.05. Abbreviations: STH – Superior thyroid cartilage 
horn; GHH – Greater hyoid bone horn.  
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4.2.2. Machine learning algorithms 

In the second part of the study, due to the smaller sample size, the machine learning 
models were developed only for Datasets I-w and II-w, while for Datasets III-w and IV-w 
only ‘conventional’ statistical methods were used for analysis and these are already 
reported in the previous subsection of the results. The characteristics of the Datasets I-w and 
II-w with regards to the coded variables and test/training group division are shown in 
Supplement B. The  SMOTE algorithm was used  in both datasets (I-w and II-w).  

In Dataset I-w, the initial frequency proportion between the group of cases of atypical 
hangings and the group of cases of  typical hangings – 1:1.2 (46.5% atypical hangings to 
53.5% typical hangings) was processed to form the sample of 385 cases, with the ratio of 
1:1.05. In Dataset II-w, the initial frequency proportion between the group of cases of 
atypical hangings and the group of cases of  typical hangings – 1:1.12 (47.1% atypical 
hangings to 52.9% typical hangings) was processed to form the sample of 250 cases, with 
the ratio of 1:1.05. In the following text, the results on machine learning algorithms are 
reported in the previously established order. 

4.2.2.1. Genetic Algorithm-optimized Artificial Neural Networks 

Performance characteristics analyses of the GA-optimized ANNs, for Datasets I-w and 
II-w are reported in Table 4.2.4 and Table 4.2.5, respectively. 

Table 4.2.4. Performance characteristics of ANN developed in MATLAB for knot position classification in 
the entire sample (Dataset I-w). 

GA-optimized ANN 

DATASET I-w 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

Body weight 
& 
body height 
 
considered 

Overall 
54.8% 

(49.7-59.9) 
55.3% 54.3% 53.6% 56.0% 1.2 0.8 

0.56 
(0.50-0.61) 

Test 
55.7% 

(46.1-64.9) 
62.9% 47.2% 58.2% 52.1% 1.2 0.8 

0.51 
(0.40-0.62) 

Training 
54.4% 

(48.3-60.5) 
51.6% 56.9% 51.2% 57.3% 1.2 0.8 

0.57 
(0.50-0.64) 

 

Body weight  
& 
body height 
 
NOT 
considered 

Overall 
56.6% 

(51.5-61.6) 
66.0% 47.7% 54.6% 59.5% 1.3 0.7 

0.58 
(0.53-0.64) 

Test 
56.5% 

(47.0-65.7) 
69.4% 41.5% 58.1% 53.7% 1.2 0.7 

0.52 
(0.41-0.63) 

Training 
56.7% 

(50.5-62.7) 
64.3% 50.0% 52.9% 61.5% 1.3 0.7 

0.60 
(0.54-0.67) 

Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There 
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the 
training and the test group (p > 0.05). Abbreviations:  GA – Genetic algorithm; Sn – sensitivity; Sp – specificity; PPV 
– positive predictive value, NPV – negative predictive value, LR+ – positive likelihood ratio, negative LR- – negative 
likelihood ratio, AUC – Area under the curve, CI – Confidence Interval. 
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The GA-optimized ANN for Dataset I-w that considered subjects’ body weight and body 
height selected following variables (n = 13) to be included in the model: subject’s sex and 
age, body weight and body height, presence of unilateral STH fracture, presence of bilateral 
STH fracture, presence of isolated STH fracture, total number of STH fractures, presence of 
unilateral GHH fracture, presence of bilateral GHH fractures, presence of isolated GHH 
fracture, total number of GHH fractures, presence of simultaneous STH and GHH fracture. 

The GA-optimized ANN for Dataset I-w that did not consider subjects’ body weight and 
body height selected following variables (n = 5) to be included in the model: subject’s sex, 
presence of unilateral STH fracture, presence of isolated STH fracture, the total number of 
thyrohyoid fractures, and the presence of cervical spine fracture. 

 

Table 4.2.5. Performance characteristics of ANN developed in MATLAB for knot position classification in 
the hangings with fractures (Dataset II-w). 

GA-optimized ANNs 
DATASET II-w 

Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

Body 
weight  
& 
body height 
 
considered 

Overall 
62.4% 

(56.1 – 68.4) 
75.4% 50.0% 59.0% 68.1% 1.5 0.5 

0.62 
(0.55-0.69) 

Test 
68.0% 

(56.2 – 78.3) 
81.1% 55.3% 63.8% 75.0% 1.8 0.3 

0.67 
(0.54-0.79) 

Training 
60.0% 

(52.3 – 67.3) 
72.9% 47.8% 56.9% 65.2% 1.4 0.6 

0.61 
(0.53-0.70) 

 

Body 
weight  
& 
body height 
 
NOT 
considered 

Overall 
62.4% 

(56.1 – 68.4) 
69.7% 55.5% 59.9% 65.7% 1.6 0.5 

0.64  
(0.57-0.71) 

Test 
68.0% 

(56.2 – 78.3) 
73.0% 63.2% 65.9% 70.6% 2.0 0.4 

0.66 
(0.53-0.78) 

Training 
60.0% 

(52.3 – 67.3) 
68.2% 52.2% 57.4% 63.5% 1.4 0.6 

0.63 
(0.54-0.71) 

 
Note: The atypical knot position was considered as the positive state in confusion matrix performance 
calculations. There was no statistically significant difference in ROC curve analysis of the predicted outcome 
probabilities between the training and the test group (p > 0.05).  Abbreviations:  GA – Genetic algorithm; 
Sn – sensitivity; Sp – specificity; PPV – positive predictive value, NPV – negative predictive value, LR+ – 
positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence 
Interval. 

 
The GA-optimized ANN for Dataset II-w that considered subjects’ body weight and 

body height selected following variables (n = 6) to be included in the model: subject’s age 
and body weight, presence of isolated STH fracture, total number of STH fractures, presence 
of isolated GHH fracture, and the total number of thyrohyoid fractures. 
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The GA-optimized ANN for Dataset II-w that did not consider subjects’ body weight 
and body height selected following variables (n = 7) to be included in the model: subject’s 
sex and age, presence of isolated STH fracture, presence of bilateral GHH fracture, total 
number of thyrohyoid fractures, presence of simultaneous STH and GHH fractures, and 
presence of the cervical spine fracture. 

4.2.2.2. MLP-ANN, Decision Tree, k-NN, and Naïve Bayes algorithms 

Table 4.2.6 and Table 4.2.7 provide information on the performance characteristics of 
the machine learning algorithms developed in SPSS software, for Datasets I-w and II-w, 
respectively. 

Figure 4.2.4 shows ROC curve analysis of each reported ML algorithm, separately for 
both datasets (I-w and II-w). 

   

Figure 4.2.4. The Receiver Operating Characteristic (ROC) and Area under the curve (AUC) analysis of 
developed machine learning models in Test samples of analyzed sets – (a and b) Dataset I, and (b and c) 
Dataset II. The AUCs with 95% Confidence Intervals are listed in Tables 4.2.6 and 4.2.7. Legend: black line 
(MLP-ANN), blue line (DT), green line (k-NN), yellow line (NB), red line (reference). 
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Table 4.2.6. The performance characteristics of the machine learning models developed in SPSS, for the knot 
in a noose position classification in Dataset I-w. 

MLAs – Dataset I – w 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

MLP-ANN 
 Overall 

w 
57.1% 

(52.0-62.1) 
38.8% 74.6% 59.3% 56.1% 1.5 0.8 

0.60 
(0.54-0.66) 

w/o 
58.7% 

(53.6-63.7) 
50.0% 67.0% 59.1% 58.4% 1.5 0.7 

0.62 
(0.56-0.67) 

Test 
w 

57.4% 
(47.8-66.6) 

46.8% 69.8% 64.4% 52.9% 1.5 0.8 
0.64 

(0.54-0.74) 

w/o 
57.4% 

(47.8-66.6) 
54.8% 60.4% 61.8% 53.3% 1.4 0.7 

0.61 
(0.50-0.71) 

Training 
w 

57.0 
(50.9-63.2) 

34.9% 76.4% 56.4% 57.3% 1.5 0.9 
0.58 

(0.51-0.65) 

w/o 
59.3% 

(53.1-65.2) 
47.6% 69.4% 57.7% 60.2% 1.6 0.7 

0.62 
(0.55-0.69) 

Decision 
Tree 
 

Overall 
w 

61.6% 
(56.5-66.4) 

51.6% 71.1% 63.0% 60.6% 1.8 0.7 
0.64 

(0.59-0.70) 

w/o 
59.5% 

(54.4-64.4) 
52.7% 66.0% 59.6% 59.4% 1.5 0.7 

0.62 
(0.56-0.67) 

Test 
w 

52.2% 
(42.7-61.6) 

48.4% 56.6% 56.6% 48.4% 1.1 0.9 
0.47 

(0.36-0.58)* 

w/o 
55.7% 

(46.1-64-9) 
50.0% 62.3% 60.8% 51.6% 1.3 0.8 

0.56 
(0.45-0.66) 

Training 
w 

65.6% 
(59.6-71.2) 

53.2% 76.4% 66.3% 65.1% 2.3 0.6 
0.72 

(0.66-0.78)* 

w/o 
61.1% 

(55.0-67.0) 
54.0% 67.4% 59.1% 62.6% 1.6 0.7 

0.64 
(0.58-0.71) 

k-NN 
 Overall 

w 
51.4% 

(46.3-56.5) 
51.6% 51.3% 50.3% 52.6% 1.1 0.9 

0.52 
(0.47-0.58) 

w/o 
53.5% 

(48.4-58.6) 
48.4% 58.4% 52.6% 54.2% 1.2 0.9 

0.52 
(0.46-0.57) 

Test 
w 

52.2% 
(42.7-61.6) 

51.6% 52.8% 56.1% 48.3% 1.1 0.9 
0.52 

(0.42-0.63) 

w/o 
51.3% 

(41.8-60.7) 
50.0% 52.8% 55.4% 47.5% 1.1 0.9 

0.50 
(0.39-0.61) 

Training 
w 

51.1% 
(45.0-57.2) 

51.6% 50.7% 47.8% 54.5% 1.0 0.9 
0.52 

(0.45-0.59) 

w/o 
54.4% 

(48.3-60.5) 
47.6% 60.4% 51.3% 56.9% 1.2 0.9 

0.52 
(0.45-0.59) 

Naïve 
Bayes 
 

Overall 
w 

57.4% 
(52.3-62.4) 

37.2% 76.6% 60.3% 56.1% 1.6 0.8 
0.59 

(0.53-0.64) 

w/o 
57.7% 

(52.6-62.7) 
54.3% 60.9% 57.0% 58.3% 1.4 0.7 

0.60 
(0.54-0.65) 

Test 
w 

54.8% 
(45.7-63.8) 

31.7% 76.6% 55.9% 53.3% 1.3 0.9 
0.57 

(0.46-0.67) 

w/o 
55.2% 

(45.2-65.0) 
52.1% 57.9% 51.0% 58.9% 1.2 0.8 

0.54  
(0.43-0.65) 

Training 
w 

58.6% 
(52.4-64.7) 

39.8% 76.7% 62.2% 57.0% 1.7 0.8 
0.59  

(0.52-0.66) 

w/o 
58.6% 

(52.6-64.4) 
55.0% 6.1% 59.2% 58.0% 1.5 0.7 

0.61 
(0.55-0.68) 

Logistic 
Regression 

Overall 
57.3% 

(52.1-62.4) 
33.3% 78.2% 57.0% 57.5% 1.5 0.8 

0.57 
(0.51-0.63) 

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no 
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05), except in a 
Decision Tree model that considered body weight (forced input variable) – * – no DT model that considered body weight met this 
criterion. Abbreviations: MLP–ANN – Multilayer Perceptron – Artificial Neural Network, k-NN – k Nearest Neighbors, Logistic 
Regression – Multivariable Logistic Regression analysis, w – the model considered body weight and body height, w/o – the model did 
not consider the body weight and body height, Sn – sensitivity, Sp – specificity, PPV – positive predictive value, NPV – negative 
predictive value, LR+ – positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence 
Interval.  
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Table 4.2.7. The performance characteristics of the machine learning models developed in SPSS, for the knot 
in a noose position classification in Dataset II-w. 

MLAs – Dataset II – w 
Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

MLP-ANN 
 Overall 

w 62.8% 
(56.5 – 68.8) 

68.0% 57.8% 60.6% 65.5% 1.6 0.6 
0.69 

(0.63-0.76) 

w/o 60.0% 
(53.6 – 66.1) 

59.0% 60.9% 59.0% 60.9% 1.5 0.7 
0.63 

(0.56-0.70) 

Test 

w 64.0% 
(52.1 – 74.8) 

70.3% 57.9% 61.9% 66.7% 1.7 0.5 
0.66 

(0.54-0.79) 

w/o 60.0% 
(52.3 – 67.3) 

60.0% 60.0% 0.6 0.6 1.5 0.7 
0.65 

(0.52-0.77) 

Training 

w 62.3% 
(54.7 – 69.5) 

67.1% 57.8% 60.0% 65.0% 1.6 0.6 
0.71 

(0.63-0.79) 

w/o 60.0% 
(43.3 – 75.1) 

56.8% 63.2% 60.0% 60.0% 1.5 0.7 
0.62 

(0.54-0.71) 

Decision 
Tree 
 

Overall 
w 

60.8% 
(54.4 – 66.9) 

70.5% 51.6% 58.1% 64.7% 1.5 0.6 
0.65 

(0.58-0.72) 

w/o 
59.6% 

(53.2 – 65.7) 
77.0% 43.0% 56.3% 66.3% 1.4 0.5 

0.6 
(0.53-0.67) 

Test 
w 

56.0% 
(44.1 – 67.5) 

73.0% 39.5% 54.0% 60.0% 1.2 0.7 
0.61 

(0.49-0.74) 

w/o 
62.7% 

(50.7 – 73.6) 
78.4% 47.4% 59.2% 69.2% 1.5 0.5 

0.61 
(0.48-0.74) 

Training 
w 

62.9% 
(55.2 – 70.0) 

69.4% 56.7% 60.2% 66.2% 1.6 0.5 
0.67 

(0.59-0.75) 

w/o 
58.3% 

(50.6 – 65.7) 
76.5% 41.1% 55.1% 64.9% 1.3 0.6 

0.59 
(0.51-0.68) 

k-NN 
 Overall 

w 
61.6% 

(55.3 – 67.7) 
68.0% 55.5% 59.3% 64.5% 1.5 0.6 

0.58 
(0.50-0.65) 

w/o 
55.2% 

(48.8 – 61.5) 
41.8% 68.0% 55.4% 55.1% 1.3 0.9 

0.541  
(0.469-0.613) 

Test 
w 

60.0% 
(48.0 – 71.1) 

75.7% 44.7% 57.1% 65.4% 1.4 0.5 
0.63 

(0.51-0.76) 

w/o 
54.7% 

(42.7 – 66.2) 
40.5% 68.4% 55.6% 54.2% 1.3 0.9 

0.55 
(0.42-0.69) 

Training 
w 

62.3% 
(54.7 – 69.5) 

64.7% 60.0% 60.4% 64.3% 1.6 0.6 
0.56 

(0.47-0.65) 

w/o 
55.4% 

(47.7 – 62.9) 
42.4% 67.8% 55.4% 55.5% 1.3 0.9 

0.53 
(0.45-0.62) 

Naïve 
Bayes 
 

Overall 
w 

61.2% 
(54.9 – 67.3) 

62.3% 60.2% 59.8% 62.6% 1.6 0.6 
0.67 

(0.603-0.736) 

w/o 
63.2% 

(56.9 – 69.2) 
57.4% 68.8% 63.6% 62.9% 1.8 0.6 

0.65 
(0.582-0.717) 

Test 
w 

59.1% 
(46.3 – 71.0) 

59.4% 58.8% 57.6% 60.6% 1.4 0.7 
0.72 

(0.61-0.84) 

w/o 
62.0% 

(50.4 – 72.7) 
60.9% 63.6% 70.0% 53.8% 1.7 0.6 

0.71 
(0.59-0.83) 

Training 
w 

62.0% 
(54.5 – 69.0) 

63.3% 60.6% 60.6% 63.3% 1.6 0.6 
0.65 

(0.56-0.73) 

w/o 
63.7% 

(56.1 – 70.9) 
55.3% 70.5% 60.0% 66.3% 1.9 0.6 

0.62 
(0.54-0.70) 

Logistic 
Regression 

Overall 
58.7% 

(52.2 – 64.9) 
50.0% 66.4% 57.0% 59.9% 1.5 0.8 

0.60 
(0.53-0.67) 

Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no 
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations: 
MLP–ANN – Multilayer Perceptron – Artificial Neural Network, k-NN – k Nearest Neighbors, Logistic Regression – Multivariable 
Logistic Regression analysis, w – the model considered body weight and body height, w/o – the model did not consider the body weight 
and body height, Sn – sensitivity, Sp – specificity, PPV – positive predictive value, NPV – negative predictive value, LR+ – positive 
likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence Interval.  
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4.2.2.3. GA-optimized ANN and MLP-ANN ROC analysis comparison 

The comparison analysis between the ROC curves of the GA-optimized ANN models 
and the ROC curves of the MLP-ANN models for Dataset I-w and Dataset II-w are shown 
in Figure 4.2.5. 

  

Figure 4.2.5. Comparison of ROC curves of the two Artificial Neural Network models developed for the knot 
position classification (atypical vs. typical hangings) in Dataset I-w, for models that (a) did consider and (b) 
did not consider subjects’ body weight and height, and in Dataset II-w, for models that (c) did consider and 
(d) did not consider subjects’ body weight and height: The GA-optimized ANN developed in MATLAB and 
the MLP-ANN developed in SPSS. 

 

* There was a statistically significant difference between the outcome predicted probabilities on 

ROC curve analysis of the models that considered subjects’ body weight and height - one developed 
in MATLAB (GA-ANN) and the other (MLP-ANN) in SPSS (Z = -2.4978, p < 0.05). 

There was no statistically significant difference between the ROC curves between the remaining 
models developed in MATLAB and SPSS: 

Dataset I-w with subjects’ body weight and height not considered, Z = 1.4154, p > 0.05; 
Dataset II-w with subjects’ body weight and height considered, Z = 0.059016, p > 0.05;  
Dataset II-w with subjects’ body weight and height not considered, Z = 0.23823, p > 0.05; 
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4.2.2.4. Comparison of analogous machine learning models:  
Models with & models without consideration of subjects’ body weight & height 

There was no significant difference in the ROC curves analyses in test samples between 
the analogous ML models that did consider and did not consider subjects’ body weight and 
height in Datasets I-w and II-w. This holds true for GA-optimized ANNs (Figure 4.2.6), as 
well as for MLP-ANNs, DTs, k-NN, and NB (Figures 4.2.7. and 4.2.8, for Dataset I-w and 
Dataset II-w, respectively). 

 

 

Figure 4.2.6. The comparison of the ROC curves of two analogous GA-ANN models developed in MATLAB, 
one considering subjects’ body weight and body height, and one that does not consider them, in (a) Dataset I-
w, and in (b) Dataset II-w. 

There was no statistically significant difference in the ROC curve analysis between the two analogous 
models. (Dataset I-w: Z = -0.17407, p > 0.05; Dataset II-w: Z = 0.059016, p > 0.05). 

 

4.2.2.5. Machine learning models’ variable importance and settings 

 

Table 4.2.8. lists up to the top five ranked input variables for each of these algorithms, 
according to the variable’s independent importance. 

The hyperparameters settings for all used algorithms developed in SPSS (MLP-ANN, 
DT, k-NN, and NB), in both datasets (I-w and II-w, respectively) are shown in Table 4.2.9.  
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Figure 4.2.7. The comparison of the ROC curves of two analogous machine learning models developed in 
SPSS, one considering the subjects’ body weight and body height, and one that does not consider them, in 
Dataset I-w: MLP-ANN (a), Decision Tree (b), k-Nearest Neighbors (c), and Naïve Bayes (d).  

There was no statistically significant difference in the ROC curve analysis between any of the analogous 
models: 

MLP-ANN, Z = 0.66786, p > 0.05;  
Decision Tree, Z = -1.4334, p > 0.05; 
k-Nearest Neighbors, Z = 0.48151, p > 0.05;  
Naïve Bayes, Z = 0.32563, p > 0.05; 
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Figure 4.2.8. The comparison of the ROC curves of two analogous machine learning models developed in 
SPSS, one considering the subjects’ body weight and body height, and one that does not consider them, in 
Dataset II-w: MLP-ANN (a), Decision Tree (b), k-Nearest Neighbors (c), and Naïve Bayes (d).  

There was no statistically significant difference in the ROC curve analysis between any of the analogous 
models: 

MLP-ANN, Z = 0.28063, p > 0.05;  
Decision Tree, Z = 0.064592, p > 0.05; 
k-Nearest Neighbors, Z = 0.90233, p > 0.05;  
Naïve Bayes, Z = 0.2654, p > 0.05;   
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Table 4.2.8. The top five ranked input variables based on their relative importance for utilized machine learning models. 
 
 

 DATASET I-w  
considering BW & BH 

DATASET I-w 
not considering BW & BH 

DATASET II-w 
considering BW & BH 

DATASET II-w 
not considering BW & BH 

MLP DT k-NN NB MLP DT* k-NN NB MLP DT k-NN NB MLP DT k-NN NB 

1st BH BW Spine BW Age UL-Hy Age 
Tot.Fr.

N0 
BH BW UL-Hy 

Tot.Fr. 
N0 

Age Age Hy N0 UL-Hy 

2nd Age UL-Hy sTy&Hy BH 
Tot.Fr.

N0 
Age Sex iHy BW Age BL-Hy iHy Spine UL-Ty BL-Hy iTy 

3rd  
Tot.Fr.

N0 
Hy N0 Hy N0 

Tot.Fr.
N0 

BL-Hy sTy&Hy Spine BL-Hy Hy N0 
Tot.Fr.

N0 
Hy N0 BL-Hy sTy&Hy iTy UL-Hy sTy&Hy 

4th BW Age iHy UL-Ty Hy N0 / sTy&Hy Sex 
Tot.Fr.

N0 
BH iHy UL-Ty Hy N0 sTy&Hy iHy BL-Hy 

5th iTy sTy&Hy BL-Hy UL-Hy BL-Ty / Hy N0 UL-Ty Age Ty N0 
Tot.Fr.

N0 
sTy&Hy UL-Hy Hy N0 

Tot.Fr.
N0 

Spine 

 

Note: Some models included less than 5 variables, and these empty fields in table are labeled by “/” sign. 
 
Abbreviations: BW – Body Weight, BH – Body Height, BL-Hy – bilateral greater hyoid horn fractures, BL-Ty – bilateral superior thyroid horn fractures, CL-Ty - superior 
thyroid cartilage horn contralateral to the knot position, Hy N0 – Total number of greater hyoid horn fractures, iTy – isolated superior thyroid horn fracture(s), IL-Hy - greater 
hyoid bone horn ipsilateral to the knot position, IL-Ty – superior thyroid cartilage horn ipsilateral to the knot position, L-Hy – left greater hyoid bone horn, L-Ty – left superior 
thyroid cartilage horn, R-Hy – right greater hyoid bone horn, sTy&Hy – simultaneous superior thyroid horn and greater hyoid horn fractures, Spine – Cervical spine fracture, 
Tot.Fr.N0 – Total number of thyrohyoid fractures, Ty N0 – Total number of superior thyroid horn fractures, UL-Hy – unilateral greater hyoid horn fracture, UL-Ty – unilateral 
superior thyroid horn fracture.  
 

*Selecting Exhaustive CHAID growing method for DT model does not provide information on variable importance ranking. 

 

  



63 

Table 4.2.9. Hyperparameter settings in the reported machine learning algorithms (developed in SPSS).  
 

N0 of  
hidden layers 

N0 of neurons in  
a hidden layer Activation function 

Training 
type 

Training 
algorithm 

Initial  
learning rate Momentum 

MLP 
ANN  

DATASET I-w 
BW considered 1 5 Hyperbolic tangent Batch 

Gradient 
descent 

0.4 0.9 

DATASET I-w 
BW not consd. 1 10 Hyperbolic tangent Batch 

Gradient 
descent 

0.4 0.9 

DATASET II-w 
BW considered 1 9 Hyperbolic tangent Online 

Gradient 
descent 

0.5 0.7 

DATASET II-w  
BW not consd. 1 10 Hyperbolic tangent Online 

Gradient 
descent 

0.5 0.7 

 
 

Growing method Tree depth 
Min. samples 

of parent node 
Min. samples of 

child node 
No of nodes 

No of terminal 
nodes 

Decision 
Tree 

DATASET I-w 
BW considered 

CRT 4 50 10 13 7 

DATASET I-w 
BW not consd. 

Exhaustive CHAID 3 70 10 9 5 

DATASET II-w 
BW considered 

CRT 3 25 10 7 4 

DATASET II-w  
BW not consd. 

CRT 2 25 10 5 3 

 
 No  of Neighbors  

to consider 
Distance metrics 

Search Algorithm  
(Feature selection - Stopping criterion) 

 

k-NN DATASET I-w 
BW considered 

3 Euclidean Select all features 

DATASET I-w 
BW not consd. 

13 Euclidean Select all features 

DATASET II-w 
BW considered 

13 Euclidean 5 features selected 

DATASET II-w  
BW not consd. 

10 Euclidean Select all features 

 
 Maximum memory 

(Mb) 
N0 of bins  

for scale predictors 
N0  

of selected predictors 

 
 

Naïve 
Bayes 

DATASET I-w 
BW considered 

1024 5 1 

DATASET I-w 
BW not consd. 

1024 5 5 

DATASET II-w 
BW considered 

1024 10 10 

DATASET II-w  
BW not consd. 

1024 10 13 

Abbreviations: MLP-ANN - Multilayer Perceptron – Artificial neural network, k-NN – k Nearest Neighbors.
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4.3. PART III of the study: 
Analysis of the sternocleidomastoid muscles’ origin hemorrhage  
in knot position-related fracture patterns assessment 

The characteristics of included cases regarding the subjects’ sex, age, body weight and 
body height, thyrohyoid and cervical spine fracture occurrence, ligature knot position, as 
well as the presence of the hemorrhages of the sternocleidomastoid muscle origins at the 
clavicles are shown in Table 4.3.1. 

4.3.1. Descriptive, basic inferential, and logistic regression analysis  
of the thyrohyoid and cervical spine fracture patterns 

Following the reporting of the previous study parts, the distribution of the analyzed 
variables (thyrohyoid and cervical spine fractures), including the presence of 
sternocleidomastoid muscle origin hemorrhages, in terms of the coded variables for study 
subgroups (Datasets I-m – III-m) is shown in Table 4.3.2, and Table 4.3.3. (Dataset IV-m), 
and the additional basic and logistic regression analyses are reported here. 

4.3.1.1. The entire sample (hangings with and without fractures  
       or sternocleidomastoid muscle hemorrhages) – Dataset I-m 

In the Dataset I-m, comprising 126 hangings with and without thyrohyoid complex and 
cervical spine fractures, in overall, the thyrohyoid complex fractures were significantly 
more frequent in subjects older than 40 years of age than in the younger subjects (N = 68, 
73.9% subjects older than 40 years of age vs. N = 17, 50.0% of younger subjects, χ² = 6.47, df 
= 1, p < 0.05). Further analysis revealed that the significant difference in fracture occurrence 
between these two age groups existed only for the greater hyoid horn fractures: GHH 
fractures were significantly more frequent in older than 40 years of age compared to 
younger individuals (N = 37, 40.2% subjects older than 40 years of age vs. N = 4, 11.8% of 
younger subjects, χ² = 9.16, df = 1, p < 0.05). Contrary, no significant difference was observed 
in the frequency of STH fractures (N = 51, 55.4% of subjects older than 40 years of age vs. N 
= 16, 47.1% of younger subjects, χ² = 0.69, df = 1, p > 0.05). There was no statistically 
significant difference in the frequency of SCM muscle hemorrhages between these two 
groups, too (N = 79, 85.9% subjects older than 40 years of age vs. N = 29, 85.3% of younger 
subjects, χ² = 0.01, df = 1, p > 0.05). The overall occurrence of thyrohyoid fractures did not 
significantly differ between the two analyzed groups (typical vs. atypical hangings, χ² = 
1.46, df = 1, p > 0.05), the distribution of subjects older than 40 years of age was equal 
between these groups (χ² = 0.09, df = 1, p > 0.05), and the frequency of SCM hemorrhage 
occurrence was similar (χ² = 0.19, df = 1, p > 0.05). 

On the ROC analysis, subjects’ age and body weight were statistically significant 
predictors of thyrohyoid fracture occurrence, which is not true for subject’s body height. Of 
these anthropometric variables, only the body weight was a statistically significant predictor 
of sternocleidomastoid muscle hemorrhage at the origin on the clavicles. The ROC curve 
analyses are shown in Figures 4.3.1 – 4.3.3. for subjects’ age, body weight, and body height, 
regarding the analyzed fractures, respectively, while the predictive value of these variables 
for the occurrence of SCM hemorrhages is shown in Figure 4.3.4. 
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Table 4.3.1. Basic subjects’ and injury characteristics – the study sample of Dataset I-m. 

N = 126 

Sex Male 99 (78.6%) 
Female 27 (21.4%) 

Age (years) 55.0 (17 – 94) 

Body weight (kg) 70.0 (40 – 125) 

Body height (cm) 176.0 (145 – 205) 

THYROHYOID AND CERVICAL SPINE FRACTURES 

Thyrohyoid fractures present Yes 85 (67.5%) 
No 41 (32.5%) 

STH fracture present Yes 67 (53.2%) 
No 59 (46.8%) 

GHH fracture present Yes 41 (32.5%) 
No 85 (67.5%) 

Isolated STH fracture(s)  Yes 44 (34.9%) 
No 82 (65.1%) 

Isolated GHH fracture(s) Yes 18 (14.3%) 
No 108 (85.7%) 

Simultaneous STH and GHH fractures Yes 23 (18.3%) 
No 103 (81.7%) 

Left GHH fracture Yes 25 (19.8%) 
No 101 (80.2%) 

Right GHH fracture Yes 27 (21.4%) 
No 99 (78.6%) 

Left  STH fracture Yes 37 (29.4%) 
No 89 (70.6%) 

Right  STH fracture Yes 54 (42.9%) 
No 72 (57.1%) 

Cervical Spine fracture Yes 3 (2.4%) 
No 123 (97.6%) 

STERNOCLEIDOMASTOID MUSCLE HEMORRHAGES 

SCM hemorrhage present Yes 108 (85.7%) 
No 18 (14.3%) 

Left SCM hemorrhage Yes 78 (61.9%) 
No 48 (38.1%) 

Right SCM hemorrhage Yes 88 (69.8%) 
No 38 (30.2%) 

KNOT POSITION 

Anterior 7 (5.6%) 

Posterior 62 (49.2%) 

Left lateral 33 (26.2%) 

Right lateral 24 (19.0%) 

 
 
Note: The data is presented as frequency and ratio.  
Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn;  
SCM – sternocleidomastoid muscle. 
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Table 4.3.2. The descriptives of the coded variables: thyrohyoid and cervical fractures and basic subject characteristics for Datasets I-m, II-m, and III-m. 
 DATASET I-m 

THE ENTIRE SAMPLE  
OF STUDY PART III 

 

DATASET II-m 
HANGINGS WITH FRACTURES  

OR SCM HEMORRHAGES 

 

DATASET III-m 
ATYPICAL HANGINGS 

Knot Position Knot Position Knot Position 
Typical 
N = 62 
(49.2%) 

Atypical 
N = 64 
(50.8%) 

p- 
value 

Typical 
N = 59 
(50.4%) 

Atypical 
N = 58  
(49.6%)  

p-
value 

Anterior 
N = 6  

(10.3%) 

Lateral 
N = 52  
(89.7%) 

p-
value 

Sex Male 49 (79.0%) 50 (78.1%)  46 (78.0%) 46 (79.3%)  5 (83.3%) 41 (78.8%)  
Female 13 (21.%) 14 (21.9%) 13 (22.0%) 12 (20.7%) 1 (16.7%) 11 (21.2%) 

Age (years) 55.5 (20 – 90) 54.5 (17 – 94) 56.0 (20 – 90) 54.5 (24 – 94) 57.5 (31 – 91) 54.0 (23 – 94) 
Body weight (kg) 68 (41 -125) 72 (40 – 112) 69.0 (41 – 125) 72.5 (40 – 112) 85.5 (60 – 94) 72.0 (40 – 112) 
Body height (cm) 175 (145 – 

205) 
177 (151 – 
190) 

175.0 (145 – 
205) 

177.5 (151 – 
190) 

179.5 (164 – 
190) 

177.0 (151 – 
190) 

THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS 
Isolated  
STH fracture(s) 

Yes 22 (35.5%) 22 (34.4%)   22 (37.3%) 22 (37.9%)   2 (33.3%) 20 (38.5%)  

No 40 (64.5%) 42 (65.6%) 37 (62.7%) 36 (62.1%) 4 (66.7%) 32 (61.5%) 
Unilateral  
STH fracture 

Yes 21 (33.9%) 20 (31.3%) 21 (35.6%) 20 (34.5%) 1 (16.7%) 19 (36.5%) 
No 41 (66.1%) 44 (68.8%) 38 (64.4%) 38 (65.5%) 5 (83.3%) 33 (63.5%) 

Bilateral  
STH fracture 

Yes 12 (19.4%) 12 (18.8%) 12 (20.3%) 12 (20.7%) 1 (16.7%) 11 (21.2%) 
No 50 (80.6%) 52 (81.2%) 47 (79.7%) 46 (79.3%) 5 (83.3%) 41 (78.8%) 

Total N0 of STH fractures 
(0 – 2) 

1 (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) 0 (0 – 2) 1 (0 – 2) 

Isolated  
GHH fracture(s) 

12 (19.4%) 6 (9.4%) 12 (20.3%) 6 (10.3%) 1 (16.7%) 5 (9.6%) 
50 (80.6%) 58 (90.6%) 47 (79.7%) 52 (89.7%) 5 (83.3%) 47 (90.4%) 

Unilateral  
GHH fracture 

Yes 17 (27.4%) 11 (17.2%) 17 (28.8%) 11 (19.0%) 1 (16.7%) 10 (19.2%) 
No 45 (72.6%) 53 (82.8%) 42 (71.2%) 47 (81.0%) 5 (83.3%) 42 (80.8%) 

Bilateral   
GHH fracture 

Yes 6 (9.7%) 5 (7.8%) 6 (10.2%) 5 (8.6%) 0 (0.0%) 5 (9.6%) 
No 56 (90.3%) 59 (92.2%) 53 (89.8%) 53 (91.4%) 6 (100.0%) 47 (90.4%) 

Total N0 of  GHH fractures  
(0 – 2) 

0 (0 – 2) 0 (0 – 2) 0 (0 – 2) 0 (0 – 2) 0 (0 – 1) 0 (0 – 2) 

Total N0 of TyHy fractures 
(0 – 4) 

1 (0 – 4) 1 (0 – 4) 1 (0 – 4) 1 (0 – 4) 0.5 (0 – 2) 1 (0 – 4) 

Simultaneous 
STH and GHH 
fractures 

Yes 11 (17.7%) 12 (18.8%) 11 (18.6%) 12 (20.7%) 0 (0.0%) 12 (23.1%) 
No 51 (82.3%) 52 (81.3%) 48 (81.4%) 46 (79.3%) 6 (100.0%) 40 (76.9%) 

Contralateral thyrohyoid fracture Yes 0 (0.0%) 6 (11.5%) 
No 6 (100.0%) 46 (88.5%) 

Cervical spine fracture Yes 1 (1.6%) 2 (3.1%)   1 (1.7%) 2 (3.4%)   1 (16.7%) 1 (1.9%) 
No 61 (98.4%) 62 (96.9%) 58 (98.3%) 56 (96.6%) 5 (83.3%) 51 (98.1%) 
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STERNOCLEIDOMASTOID MUSCLES’ ORIGIN HEMORRHAGES 
 

Table 4.3.2. Continued DATASET I-m 
THE ENTIRE SAMPLE  

OF STUDY PART III 

 DATASET II-m 
HANGINGS WITH FRACTURES  

OR SCM HEMORRHAGES 

 DATASET III-m 
ATYPICAL HANGINGS WITH 

FRACTURES OR SCM HEMORRHAGES 
Knot Position Knot Position Knot Position 

Typical 
N = 62 
(49.2%) 

Atypical 
N = 64 
(50.8%) 

p- 
value 

Typical 
N = 59 
(50.4%) 

Atypical 
N = 58  
(49.6%) 

p-
value 

Anterior 
N = 6  

(10.3%) 

Lateral 
N = 52  
(89.7%) 

p-
value 

STERNOCLEIDOMASTOID MUSCLES’ ORIGIN HEMORRHAGES 

Unilateral  
SCM hemorrhages 

Yes 21 (33.9%) 29 (45.3%) 

  

21 (35.6%) 29 (50.0%) 

  

1 (16.7%) 28 (53.8%) 

 
No 41 (66.1%) 35 (54.7%) 38 (64.4%) 29 (50.0%) 5 (83.3%) 24 (46.2%) 

Bilateral 
SCM hemorrhages 

Yes 33 (53.2%) 25 (39.1%) 33 (55.9%) 25 (43.1%) 5 (83.3%) 20 (38.5%) 
No 29 (46.8%) 39 (60.9%) 26 (44.1%) 33 (56.9%) 1 (16.7%) 32 (61.5%) 

Total N0 of SCM hemorrhages  
(0 – 2) 

2 (0 – 2) 1 (0 – 2) 2 (0 – 2) 1 (0 – 2) 2 (1 – 2) 1 (0 – 2) < 0.05 

 

 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard deviation or median and range. For comparison of categorical data, the χ² 

or Fisher’s Exact test were performed, while the Mann-Whitney U test was performed for numerical data. The missing p-values are > 0.05.  

Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; SCM – sternocleidomastoid muscle. 
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Table 4.3.3. Characteristics of the lateral hangings in Dataset IV-m. 

N = 52 
Left lateral 

N = 30 (57.7%) 
Right lateral 

N = 22 (42.3%) p-value 

Sex Male 41 (78.8%) 26 (86.7%) 15 (68.2%)  

Female 11 (21.2%) 4 (13.3%) 7 (31.8%) 
Age (years) 54.0 (24 – 94) 51.5 (24 – 94) 54.0 (25 – 85) 
Body weight (kg) 72.0 (40 – 112) 71.5 (49 – 112) 72.5 (40 – 103) 
Body height (cm) 177.0 (151 – 190) 179.0 (151 – 190) 176.0 (153 – 190) 

THYROHYOID AND CERVICAL SPINE FRACTURE PATTERNS 
Thyrohyoid fractures present Yes 37 (71.2%) 21 (70.0%) 16 (72.7%) 

No 15 (28.8%) 9 (30.0%) 6 (27.3%) 
STH fracture present Yes 32 (61.5%) 19 (63.3%) 13 (59.1%) 

No 20 (38.5%) 11 (36.7%) 9 (40.9%) 
GHH fracture present Yes 17 (32.7%) 10 (33.3%) 7 (31.8%) 

No 35 (67.3%) 20 (66.7%) 15 (68.2%) 
Isolated STH fractures Yes 20 (38.5%) 11 (36.7%) 9 (40.9%) 

No 32 (61.5%) 19 (63.3%) 13 (59.1%) 
Isolated GHH fractures Yes 5 (9.6%) 2 (6.7%) 3 (13.6%) 

No 47 (90.4%) 28 (93.3%) 19 (86.4%) 
Left GHH fracture Yes 13 (25.0%) 8 (26.7%) 5 (22.7%) 

No 39 (75.0%) 22 (73.3%) 17 (77.3%) 
Right GHH fracture Yes 9 (17.3%) 5 (16.7%) 4 (18.2%) 

No 43 (82.7%) 25 (83.3%) 18 (81.8%) 
Left STH fracture Yes 17 (32.7%) 9 (30.0%) 8 (36.4%) 

No 35 (67.3%) 21 (70.0%) 14 (63.6%) 
Right STH fracture Yes 26 (50.0%) 16 (53.3%) 10 (45.5%) 

No 26 (50.0%) 14 (46.7%) 12 (54.5%) 
Unilateral GHH fracture Yes 10 (19.2%) 7 (23.3%) 3 (13.6%) 

No 42 (80.8%) 23 (76.7%) 19 (86.4%) 
Unilateral STH fracture Yes 19 (36.5%) 13 (43.3%) 6 (27.3%) 

No 33 (63.5%) 17 (56.7%) 16 (72.7%) 
Bilateral GHH fracture Yes 5 (9.6%) 3 (10.0%) 2 (9.1%) 

No 47 (90.4%) 27 (90.0%) 20 (90.9%) 
Bilateral STH fracture Yes 11 (21.2%) 6 (20.0%) 5 (22.7%) 

No 41 (78.8%) 24 (80.0%) 17 (77.3%) 
Ipsilateral GHH fracture Yes 6 (11.5%) 5 (16.7%) 1 (4.5%) 

No 46 (88.%) 25 (83.3%) 21 (95.5%) 
Contralateral STH fracture Yes 12 (23.1%) 10 (33.3%) 2 (9.1%) 

< 0.05 
No 40 (76.9%) 20 (66.7%) 20 (90.9%) 

Contralateral thyrohyoid fractures Yes 6 (11.5%) 5 (16.7%) 1 (4.5%) 

 

No 46 (88.5%) 25 (83.3%) 21 (95.5%) 
Simultaneous STH and GHH fracture Yes 12 (23.1%) 8 (26.7%) 4 (18.2%) 

No 40 (76.9%) 22 (73.3%) 18 (81.8%) 
Total N0 of STH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) 
Total N0 of GHH fractures (0 – 2) 0 (0 – 2) 0 (0 – 2) 0 (0 – 2) 
Total N0 of thyrohyoid fractures (0 – 4) 1 (0 – 4) 1.5 (0 – 4) 1 (0 – 3) 
Cervical spine fracture Yes 1 (1.9%) 1 (3.3%) 0 (0.0%) 

No 51 (98.1%) 29 (96.7%) 22 (100.0%) 
STERNOCLEIDOMASTOID MUSCLE’S ORIGIN HEMORRHAGES 

SCM hemorrhage present Yes 48 (92.3%) 28 (93.3%) 20 (90.9%) 
No 4 (7.7%) 2 (6.7%) 2 (9.1%) 

Left SCM hemorrhage Yes 31 (59.6%) 23 (76.7%) 8 (36.4%) 
< 0.05 

No 21 (40.4%) 7 (23.3%) 14 (63.6%) 
Right SCM hemorrhage Yes 37 (71.2%) 17 (56.7%) 20 (90.9%) 

< 0.05 
No 15 (28.8%) 13 (43.3%) 2 (9.1%) 

Unilateral SCM hemorrhage Yes 28 (53.8%) 16 (53.3%) 12 (54.5%)  
No 24 (46.2%) 14 (46.7%) 10 (45.5%) 

Bilateral SCM hemorrhage Yes 20 (38.5%) 12 (40.0%) 8 (36.4%) 
No 32 (61.5%) 18 (60.0%) 14 (63.6%) 

Ipsilateral  
SCM hemorrhage 

Yes 23 (44.2%) 11 (36.7%) 12 (54.5%) 
No 29 (55.8%) 19 (63.3%) 10 (45.5%) 

Total N0 of SCM hemorrhages (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) 
 
Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard deviation or median and range. For comparison 
of categorical data, the χ² test or Fisher’s exact test were performed, while the Mann-Whitney U test was performed for numerical data. All the p-
values are > 0.05.  Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; SCM – Sternocleidomastoid muscle.
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Age was a significant predictor for overall thyrohyoid complex fracture occurrence 
(AUC 0.622, 95% CI 0.511 – 0.733, p < 0.05) – cutoff value was age of ≥ 54.5 years (sensitivity 
75.3%, specificity 51.2%), as well as for the occurrence of GHH fracture (AUC 0.664, 95% CI 
0.568 – 0.760, p = 0.001) – cutoff value was age of ≥ 52.5 years (sensitivity 75.6%, specificity 
55.3%). However, age was not a good predictor of STH fracture occurrence considered 
separately (AUC 0.479, 95% CI 0.374 – 0.584, p > 0.05). Here, age was not a significant 
predictor of cervical spine fracture occurrence, too (AUC 0.533, 95% CI 0.293 – 0.772, p > 
0.05). 

 
Figure 4.3.1. The ROC curve analyses of the subjects’ age as a predictor for (a) the occurrence of GHH 
fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as 
(d) the cervical spine fracture occurrence, in Dataset I-m. Abbreviations: GHH – Greater hyoid bone horn, 
STH – Superior thyroid cartilage horn. 

Age showed a negligible statistically significant positive correlation with the total 
number of thyrohyoid fractures (range 0-4 – sum of STH and GHH fractures, ρ = 0.188, p < 
0.05), and a weak correlation with the total number of GHH fractures (range 0-2, ρ = 0.248, 
p < 0.05), but did not correlate with the total number of STH fractures (range 0-2, ρ = 0.023, 
p > 0.05). Also, subjects’ age did not correlate significantly with the number of SCM 
hemorrhages (range 0-2, ρ = 0.007, p > 0.05). 
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Subjects’ body weight was a significant predictor for the occurrence of STH fracture 
(AUC 0.640, 95% CI 0.544 – 0.737, p < 0.05) – cutoff value was body weight of ≥ 65.5 kg 
(sensitivity 74.6%, specificity 52.5%). However, body weight was not a good predictor of 
overall thyrohyoid complex fracture occurrence (AUC 0.556, 95% CI 0.453 – 0.659, p > 0.05) 
and of GHH fracture occurrence considered separately (AUC 0.482, 95% CI 0.373 – 0.591, p 
> 0.05). Also, body weight was not a significant predictor of cervical spine fracture 
occurrence, too (AUC 0.537, 95% CI 0.257 – 0.817, p > 0.05). 

 

  

Figure 4.3.2. The ROC curve analyses of the subjects’ body weight as a predictor for (a) the occurrence of 
GHH fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as 
well as (d) the cervical spine fracture occurrence, in the Dataset I-m. Abbreviations: GHH – Greater hyoid 
bone horn, STH – Superior thyroid cartilage horn. 

A statistically significant but negligible positive correlation was observed only between 
subjects’ body weight and the total number of STH fractures (range 0-2, ρ = 0.197, p < 0.05). 
There were no statistically significant correlations of body weight with the total number of 
thyrohyoid fractures (range 0-4 – sum of STH and GHH fractures, ρ = 0.083, p > 0.05), total 
number of GHH fractures considered alone (range 0-2, ρ = -0.049, p > 0.05), as well as with 
the total number of SCM muscle hemorrhages (range 0-2, ρ = 0.141, p > 0.05). 
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Body height was not a significant predictor for any of the considered variables: overall 
thyrohyoid fracture occurrence (AUC 0.534, 95% CI 0.430 – 0.639, p > 0.05), GHH fracture 
occurrence considered separately (AUC 0.518, 95% CI 0.410 – 0.625, p > 0.05), STH fracture 
occurrence considered separately (AUC 0.575, 95% CI 0.475 – 0.676, p > 0.05), and cervical 
spine fracture occurrence (AUC 0.541, 95% CI 0.317 – 0.765, p > 0.05).  

Body height did not significantly correlate with the number of thyrohyoid fractures, 
overall and when considered separately (STH and GHH, p > 0.05 – for all), as well as with 
the total number of SCM muscle hemorrhages (range 0-2, ρ = 0.112, p > 0.05). 

 

 
Regarding the predictive value on the occurrence of sternocleidomastoid muscle’s origin 

hemorrhages – subjects’ age was not a statistically significant predictor of hemorrhages at 
the origin of SCM muscles (AUC 0.463, 95% CI 0.316 – 0.610, p > 0.05). Body weight was a 
statistically significant predictor of hemorrhages at the origin of SCM muscles (AUC 0.639, 
95% CI 0.505 – 0.772, p < 0.05) – cutoff value was body weight of ≥ 67.5 kg (sensitivity 62.0%, 
specificity 66.7%). Subjects’ body height was not a statistically significant predictor of 
hemorrhages at the origin of SCM muscles (AUC 0.619, 95% CI 0.492 – 0.745, p > 0.05). 

Figure 4.3.3. The ROC curve analyses of the subjects’ body height as a predictor for (a) the occurrence of GHH 
fractures, (b) the occurrence of STH fractures, (c) the occurrence of thyrohyoid fractures in general, as well as 
(d) the cervical spine fracture occurrence, in the Dataset I-m. Abbreviations: GHH – Greater hyoid bone 
horn, STH – Superior thyroid cartilage horn. 
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Figure 4.3.4. The ROC curve analyses the subjects’ age (a), body weight (b), and body height (c) as predictors 
for the occurrence of sternocleidomastoid muscle’s origin hemorrhages, in Dataset I-m. 

On the univariable logistic regression analysis, none of the defined coded variables 
showed statistically significant association with the knot in a noose position (p > 0.05, for 
all), and because all the p-values were above 0.1, multivariable logistic regression analysis 
was not performed. 

4.3.1.2. The hangings with thyrohyoid or cervical spine fractures or                                                                                                            
sternocleidomastoid muscle hemorrhages – Dataset II-m 

In the subgroup of subjects in which at least one thyrohyoid or cervical spine fracture or 
SCM muscle hemorrhage was observed, subjects older than 40 years were equally 
distributed between the two groups (typical vs. atypical hangings, χ² = 0.003, df = 1, p > 
0.05). 

Subjects’ age had a weak statistically significant positive correlation with the number of 
GHH fractures (range 0-2, ρ = 0.249, p < 0.05). The body weight and body height did not 
correlate with the number of thyrohyoid fractures overall, and if GHH and STH were 
considered separately (p > 0.05, for all). The number of SCM hemorrhages (range 0 – 2) did 
not significantly correlate with the subjects’ age, body weight, and body height (p > 0.05, for 
all). 

On the univariable logistic regression analysis, none of the defined coded variables 
showed statistically significant association with the knot in a noose position (p > 0.05, for 
all), and because all the p-values were above 0.1, multivariable logistic regression analysis 
was not performed. 

4.3.1.3. The atypical hangings with thyrohyoid or cervical spine fractures or        
sternocleidomastoid muscle hemorrhages – Dataset III-m 

The subgroup of Dataset III-m comprised only atypical hanging cases with at least one 
thyrohyoid or cervical spine fracture or at least one sternocleidomastoid muscle 
hemorrhage, and it this dataset the anterior and lateral hanging groups were compared in 
between. Subjects older than 40 years of age were equally distributed between the two 
groups (χ² = 0.29, df = 1, p > 0.05). 
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In Dataset III-m, subjects’ age showed statistically significant weak positive correlation 
with the total number of thyrohyoid complex fractures (range 0-4, ρ = 0.293, p < 0.05), but 
did not significantly correlate with the total number of GHH or STH fractures if these were 
considered separately (both p-values > 0.05). Subjects’ body weight, and body height did 
not correlate significantly with the number of thyrohyoid fractures, either combined, or 
considered separately (STH and GHH fractures, p-values > 0.05). 

Also, subjects’ age, body weight, and body height did not significantly correlate with the 
total number of sternocleidomastoid muscle hemorrhages (all three p-values were > 0.05). 

On the univariable binary logistic regression analysis none of the coded variables was 
significantly associated with the (atypical) knot in a noose position (all p-values were > 0.05). 
The p-values for bilateral sternocleidomastoid muscle hemorrhages and total number of 
SCM hemorrhages (range 0-2) were < 0.1 but greater than 0.05 (OR 8.000 95% CI 0.870-
73.550, p = 0.066, and OR 7.316 95% CI 0.836 – 64.034, p = 0.072, respectively), and the 
multivariable logistic regression analysis was not performed. 

 

4.3.1.4. The lateral hangings with thyrohyoid and cervical spine fractures  
       or sternocleidomastoid muscle hemorrhages – Dataset IV-m 

Subjects older than 40 years of age were equally distributed between the two groups (χ² 
= 0.341, df = 1, p > 0.05).  

Subjects’ age showed statistically significant weak positive correlation with the total 
number of thyrohyoid complex fractures (range 0 – 4, ρ = 0.334, p < 0.05), but did not 
significantly correlate with the total number of GHH or STH fractures when these were 
considered separately (both p-values > 0.05). Subjects’ body weight, and body height did 
not correlate significantly with the number of thyrohyoid fractures, either combined, or 
considered separately (STH and GHH fractures, p-values > 0.05). 

In Dataset IV-m, subjects’ age, body weight, and body height did not significantly 
correlate with the total number of SCM muscle hemorrhages (all three p-values were > 0.05). 

On the univariable logistic regression analysis, statistically significant association with 
left lateral knot position had the presence of left SCM muscle hemorrhages (OR 5.750, 95% 
CI 1.710 – 19.333, p < 0.05), and the absence of right SCM muscle hemorrhages (OR 7.647, 
95% CI 1.509 – 38.759, p < 0.05). The presence of STH fracture contralateral to the knot 
position was included in the multivariable analysis due to p-value < 0.01. 

On the multivariable logistic regression analysis, the hemorrhages of left SCM muscle 
(aOR 5.625, 95% CI 1.390 – 22.759), absence of right SCM muscle hemorrhages (aOR 8.652, 
95% CI 1.462 – 51.204), and presence of the STH fracture contralateral to the knot in a noose 
position were all independently associated with the left lateral knot position. This model 
correctly classified 69.2% of cases (χ² = 20.263, df = 3, p < 0.05; Hosmer & Lemeshow Test: 
χ² = 5.718, df = 4, p > 0.05). 
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4.3.2. Machine learning algorithms 

In the third part of the study, the machine learning models were developed only for 
Dataset I-m. The characteristics of this dataset regarding the coded variables and 
test/training group division are shown in Supplement C. The data were considered 
balanced in terms of the outcome frequency distribution, and the oversampling by SMOTE 
algorithm was not performed. In the following text, the results on machine learning 
algorithms are reported in the previously established order. 

 

4.3.2.1. Genetic Algorithm-optimized Artificial Neural Networks 

Performance characteristics analyses of the GA-optimized ANNs, for Datasets I-m are 
reported in Table 4.3.4. 

Table 4.3.4. Performance characteristics of ANN developed in MATLAB for knot position classification in 
the entire sample (Dataset I-m). 

GA-optimized ANN 
DATASET I-m 

Accuracy  
(95% CI) Sn Sp PPV NPV LR+ LR- 

AUC  
(95% CI) 

SCM muscle 
hemorrhages 
 
considered 

Overall 
69.8% 

(61.0-77.7) 
70.3% 69.4% 70.3% 69.4% 2.3 0.4 

0.73 
(0.64-0.82) 

Test 
65.8% 

(48.6-80.4) 
66.7% 65.0% 63.2% 68.4% 1.9 0.5 

0.71 
(0.54-0.88) 

Training 
71.6% 

(61.0-80.7) 
71.7% 71.4% 73.3% 69.8% 2.5 0.4 

0.73  
(0.62-0.84) 

 

 

SCM muscle 
hemorrhages 
 
NOT 
considered 

Overall 
63.5% 

(54.4-71.9) 
75.0% 51.6% 61.5% 66.7% 1.6 0.5 

0.65 
(0.55-0.74) 

Test 
63.2% 

(46.0-78.2) 
88.9% 40.0% 57.1% 80.0% 1.5 0.3 

0.67 
(0.50-0.85) 

Training 
63.6% 

(52.7-73.6) 
69.6% 57.1% 64.0% 63.2% 1.6 0.5 

0.64  
(0.52-0.76) 

 
Note: The atypical knot position was considered as the positive state in confusion matrix performance calculations. There 
was no statistically significant difference in ROC curve analysis of the predicted outcome probabilities between the 
training and the test group (p > 0.05). Abbreviations:  GA – Genetic algorithm; Sn – sensitivity; Sp – specificity; PPV 
– positive predictive value, NPV – negative predictive value, LR+ – positive likelihood ratio, negative LR- – negative 
likelihood ratio, AUC – Area under the curve, CI – Confidence Interval, SCM – sternocleidomastoid. 
 

The GA-optimized ANN for Dataset I-m that considered the SCM muscle hemorrhages 
selected following variables (n = 8) to be included in the model: subjects’ body height, 
presence of unilateral STH fracture, presence of bilateral STH fractures, presence of isolated 
STH fracture, total number of STH fractures, presence of simultaneous STH and GHH 
fractures, presence of bilateral SCM muscle hemorrhages, and total number of SCM muscle 
hemorrhages. 
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The GA-optimized ANN for Dataset I-m that did not consider the SCM muscle 
hemorrhages selected following variables (n = 6) to be included in the model: subjects’ sex, 
age, body weight, total number of STH fractures, presence of bilateral GHH fractures, and 
presence of isolated GHH fracture. 

 

4.3.2.2. MLP-ANN, Decision Tree, k-NN, and Naïve Bayes algorithms 

Table 4.3.5. shows information on the performance characteristics of the machine 
learning algorithms developed in SPSS software, for Dataset I-m.  

Figure 4.3.5. shows ROC curve analysis of each of these reported ML algorithms.  

 

 

Figure 4.3.5. The Receiver Operating Characteristic (ROC) and Area under the curve (AUC) analysis of 
developed machine learning models in test samples of each of four datasets. The AUCs with 95% Confidence 
Intervals are listed in Table 4.3.5. There was no statistically significant difference in analysis between any 
training and test sample (p > 0.05). Abbreviations: MLP – Multilayer Perceptron- Artificial Neural 
Network, k-NN – k Nearest Neighbors. 
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Table 4.3.5. The performance characteristics of the machine learning models developed in SPSS, for the knot 
in a noose position classification in Dataset I-m. 
 
 
MLAs – Dataset I–m Accuracy  

(95% CI) 
Sn Sp PPV NPV LR+ LR- AUC  

(95% CI) 

MLP-ANN 
 

Overall 

w 
61.1% 

(52.0-69.7) 
75.0% 46.8% 59.3% 64.4% 1.4 0.5 

0.69 
(0.60-0.78) 

w/o 
65.1% 

(56.1-73.4) 
84.4% 45.2% 61.4% 73.7% 1.5 0.3 

0.61 
(0.51-0.71) 

Test 

w 
60.5% 

(43.4-76.0) 
66.7% 55.0% 57.1% 64.7% 1.5 0.6 

0.63 
(0.45-0.81) 

w/o 
60.5% 

(43.4-76.0) 
72.2% 50.0% 56.5% 66.7% 1.4 0.6 

0.60 
(0.41 – 0.78) 

Training 

w 
61.4% 

(50.4-71.6) 
78.3% 42.9% 60.0% 64.3% 1.4 0.5 

0.71 
(0.60-0.81) 

w/o 
67.0% 

(56.2-76.7) 
89.1% 42.9% 63.1% 78.3% 1.6 0.3 

0.62 
(0.50-0.74) 

Decision 
Tree 
 Overall 

w 
61.9% 

(52.8-70.4) 
54.7% 69.4% 64.8% 59.7% 1.8 0.7 

0.63 
(0.54-0.73) 

w/o 
60.3% 

(51.2-68.9) 
89.1% 30.6% 57.0% 73.1% 1.3 0.4 

0.62  
(0.52-0.72) 

Test 

w 
52.6% 

(35.8-69.0) 
38.9% 65.0% 50.0% 54.2% 1.1 0.9 

0.51 
(0.32-0.70) 

w/o 
55.3% 

(38.3-71.4) 
88.9% 25.0% 51.6% 71.4% 1.2 0.4 

0.62 
(0.44-0.80) 

Training 

w 
65.9% 

(55.0-75.7) 
60.9% 71.4% 70.0% 62.5% 2.1 0.5 

0.69  
(0.58-0.80) 

w/o 
62.5% 

(51.5-72.6) 
89.1% 33.3% 59.4% 73.7% 1.3 0.3 

0.62 
(0.51-0.74) 

k-NN 
 

Overall 

w 
54.0% 

(44.9-62.9) 
57.8% 50.0% 54.4% 53.4% 1.2 0.8 

0.57 
(0.46-0.67) 

w/o 
60.3% 

(51.2-68.9) 
79.7% 40.3% 58.0% 65.8% 1.3 0.5 

0.58 
(0.48-0.68) 

Test 

w 
55.3% 

(38.3-71.4) 
55.6% 55.0% 52.6% 57.9% 1.2 0.8 

0.52 
(0.34-0.71) 

w/o 
55.3% 

(38.3-71.4) 
77.8% 35.0% 51.9% 63.6% 1.2 0.6 

0.61 
(0.43-0.79) 

Training 

w 
53.4% 

(42.5-64.1) 
58.7% 47.6% 55.1% 51.3% 1.1 0.9 

0.58 
(0.46-0.70) 

w/o 
62.5% 

(51.5-72.6) 
80.4% 42.9% 60.7% 66.7% 1.4 0.5 

0.57 
(0.45-0.69) 

Naïve Bayes 
 

Overall 

w 
61.1% 

(52.0-69.7) 
75.0% 46.8% 59.3% 64.4% 1.4 0.5 

0.64 
(0.54-0.74) 

w/o 
67.5% 

(58.5-75.5) 
71.9% 62.9% 66.7% 68.4% 1.9 0.4 

0.74 
(0.65-0.83) 

Test 

w 
55.2% 

(35.7-73.6) 
69.2% 43.8% 50.0% 63.6% 1.2 0.7 

0.69 
(0.51-0.86) 

w/o 
57.6% 

(39.2-74.5) 
62.5% 52.9% 55.6% 60.0% 1.3 0.7 

0.79 
(0.64-0.94) 

Training 

w 
62.9% 

(52.5-72.5) 
76.5% 47.8% 61.9% 64.7% 1.5 0.5 

0.62 
(0.50-0.73) 

w/o 
71.0% 

(60.6-79.9) 
75.0% 66.7% 70.6% 71.4% 2.3 0.4 

0.7 
(0.60-0.82) 

 
Note: Notes: The atypical knot position was considered as a positive state in confusion matrix performance calculations. There was no 
statistically significant difference in Area under the ROC curve analysis between training and test samples (p > 0.05). Abbreviations: 
MLP–ANN – Multilayer Perceptron – Artificial Neural Network, k-NN – k Nearest Neighbors, Logistic Regression – Multivariable 
Logistic Regression analysis, w – model considered sternocleidomastoid muscle origin hemorrhages w/o – model did not consider 
sternocleidomastoid muscle hemorrhages, Sn – sensitivity, Sp – specificity, PPV – positive predictive value, NPV – negative predictive 
value, LR+ – positive likelihood ratio, negative LR- – negative likelihood ratio, AUC – Area under the curve, CI – Confidence Interval. 
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4.3.2.3. GA-optimized ANN and MLP-ANN ROC analysis comparison 

 

The comparison analysis between the ROC curves of the GA-optimized ANN models 
and the ROC curves of the MLP-ANN models for Dataset I-m are shown in Figure 4.3.6.  

 

 

Figure 4.3.6. The comparison of the ROC curves of two Artificial Neural Network models developed for the 
knot position classification (atypical vs. typical hangings) in Dataset I-m: the GA-optimized ANN developed 
in MATLAB and the MLP-ANN developed in SPSS. (a) The comparison of models that considered 
sternocleidomastoid muscle origin’s hemorrhages (b) The comparison of models that did not consider 
sternocleidomastoid muscle origin’s hemorrhages. 

There was no statistically significant difference between the ROC curves developed in MATLAB and SPSS:  

Dataset I-m with SCM hemorrhages considered, Z = 0.65384, p > 0.05;  
Dataset I-m with SCM hemorrhages not considered, Z = 0.52077, p > 0.05;  

 

4.3.2.4. Comparison of analogous machine learning models:  
Models with & models without consideration of SCM muscle hemorrhages 

There was no significant difference in the ROC curves analyses in test samples between 
the ML models that considered presence of sternocleidomastoid muscles origin’s 
hemorrhages and the ML models that did not considered these hemorrhages in Dataset I-
m. This holds true for GA-ANN (Figure 4.3.7), MLP-ANN, DT, k-NN, and NB (Figure 4.3.8). 
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4.3.2.5. Machine learning models’ variable importance and settings 

The hyperparameters settings for all used algorithms developed in SPSS (MLP-ANN, 
DT, k-NN, and NB), in Dataset I-m are shown in Table 4.3.6.  Table 4.3.7. lists up to the top 
five ranked input variables for each of these algorithms, according to the variable’s 
independent importance. 

 

 

 

Figure 4.3.7. The comparison of the ROC curves of two analogous GA-ANN models developed in MATLAB, 
one considering the presence of sternocleidomastoid muscles origin hemorrhages, and one that does not 
consider them, in Dataset I-m. 

There was no statistically significant difference in the ROC curve analysis between the two analogous 
models (Z = 0.28849, p > 0.05). 
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Figure 4.3.8. The comparison of the ROC curves of two analogous machine learning models developed in 
SPSS, one considering the presence of sternocleidomastoid muscles origin hemorrhages, and one that does not 
consider them, in Dataset I-m: MLP-ANN (a), Decision Tree (b), k-Nearest Neighbors (c), and Naïve Bayes 
(d).  

There was no statistically significant difference in the ROC curve analysis between any of the analogous 
models: 

MLP-ANN, Z = 0.40384, p > 0.05;  
Decision Tree, Z = -1.0258, p > 0.05; 
k-Nearest Neighbors, Z = -0.64212, p > 0.05;  
Naïve Bayes, Z = -1.1272, p > 0.05; 
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Table 4.3.6. Hyperparameter settings in the reported machine learning algorithms (developed in SPSS).  

 N0 of  
hidden layers 

N0 of neurons in  
a hidden layer 

Activation function Training 
type 

Training 
algorithm 

Initial  
learning rate 

Momentum 

MLP 
ANN  

DATASET I-m 
SCM hemorrhage 
considered 

2 2 Hyperbolic tangent Online 
Gradient 
descent 

0.4 0.9 

DATASET I-m 
SCM hemorrhage  
not considered 

1 2 Hyperbolic tangent Online 
Gradient 
descent 

0.4 0.3 

 

 
Growing method Tree depth 

Min. samples 
of parent node 

Min. samples 
of child node 

No of nodes 
No of terminal 

nodes 

Decision 
Tree 

DATASET I-m 
SCM hemorrhage 
considered 

CRT 3 8 4 7 4 

DATASET I-m 
SCM hemorrhage  
not considered 

CRT 2 8 4 7 4 

 

 No  of Neighbors  
to consider 

Distance metrics 
Search Algorithm  

(Feature selection - Stopping criterion) 

 

k-NN DATASET I-m 
SCM hemorrhage 
considered 

11 Euclidean Change in Absolute Error Ratio ≤0.01 

DATASET I-m 
SCM hemorrhage  
not considered 

2 Euclidean 5 features selected 

 

 
Maximum 

memory (Mb) 

N0 of bins  
for scale 

predictors 

N0  
of selected predictors 

 
Naïve 
Bayes 

DATASET I-m 
SCM hemorrhage 
considered 

1024 10 2 

DATASET I-m 
SCM hemorrhage  
not considered 

1024 10 3 

 
Abbreviations: MLP-ANN - Multilayer Perceptron – Artificial neural network, k-NN – k Nearest Neighbors, SCM – sternocleidomastoid muscle. 



81 

 
 
 
Table 4.3.7. The top five ranked input variables based on their relative importance for utilized machine learning models. 
 
 

 DATASET I-m  
SCM origin hemorrhage considered 

DATASET I-m  
SCM origin hemorrhage not considered 

MLP DT k-NN NB MLP DT k-NN NB 

1st BH Tot.Fr.N0 Tot.Fr.N0 BW BH UL-Hy BL-Hy Age 

2nd Age UL-SCM BL-Ty UL-SCM Tot.Fr.N0 Hy N0 Sex UL-Hy 

3rd Tot.Fr.N0 iHy Spine UL-Hy Hy N0 BH Spine Tot.Fr.N0 

4th BW SCM N0 SCM N0 BH UL-Hy iHy iHy BH 

5th BL-Ty BL-SCM / Age BW Tot.Fr.N0 BH BW 

 

 
Note: Some models included fewer than 5 variables, and the empty fields in the table are labeled with a “/” sign. 
 
Abbreviations: BW – Body Weight, BH – Body Height, BL-Hy – bilateral greater hyoid horn fractures, BL-Ty – bilateral superior thyroid horn fractures, CL-Ty - superior thyroid 
cartilage horn contralateral to the knot position, Hy N0 – Total number of greater hyoid horn fractures, iTy – isolated superior thyroid horn fracture(s), IL-Hy - greater hyoid bone 
horn ipsilateral to the knot position, IL-Ty – superior thyroid cartilage horn ipsilateral to the knot position, L-Hy – left greater hyoid bone horn, L-Ty – left superior thyroid cartilage 
horn, R-Hy – right greater hyoid bone horn, sTy&Hy – simultaneous superior thyroid horn and greater hyoid horn fractures, Spine – Cervical spine fracture, Tot.Fr.N0 – Total number 
of thyrohyoid fractures, Ty N0 – Total number of superior thyroid horn fractures, UL-Hy – unilateral greater hyoid horn fracture, UL-Ty – unilateral superior thyroid horn fracture. 
SCM N0 – Total number of sternocleidomastoid muscle origin’s hemorrhages; UL-SCM - unilateral sternocleidomastoid muscle origin’s hemorrhage, BL-SCM - bilateral 
sternocleidomastoid muscle origin’s hemorrhage 
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5. DISCUSSION 

 

The focus of this research and thesis was on the analysis of the potential association of 
the injuries to the neck organs, particularly the thyrohyoid complex and the cervical spine, 
and their possible distribution patterns with the position of the knot in a noose that was 
used in suicidal hanging cases without a long drop. The research was conducted on 
retrospectively obtained autopsy data by “conventional” (standard) statistical methods but 
also by using machine learning algorithms and experimentally developing several machine 
learning models in an attempt to correctly classify the knot in a noose position through the 
neck injury patterns. It is helpful to approach the analysis by immediately defining the main 
problems to properly scrutinize the issue that this thesis considered. If these are addressed 
properly, it provides a foundation and a good context for interpreting and synthesizing the 
numerous reported results, divided into three distinct study segments. These problems 
essentially are: the limited understanding of fracture distribution patterns of the thyrohyoid 
complex and cervical spine with regards to the knot position, the variability of general 
characteristics of these injuries in hangings that were observed in previous studies, the 
contribution of major anthropometric characteristics (subject’s sex, age, body weight, and 
body height) to the injury occurrence and thus, indirectly, their patterns, then, the 
usefulness of additional autopsy findings in knot position assessment (this research 
analyzed the hemorrhages at the origin of sternocleidomastoid muscles), and finally, what 
also may make this thesis a significant one, usefulness of machine learning models which 
could potentially better predict the knot position through the injury patterns. So, firstly, the 
basic characteristics of the neck’s hard-tissue injuries in general will be discussed, as well as 
the medicolegal usefulness in knot position reconstruction. Then, it will be looked at the 
thyrohyoid complex and cervical spine fracture characteristics in the sample this study 
analyzed, in general, but also in the context of the basic and crude statistical analyses, as 
well as the machine learning analyses. By considering the analogous findings of the three 
study parts and interpreting these results not only separately and independently but 
simultaneously due to similar designs and performed analyses, the practical and academic 
implications will be commented on, providing answers to the defined aims. The following 
text will deal with the issues described, roughly respecting the order presented above. 

Common pathomorphology in deaths by hanging comprises a range of local (neck) and 
general autopsy findings [2–4, 9, 12, 22, 38, 54]. However, one exceptionally straightforward 
set of injuries characteristic of neck strangulation is confined to the laryngohyoid, or more 
precisely – the thyrohyoid complex [3, 9, 46, 52, 55, 58, 66]. In this research, the terms 
laryngohyoid and thyrohyoid were considered interchangeable. As described in more detail in 
the introduction section, thyroid cartilage and hyoid bone, located at the anterior neck 
midline, have a pair of structures (left and right): superior horns and greater horns, 
respectively, interconnected with ligaments and membranes, and surrounding soft tissue 
into a biomechanical functional unit [3, 6, 34, 47]. Because detecting these injuries is simple 
and is a binominal phenomenon (that is, a fracture is either present or absent), it would be 
ideal to observe any fracture distribution pattern associated with distinct hanging cases. 
More specifically – associated with the anatomical distribution of the suspension force a 
noose applies to the neck structures: the noose can be tied around the neck to form the knot  
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(i.e., the suspension point) either behind the occiput (so-called posterior or typical hanging), 
on a lateral side of the head (left or right), or anteriorly, in the jaw midline (the lateral and 
anterior hangings are so-called atypical hangings) The site of the noose opposing the knot 
is where the greatest force is applied on suspension, and the thyrohyoid injury pattern may 
reflect its position [43, 46, 51, 52, 58]. Fractures of the thyrohyoid complex may differ, 
depending on the distribution of different forces applied – direct compression or indirect, 
by stretching the soft tissue and remote structures of the complex or even compression 
against the cervical spine column [2, 3, 50]. 

If the noose applies enough pressure on the neck for some time after death (for example, 
more than 20 – 30 minutes), the ligature mark, a furrow, is formed that can clearly indicate 
the highest suspension points and knot position [9]. However, if the ligature is removed 
shortly after death (suspicious “hanging” deaths in custody, for example), if it is 
unavailable, the furrow is subtle, faded, or the body is found in a severely decomposed state 
(even skeletonized and detached from the loop – see Figure 5.1), the other means to assess 
where the knot was (and, therefore, where the greatest pressure was applied) in the noose 
would be of significant assistance to reconstruct the event, confirming or ruling out some of 
the possible or presumed circumstances [25, 43, 46, 51, 52, 55–57, 67, 69]. Therefore, the 
pattern of thyrohyoid and cervical spine fractures occurring at the moment of hanging or 
during the short agony could be useful in determining the knot position in these 
circumstances. This may also prove helpful in the event of a near-hanging and examination 
of victims of other types of non-fatal strangulation. In addition to the injury of the 
thyrohyoid complex, a cervical spine injury may be particularly important in the discussed 
terms, as it is already recognized to be more frequent in anterior atypical hangings. 

Being one of the most common suicide methods worldwide, autopsy cases of deaths by 
hanging are routine in any forensic pathologist practice, and this has been a broadly 
explored research topic [2, 3, 6, 14–18, 25, 38, 40–43, 51, 52, 54–58, 64–73, 99–110], from the 
epidemiological to forensic and pathological aspects. Nevertheless, as Zátopková et al. 
excellently sum up the issue: “laryngohyoid  fractures in hanging victims are one of the most 
studied and paradoxically contradictory topics in forensic pathology” [58]. Previous attempts to 
observe any fracture pattern provided extremely limited results, with statistical analyses 
mainly describing the thyrohyoid fracture frequency or crudely suggesting an association 
between the fracture occurrence and the knot position if any at all. Even the overall 
prevalence of the fractures is surprisingly inconsistent among the studies of suicidal 
hanging cases, from less than 5% to over 75% of analyzed cases [43, 46, 51, 52, 54–58, 64, 66, 
68–70, 72, 73, 102, 107, 111–118]! We can unambiguously claim that if there were any 
straightforward answers (patterns), we would have them by now. 

Nevertheless, before we conclude that thyrohyoid and cervical spine injuries are so 
heterogeneous irrespective of the ligature knot position that they should be considered 
stochastic essentially and of no medicolegal significance, it would be fair to supplement the 
conventional statistics and exhaust some more complex analyses (that is, machine learning 
models) on larger datasets with strictly uniform methodology. 
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So, as directly implied from the defined aims, this research primarily aimed to utilize 
machine learning algorithms in an attempt to reconstruct (classify) the position of the knot 
in suicidal hangings. But it also presented many descriptive and inferential statistical 
analyses. And the reason for these numerous results should be clarified entirely first. 
Obviously, standard, often performed, and most importantly, relatively easily 
understandable and interpretable, crude and multivariable analyses can point directly to 
significant associations between variables. This is useful alone and in the context of a so-
called black-box machine learning algorithm’s output, which is not explainable by common 
logic (this will be referred to later). However, these descriptive and inferential statistical 
analyses are a solid foundation for the appropriate overall research interpretation in the 
light of very heterogenous results on data of our interest, which were previously reported 
in studies [3, 43, 44, 46, 51–58, 64, 66, 69, 73, 102, 106–108, 111–114, 116–118]. Ultimately, the 
eventually developed machine learning algorithms – models will be put in the appropriate 
context regarding the overall prevalence and distribution of thyrohyoid and cervical spine 
fractures and knot in a noose positions. Besides the fact that this would be a prerequisite to 
reflect on already published findings, it will be useful for later comparison by future studies, 
as the machine learning-based problem-solving approach will become a significant tool in 
forensic pathology research [95, 96, 119, 120]. 

The reported overall prevalence of thyrohyoid complex fractures, which is of greater 
hyoid bone horns (GHH) and superior horns of the thyroid cartilage (STH), is surprisingly 
heterogeneous and of a wide range. This data comes from numerous, mainly single-center, 
autopsy studies. Among the retrospective ones, the reported frequency of thyrohyoid 

Figure 5.1. The almost entirely skeletonized remains of a middle-aged man were found at the scene of a 
suspected suicidal short drop hanging. The noose was still hanging from a fixed point, while the human 
remains were on the ground in immediate vicinity. The anthropological and pathological examination 
reconstructed the skeleton of the thyrohyoid complex and further revealed jagged edged “disarticulation” of 
the greater horns from the body of the hyoid bone, indicating potential fractures (white arrows). Currently, 
there is no mean by which it can be stated with how much certainty the injuries could correspond to the neck 
constriction by the found noose regarding the position of its knot (e.g., is it a typical or atypical hanging).  
From: Institute of Forensic Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia. 
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fractures (presence of either STH or GHH fracture, or a combination) ranged from less than 
1% to over 75% [51, 58]. The heterogeneity of this prevalence was observed in both older 
and in relatively recently published studies. So, for example, we have observations dating 
back to 1881, when Maschka [121] reported the overall fracture prevalence of 2.0% on a 
sample of 153 cases, Ushakov’s reported prevalence from the year 1900 [122] of 16.7% on a 
sample of 48 cases but also Reuters’s study dating back to 1901, [123] which reported a 
frequency of 52.5% on a 200-subject sample. One might presume that the autopsy technique 
from the first decades of forensic pathology practice as an organized and recognized 
separate specialization has improved and become more standardized [2, 3, 5, 124–126]. 
However, the reported frequencies continued to vary in the second half of the 20th century 
and the last few decades. For example, Tualpunt et al. in 2017 [127] reported a prevalence 
of these fractures to be 0.8% on a sample of 244 subjects, Tugaleva et al. in 2016 [118] a 
prevalence of 7.3% on a sample of 632 subjects, Duband et al. in 2005 [128] frequency of 69% 
of cases on a 29-cases sample, Uzun et al. in 2007 [100] 58.6% on a 761-subject sample, and 
Azmak et al in 2006 [102], reporting a prevalence of 76.8% in 56 cases. There are even some 
studies on hangings that reported only cases without any of the thyrohyoid fractures [109, 
129]! Probably the largest sample retrospective autopsy study reporting thyrohyoid 
complex fracture prevalence was published in 2015 by Taktak et al. comprising a total of 
4,502 cases with an observed fracture prevalence of 52.3% [64].  

In their article on thyrohyoid fractures in hangings, Zátopková et al. summarized these 
reports from 54 retrospective studies [58]. The same authors also found and analyzed 27 
additional prospective studies on this issue. We may expect to observe more consistent or 
at least only higher reported prevalences in a prospectively designed observation, with a 
focused and unambiguously defined methodology for fracture inspections. However, even 
in these studies, there are single-digit percentage prevalence reports, reports of no fractures 
at all, and higher prevalences from c. 40-70% of analyzed cases or more [58, 73, 130–135]. So 
among these, for example, Patel et al. in 2012 [132] reported no fractures in 320 hanging 
cases, Hlavaty et al. in 2016 [73] 2.7% in 75 cases, Missliwetz 67.8% in 599 subjects (year 
1981) [131], Zátopková et al. 72.5% in 178 cases [58]. One’s impression can be that in 
prospective studies, a considerable number of studies report a prevalence higher than 20%, 
mostly ranging from about 40% to 60%. 

Often, the most reliable data, in general, and so is the case in this particular issue, comes 
from a meta-analysis. The meta-analysis by Wilson et al. was published very recently, and 
it estimated the overall prevalence of thyrohyoid complex fractures to be 37.5% but with a 
relatively wide confidence interval (95% CI 27.4% – 48.3%) [51]. It is hard to explain such a 
striking heterogeneity in reported fracture prevalences in autopsy studies. Probably the 
most obvious reason may be the differences in methodology – the details of the dissection 
and inspection of autopsies in different institutions, the number of pathologists who 
performed the examinations, the systematics of autopsy findings documentation, or the 
number of analyzed cases [51, 58]. One direct explanation can also be the different approach 
when it comes to differentiating between artifactual and intravital thyrohyoid fractures – 
some authors considered all fractures in analyses, some excluded those without the 
surrounding soft tissue hemorrhages, while in some research, this was not specified [58]. 
Some studies relied on postmortem imaging [112, 133, 135–137], but this did not seem to 
solve the problem.  
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At the Institute of Forensic Medicine in Belgrade, where the present research was 
conducted, one study analyzed cervical spine injuries in short drop hangings, while other 
two studies on thyrohyoid fractures in hangings were already published by Nikolić et al. 
[46, 52]. In the first published study with the smallest sample an overall prevalence of these 
fractures reported to be about 68.0% based on the sample of 175 retrospectively analyzed 
cases [46].  The second study was on a larger sample of 557 retrospectively analyzed cases 
[52], where the frequency of the thyrohyoid complex fractures was reported to be about 
57.3%. And in the last, third published study was on a sample of 766 retrospectively 
analyzed cases [43], where the frequency of the thyrohyoid complex fractures was reported 
to be about 58%. In the present research – this thesis, the most extensive retrospective study 
of autopsy hanging cases was conducted at this institution, and the main sample (the study 
part I) comprised a total of 1,235 subjects. Here, the thyrohyoid fractures were overall 
observed in c. 60% of cases. In addition to the uniform methodology, providing many cases 
would be detrimental to the analysis of such heterogeneous results. As we formed a three-
part study, with two samples derived from the largest (1,235 cases, Dataset I), it can be 
appreciated that in the study parts II and III, in the smaller subsets (Dataset I-w and Dataset 
I-m, respectively), the overall frequency of thyrohyoid fractures slightly increased as the 
number of cases analyzed decreased, from 60.6% to 64.1% in Dataset I-w (368 cases), and to 
67.5% in Dataset I-w (126 cases), as shown in Tables 4.1.1, 4.1.2, and 4.1.3. So, with a limited 
number of individuals included to analyze these injuries, a true prevalence can be easily 
underestimated or overestimated. Given that this sample partially overlaps with those 
comprising previous studies by Nikolić et al. [43, 46, 52], it is not surprising that the 
observed fracture prevalences were quite similar. Additionally, more than doubling the 
number of cases from the previous study likely impacts the better actual prevalence 
estimation. Actually, given that these are all retrospective analyses, it strongly points to 
consistency and systematicity in autopsy technique, special neck dissection uniformity 
among the personnel performing autopsies, and eventually, the autopsy reports per se. This 
is not a surprise, as good autopsy practice at the Institute of Forensic Medicine in Belgrade, 
its revision, and adequate supervision of it has been insisted on for many decades now (in 
the year 2023, the Department of the Forensic Medicine of the University of Belgrade Faculty 
of Medicine marked 100th year since its establishment) [138–140]. 

Why is all this of particular importance here? Well, the significant part of current 
research is the form of an experiment (program – software/computer-based), as will be 
referred to later in the discussion. However, that sort of experiment, in this case, relies solely 
on the retrospectively obtained data. So, in terms of the quality of the obtained data, this is 
essentially a retrospective study, and it will directly reflect on the results of the experimental 
study part, and obviously the conventional statistical analysis, and thus directly on the 
synthesized conclusions derived from all the parts of the study. Looking only at the overall 
prevalence of thyrohyoid complex fractures and the described methodology in the 
presented research (see section 3. Materials and Methods), and thus the systematic approach 
to the autopsies of hanging cases at the Institute (the observational period was relatively 
long – from 1995 to 2023), we can conclude that the obtained data was quite uniform, and 
matched those observed in a single-institutional, well designed prospective autopsy studies 
on the issue of thyrohyoid fractures in hangings. The frequency surpasses that of the recent 
meta-analysis (i.e., of average estimates), which is expected as this average value relies on 
the data from the studies that reported quite variable prevalences [51, 58]. Simply put – this 
means that in the present study, significant disadvantages of retrospectively obtained data 
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(e.g., failure to detect events – i.e., fractures) were overcome by a systematic, single-
institutional, uniform autopsy procedure and findings documentation, all supervised by 
experienced forensic medicine specialists and that we provided adequate and large study 
sample without any missing data. Detecting analyzed fractures is straightforward on 
autopsy, which strongly diminishes (inter)investigator bias [58]. With a proper technique – 
in situ, neck dissection, en bloc evisceration and dissection of the thyrohyoid complex, and 
finally, inspection and palpation of the defleshed greater hyoid bone horns and superior 
thyrohyoid cartilage horns – detecting the fractures of interest is simple and should be 
invariably performed. Of note is, and it should be highlighted, that of our interest and 
consideration here are only suicidal hangings with a short drop or cases in which there is 
no drop at all. Because injury and death onset mechanisms, in essence, differ from those of 
long drop hangings [22, 25, 45]. If not explicitly stated otherwise, the comments and 
discussion refer to short-drop hangings and those essentially without a drop, and of a 
suicidal manner. 

Scrutinizing further the observed prevalence of thyrohyoid fractures in this research, we 
can see that in the present sample and based on the 1,235 analyzed cases of suicidal hangings 
(study part I), the fractures of the superior horns of the thyroid cartilage (STH) occurred 
more frequently than the fractures of the hyoid bone’s greater horns (GHH), in 44.5% and 
34.4% of cases, respectively. The isolated STH fractures were more common than isolated 
GHH fractures, 26.2% vs. 16.1% of cases, while in 18.3% of cases in this sample, STH and 
GHH fractures co-occurred (both structures were fractured in a single subject). And while 
the overall thyrohyoid fracture prevalence slightly increased in study parts II and III, the 
distribution of these fractures (whether they were isolated or simultaneous) was nearly 
identical (compare frequencies in Tables 4.1.1, 4.2.1, and 4.3.1), and this will ease drawing 
synthesized conclusions from thee study parts. Moreover, despite the overall heterogeneity 
of reported fracture prevalences in previous studies, this sort of fracture distribution seems 
to be mainly consistent – isolated STH fractures are, to some small extent, more common 
than isolated GHH fractures, but the existence of statistical significance is in question. So, 
what this research contributes to is also yet another information on fracture prevalence from 
a large, uniform, complete (complete data in all included cases), and reliable sample. In 
addition to thyrohyoid complex fractures, this may be particularly important for the cervical 
spine fracture in hangings (Table 4.1.1), which is generally a rare finding but is known to 
show some association with the knot position, particularly the anterior one [43]. 

The proportions of the analyzed hanging types (i.e., the knot in a noose position) can 
influence the reported overall fracture prevalence, as the knot position may affect the 
fracture occurrence [25, 43, 49]. In this thesis, the largest proportion of cases were so-called 
typical hangings (the knot was located posteriorly in almost 60% of cases in Dataset I), the 
lateral hangings were the second most common (about a third of the Dataset I sample), while 
the smallest proportion of cases were with the anterior knot in a noose position (about 10% 
of the Dataset I sample), as shown in Table 4.1.1. Importantly, decreasing the sample in the 
present research (from study part I to study parts II and III) led to a significant decrease in 
the proportion of atypical hangings – it halved from about 10.0% in the first study part to 
about 5.0% of all considered cases in study parts II and III, which should be kept in mind. 
Thankfully, due to the uniformity of autopsy findings records in this research, the 
estimation of the knot in a noose position was identical in all derived subsets, and this 
minimized the risk of a bias of this kind affecting the observed prevalences. 
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Can the “conventional” statistical analysis on our sample discover any regularity in the 
thyrohyoid fracture pattern and the knot in a noose position? The very beginning of the 
study – defining the observations (variable coding) and outcome (knot position groups 
comparison), significantly differed from previous research attempts. Earlier studies focused 
on discrimination between the four-knot positions (posterior, anterior, left, and right lateral 
side of the head) or even eight positions [46, 52, 58, 64], the stepwise approach was made 
here through the four separate steps (in each study part). Firstly, it was assessed if any 
difference in fracture patterns existed between typical hangings on one side and all atypical 
hangings (anterior and lateral, combined) on the other side, also taking into account cases 
in which no neck structure fractures existed. The second step was to exclude these cases 
without any fractures so that the patterning difference could become more apparent: if there 
are no events to be observed – no fractures exist, then the association may be hidden and 
strongly and significantly underestimated. Only after this analysis between the typical and 
atypical hangings, we turned to fracture pattern discrimination between anterior atypical 
and lateral atypical hangings (left and right lateral combined). Ultimately, we looked for 
discriminative fracture patterns between the left and right lateral hangings with the 
fractures of the neck hard-tissue structures (i.e., the thyrohyoid complex and the cervical 
spine). The variable coding was per this approach: instead of immediately defining on 
which side a particular horn was fractured (left or right), we initially only defined if the 
fractures were unilateral or bilateral, thus increasing the possibility of detecting not-so-
obvious differences in these fracture frequencies regarding the knot position, and in this 
manner suggesting an underlying pattern. The composition of the study – division into 
separate study parts was also constructed to systematically analyze the potential 
confounding effects of the major anthropometric factors – subjects’ sex and age (study part 
I), body weight, and body height (study part II).  

Starting from study part I (see sections 3.1 and 4.1.), which has considered the largest 
sample, the crude statistical comparison of thyrohyoid complex fracture patterns between 
typical and atypical hangings showed that unilateral fracture of the hyoid bone’s greater 
horn and simultaneous fracture of the hyoid bone’s greater horn(s) and thyroid cartilage 
superior horn(s) occur significantly more often in atypical than in typical hangings. On the 
other hand, in typical hangings, it is considerably more likely to observe an isolated 
fracture(s) of the thyroid cartilage’s superior horn(s) without a hyoid bone fracture. Since 
we also included those who, in fact do not have any thyrohyoid fractures in this analysis 
(the first step), only the substantially large sample provided insight into these statistical 
significances – firstly we can see (in Table 4.1.2) that “statistically significantly more 
frequent” holds true but was not an overt and straightforward observation: in atypical 
hangings, in fact, only c. 30.0% of subjects (about every third case) had a unilateral GHH 
fracture compared to as much as 23.3% of typical hanging (about every fourth case), while 
the simultaneous fractures of GHH and STH, although significantly more common in 
atypical hangings, were present only in every fifth subject with atypically positioned knot 
(compared to 15.6% frequency observed in typical hangings). However, these differences 
were much more appreciable in Dataset II of the first study part, where the cases without 
any thyrohyoid and cervical spine fractures were excluded. Here, the same statistically 
significant frequency differences in fracture patterns were present between the typical and 
atypical hangings, but the ratios were different: every second hanging case with the atypical 
knot position had the unilateral fracture of the hyoid bone’s greater horn, compared to about 
every third subject (38.1%) with the typical knot position. Furthermore, every third atypical 
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hanging case (34.1%) had the simultaneous fractures of GHH and STH, compared to every 
fourth one (25.4%) with the typical knot position. On the other side, in every second typical 
hanging case, there was an isolated fracture of the thyroid cartilage superior horn(s) (48.7%), 
which was, at the same time, observed in every third case of the atypical hanging (33.2%) 
(for counts see Table 4.1.2). 

How these non-so obvious differences could remain undetected is best observed when 
looking at the subset of this large sample, which was used in the second part of the study 
(Dataset I-w). Here, in the 368 analyzed cases of hangings, most of the significant 
associations were lost – the only statistically significant difference in thyrohyoid fracture 
patterns between typical and atypical hangings was observed in the frequency of the 
unilateral fracture of the hyoid bone’s greater horn – it was present in every third case of 
the atypical hanging (33.3%) compared to about every fifth case of the typical hanging 
(21.8%); when excluding cases without any fractures (in Dataset II-w) these proportions 
were more obvious and comparable to those in Dataset II of the first study part – GHH 
fractures were present in every second case with the atypical knot position, and in every 
third case with the typical knot position (Dataset II-w, part II of the study, see Table 4.2.2). 
In this smaller sample, only the exclusion of the cases without the fractures revealed the 
significantly more frequent isolated fractures of thyroid cartilage’s superior horns in typical 
hangings compared to atypical ones (49.2% vs. 35.1%, respectively). Ultimately, in the third 
part of the study this thesis comprises of, there was no observable statistically significant 
association of the coded variables (thyrohyoid fracture patterns) with typical or atypical 
knot position (see Table 4.3.2, Datasets I-m and II-m).  

It was emphasized earlier that intravital cervical spine fracture in hanging, although of 
extremely low prevalence, may be very useful in predicting the position of the knot in a 
noose [22, 43, 45, 128]. It is particularly associated with anterior hangings, and therefore 
with atypical knot position in general [43]. According to the data from the first study part, 
we can see that the cervical spine fracture was statistically very significantly associated with 
atypical knot position, where it was present in 6.4% - 10.0% of cases (depending on if the 
cases without fractures were considered, i.e., Datasets I or II), which was much more 
frequent than in typical hangings (1.4% - 2.3% of typical hangings), as shown in Table 4.1.2. 

It should be considered that anthropometric characteristics of the sample, such as 
subjects’ sex and age, may strongly influence the occurrence of the thyrohyoid and cervical 
spine fractures [2, 3, 9, 43, 46, 48, 51, 52, 58, 61, 67, 69, 70, 98, 100, 107, 111, 112, 128, 141–144], 
so this must be considered a strong confounding factor, and requires analysis with 
adjustments. The significance of sex in thyrohyoid complex fracture occurrence lies within 
the sexual dimorphism observed in morphology, thyroid cartilage calcification and hyoid 
bone ossification patterns [58, 60, 61, 70, 98, 143–145]. The morphology variations of 
thyrohyoid complex may influence the occurrence of fractures, such as the length of the 
hyoid bone, greater hyoid horns’ steepness, and importantly the overall shape – so-called 
V-shaped hyoid bones fracture more often than so-called U-shape hyoid bones. Incidentally 
or not, these subtypes show sexual dimorphism, which makes factorial analysis adjustment 
more convenient [58–60, 63, 98, 143, 145]. The calcification and ossification pattern 
differences between males and females have been suggested but also some studies reported 
the more frequent thyrohyoid fractures in one sex than in other (there are studies with 
greater prevalence in males, and studies with greater prevalence in females) [58, 66, 68, 70, 
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110, 118] but there are also studies reporting no differences in the prevalence of these 
fractures [58, 107, 110, 146]. A recent meta-analysis did not reveal consistent patterns 
associated with age, but also sex, suspension, and ligature knot position [51]. Whatever the 
case is, it is recommended to consider subjects’ sex in a multifactorial analysis, which this 
research did take into account. More importantly, a subject’s age is easily the most 
significant single anthropometric factor that can affect the thyrohyoid complex and the 
cervical spine fracture occurrence [58]. Aging leads to calcification, ossification, reduced 
elasticity, increased brittleness and easier fracture occurrence [48, 52, 58, 130, 142, 143, 147]. 
Whatsoever, it is usually only after the age of 20 years that the hyoid bone’s corpus and 
greater horns fusion starts to happen [48, 58, 61, 143]. The latter can affect both the 
occurrence of the fracture and the misinterpretation of the unfused horn hypermobility on 
autopsy (a false positive finding). The former was considered when the statistics were done, 
while the latter was avoided by the uniform neck autopsy procedure and supervision by 
experienced forensic pathologists in this research. The thyroid cartilage calcification begins 
earlier in males, culminating by the end of 6th decade of life, while in females, calcification 
occurs more slowly and is not complete [48, 58]. The thyroid cartilage morphology slightly 
alters with age, which may influence the distribution of the applied force and thus, 
potentially, the fracture occurrence or even fracture patterns [48, 58, 61, 143]. 

In the literature, the cutoff value for thyrohyoid fracture occurrence comparison was 
often set at 40 years of age [51, 58]. So, we conducted the same analysis in all datasets in all 
three parts of this study. In all three study parts, the thyrohyoid complex fractures occurred 
significantly more frequently in subjects older than 40 years of age than in younger subjects. 
When considered separately, GHH and STH fractures showed the same trend, but only in 
GHH fracture occurrence there was a significant association; this consistency was observed 
throughout all the study parts. The cervical spine fracture also occurred significantly more 
often in subjects older than 40 years of age, but this was not observed in all datasets – most 
likely due to the very low prevalence of this injury in hangings and, thus, in the analyzed 
subsamples. A very important fact, as well, was that all the groups that were compared 
(based on the knot position) had an equal distribution of subjects older and subjects younger 
than 40 years of age.  

Considering the largest sample in this research (Dataset I, study part I), when all hanging 
cases were considered combined, of all the thyrohyoid and cervical spine fractures, age was 
the best predictor for cervical spine fracture occurrence. Based on the ROC curve analysis, 
the data from 1,235 short-drop hanging cases suggest that the cutoff age of 64.5 years or 
more is a good predictor for the presence of cervical spine fracture (AUC of 0.709, 95% CI 
0.639 – 0.779) with a threshold sensitivity of 65.9%, and specificity of 70.6%. The statistically 
significant prediction of thyrohyoid complex fractures overall and GHH fractures alone was 
also observed, but these predictions were less accurate. Age of ≥ 36.5 years indicated the 
presence of thyrohyoid fracture with a sensitivity of 85.7% and specificity of 27.0%, while 
the age of ≥ 37.5 years indicated the presence of hyoid bone’s greater horn fracture with a 
sensitivity of 87.8% and specificity of 25.6% (see Figure 4.1.1). In the remaining two study 
parts, the age showed a statistically significant association with overall thyrohyoid fracture 
occurrence and GHH fracture occurrence if considered separately (Figures 4.2.1, and 4.3.1), 
but the cutoff for the GHH fractures was slightly higher – in the early fifties. No association 
was observed between the subjects' age and the occurrence of the thyroid cartilage superior 
horn fractures in all study parts. These findings contradict the report of Zátopková et al., 
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who showed a significant association between age and STH fractures but not between age 
and GHH fractures [58]. However, our findings can be explained by the fact that the mean 
subjects’ age was over 50 years, the age when the ossification of the hyoid bone culminates, 
particularly in males, who comprised three-quarters of our sample. So, this crude analysis 
of age contribution on the neck solid structures fractures, as well as referenced literature 
data, invariably requires the abovementioned thyrohyoid fracture patterns to be interpreted 
with regards to the subject's age and adjusted for this variable. 

The discussion on the subjects’ age importance is even more significant if we consider 
that there was a statistically significant difference in age between the compared groups, 
where we discovered some fracture patterns associated with the atypical knot in a noose 
position. As can be seen in Table 4.1.2, subjects in whom the knot was in an atypical position 
on the neck were slightly older than subjects whose knot was in a typical (posterior) location 
(a considerable confounding!). Not surprisingly, age showed a significant association with 
atypical knot position on univariable logistic regression analysis. So, the multifactorial 
analysis provided more exact and reliable fracture patterns (see section 4.2.1). Therefore, 
after considering age and previously commented significant fracture patterns (unilateral 
GHH fracture, simultaneous GHH and STH fractures, cervical spine fracture, and isolated 
STH fracture), the multivariable logistic regression analysis revealed that the associated 
variables with atypical knot position were only unilateral fracture of the hyoid bone’s 
greater horn and the cervical spine, but both independently of subjects’ age and 
independent of the presence or absence of simultaneous STH and GHH fractures, as well as 
of isolated STH fractures. The odds for unilateral fracture of the hyoid bone’s greater horn 
were c. 37% higher to occur in atypical, compared to typical hangings, while the odds for 
the cervical spine fractures were as much as 4.3 times higher than in typical. This was 
observed in Dataset I, where the cases without any fractures were included. If these cases 
were excluded (Dataset II), the same pattern was observed, and not surprisingly, with a 
slightly higher odds ratio. It should be noted that, however, the wide confidence interval 
still suggests that these associations (i.e., patterns) are not so evident in a daily case-to-case 
practice analysis. This is further well demonstrated in the second study part, with a 
significantly smaller sample size – in Dataset I-w, none of the “significant” fracture patterns 
was independently associated with the atypical knot position when adjusted for the 
presence of other mentioned fractures. Ultimately, in the third study part, conventional 
statistics did not reveal any statistically significant fracture patterns to discriminate between 
typical and atypical knot positions (Tables 4.3.2, and 4.3.3).  

Further step-by-step analysis on thyrohyoid and cervical spine fractures considered 
possible pattern differences between anterior atypical hangings and lateral atypical 
hangings. These can be most appropriately appreciated only from the first part of the study 
(Dataset III) since the second study part (Dataset III-w) and the third study part (Dataset III-
m) each comprised less than ten anterior hanging cases included in these subsets (eight and 
six cases, respectively; Tables 4.2.1, and 4.3.1). The most striking and statistically significant 
discriminator was the cervical spine fracture, present in 40.7% of cases with anterior knot 
position, compared to only 4.2% of cases with left or right lateral knot position (Table 4.1.2). 
Additionally, isolated and unilateral fractures of the thyroid cartilage’s superior horns were 
more frequent in lateral than anterior hangings, with more STH fractures occurring in lateral 
hangings. When these variables were adjusted in multivariable logistic regression analysis, 
the cervical spine fracture essentially remained the only but strong independent predictor 
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of anterior knot position, with an odds ratio of c. 10 (95% CI 4.032 – 25.588). This association 
was even apparent in the second part of the study, despite only eight anterior hanging cases 
being compared to 106 lateral hanging cases (Dataset III-w). 

Finally, the last and fourth step of each part of the study was a comparison of lateral 
hanging cases to find associations of fracture patterns with left or right lateral knot position, 
or more precisely, to discriminate between the left and the right lateral hangings. The 
straightforward and interesting finding was the association of the left GHH fracture and 
right STH fracture with the left lateral knot position (Table 4.1.3). The frequency occurrence 
of these fractures was not with too overt differences (frequency proportions of about 40% 
vs. 30% for both cases), and the odds ratios on multivariable analysis were c. 90% higher, 
but this may be an important finding in the context of machine learning analysis later 
considered. The unequal occurrence of the STH fracture contralateral to the knot position 
was observed in the smallest sample of this research – in Dataset IV-m of the study part III 
(Table 4.3.3) but this can be explained by a much smaller sample where this kind of 
discrepancy between two biomechanically mirror-imaged groups could happen by chance. 

It should be highlighted that before we turn to machine learning algorithms, we need to 
reflect on the potential contribution of two additional major anthropometric factors not 
considered above – subjects’ body weight and body height, to thyrohyoid complex fracture 
occurrence and thus the fracture patterns. Both factors, body weight, and height, could 
influence fracture occurrence indirectly but similarly by impacting the amount of force a 
noose applies to the neck [51, 53, 58]. When a person initiates suspension, the body or, more 
precisely, the neck falls freely until the ligature constricts it, tightened by the gravitational 
drag of the own body (whole body or a part of it) [6]. Presuming the person is not lying 
down (that is, a force is generated solely by the weight of a head), even in incomplete 
hangings, the heavier subjects will thus “generate” greater compression force than the 
lighter subjects for a given drop length. The body weight contribution seems 
straightforward. But how can the body height influence the force constricting the neck? One 
assumption can be that in taller people, the distance the neck travels before it completely 
stops due to the tightened loop is longer than in shorter people. Imagine a short-drop 
complete hanging context in which two subjects, one taller than the other, will invariably 
have a fool suspension. Each person climbs on a chair that is on the same level and puts a 
loop that is at the end of the ropes of the same length. The taller person will have a higher 
starting point at the beginning of the drop than a shorter person, but both will have the same 
endpoint, and the neck of the taller person will have a longer drop. On the other hand, if 
two people of the same height are in the previous situation, the heavier one will obviously 
generate a greater potential energy during the “free fall”. So, between these two scenarios, 
which variable – weight (i.e., mass load) or height (i.e., drop length) would be of more 
importance? Figure 5.2. shows an illustrative example of ten cases of two short drop hanging 
scenarios. In one scenario the hanged subject body weight is constant while the drop length 
is variable, while in the other scenario the drop length is constant, and the body weight is 
variable. When the generated work (W) is calculated, it seems that the change in a drop from 
2.5 cm to 50 cm forms a steeper increase in generated work than an increase in mass load to 
the neck from 10 kg to 100 kg. In this manner, the scenario covers various body weights and 
therefore diverse types of incomplete hangings – the different proportional weights are 
considered to cover a range of partial suspensions (e.g., lying, kneeling, sitting, standing). 
But these are all theoretical considerations. What does the evidence from research point? 
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The answer to this question also explains why the entire first part of the study in this 
thesis did not consider body weight, but its results can still be argued as valid. It has been  
experimentally demonstrated that for a fracture of the superior horn of the thyroid cartilage, 
the force generated needs to be about 30 N, which corresponds to a load of only 3 kg [99]! 
This was shown by Bockholdt et al. on more than 120 thyroid cartilage samples. There were 
some differences in samples from males and females – the critical force for an STH fracture 
to occur was higher in men by c. 6-7 N, corresponding to the load of c. 600-700 g [99]. 

 

 

This is another reason for sex to be considered a confounding factor and included in the 
multifactorial analysis, including the machine learning models. The data on hyoid bone’s 
greater horn critical load for a fracture to occur could be similar, again approximately about 
3 kg [147]. On fresh thyrohyoid samples, experiments, however, by Travis et al. showed that 
loads needed to be several times greater than these 3 kgs – between about 14 kg and 19 kg 
[148]. Leberton-Chakour et al. experimentally demonstrated that a crushing force of 30.55 ± 
18.189 N, or, again, a mean load of about 3 kg, is enough to cause a GHH fracture [147]. 
They also found some correlation between the anthropometric characteristics other than sex 
and age – body weight and body height that were associated with variability of hyoid bone 
shape, and thus probably and indirectly the fracture susceptibility. Although they discussed 
manual strangulation and hyoid bone fracture, their comment can be significant in the 
context considered here – a force necessary to generate a GHH fracture. They state the 
following: “The forces measured in our study showed that the grip strength of an individual, man 
or woman, with no motor deficiency, is generally sufficient to generate a fracture of the hyoid bone 
by direct pressure. These findings tend to show that to produce fracture, the pressure required is at 
least 1.5 greater than simple, sustained grip pressure [147].” So, given that the head alone 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

W
o

rk
 (

J)

Case Number

W = m (kg) x g (ms-2) x h (m) 

Work (for Variable Drop/Constant Weight)

Work (for Variable Weight/Constant Drop)

Figure 5.2. The change in generated work (in Joules), depending on: 
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and increasing it by 10 kg, until 100 kg is reached (Case 10), for a constant drop length of 20 cm. 
Abbreviation: g – gravitational force (a constant). 
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generates a weight load on a neck that is greater than 3 kg (about 5 kg, on average in adults) 
[6, 12, 21], we can argue that in short-drop hangings, including majority of incomplete 
hangings, enough force is directly applied on some point of the neck to cause a thyrohyoid 
complex fracture – therefore, a position of the loop (and the knot) should define this highest 
pressure point and cause a distinct fracture pattern [21, 135]. 

However, some studies on hanging cases suggested that fractures tend to occur almost 
exclusively in those weighing more than 50 kg and that occur significantly more often in 
overweight and obese subjects (based on the Body Mass Index – BMI) [57, 118, 128]. This 
year, Commins et al. published an article reporting the analysis of the association between 
body weight and body height with the occurrence of thyrohyoid fractures [53]. For this 
issue, they considered exclusively complete hangings. This, in fact, could be quite a similar 
scenario to the one theoretically considered in this discussion and shown in Figure 5.2. What 
the study results suggested by logistic regression analysis was that for each increase in body 
weight unit (i.e., for each additional kg of weight), the odds for the occurrence of the 
thyrohyoid fractures increased by about 1.7% (OR = 1.0166) or, if the BMI was considered, 
for each BMI unit increase, the odds for fracture increased by about 6.1% (OR = 1.0607) [53]. 
Additionally, regarding the body height contribution, the authors reported that the odds 
ratio for thyrohyoid fracture to occur for each unit increase in body height was 4.64 [53]! 
However, two critical things remained unclear – the authors did not state if the analysis 
considered height in meters or centimeters and did not report the p-value of the logistic 
regression analysis but reported only wide 95% CI, with the lower interval being < 1, thus 
indicating no statistically significant association (reported 95% CI was 0.29 –  73.95) [53]. 
Eventually, they did not perform multivariable analysis after these findings, and it remained 
unknown if the variable adjustment would yield a more definitive answer. 

Therefore, we conducted a study, part II here, to investigate if there are any associations 
between body weight and height with the thyrohyoid complex and cervical spine fracture 
occurrence, and in this manner, a contribution to the fracture patterns with regards to the 
position of the knot in a noose. The information on the body weight was available only in 
some hanging cases and was omitted in study part I to form a sample with complete data, 
mainly in order to create a representative sample for machine learning analysis. So, as the 
information on body weight for subjects autopsied at our Institute was available from the 
end of the year 2014, we included all the relevant cases in the second part of the study, 
comprising a total of 368 hanged subjects. 

The sample of Dataset I-w was derived from Dataset I (first study part) and, therefore, 
had a significant overlapping characteristic, which is a good element for results comparison, 
as previously discussed. We already commented that in this second part of the study, the 
age remained the good predictor of general thyrohyoid complex fracture occurrence (cutoff 
value was the age of ≥ 41.5 years), and for GHH fractures alone (cutoff value was the age of 
≥ 52.5 years – more than 10 years higher than in the first step – note the difference in the 
ratio of sensitivity and specificity on ROC curve analysis) but here the focus was on the 
body weight and height. While body height did not show any significant correlation with 
the number of thyrohyoid fractures in general, nor was it a predictor of their presence, the 
body weight did show some statistically significant association. To be precise, body weight 
was a predictor of thyroid cartilage’s superior horn fracture presence, with a determined 
cutoff value of ≥ 72.5 kg showing sensitivity of 51.1% and specificity of 61.6% (i.e., correctly 
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detecting approximately every second case). But weight did not have any association with 
GHH and cervical spine fracture occurrence. The same observations were detected in our 
smallest subset, in Dataset I-m of the study part III (Figure 4.3.1). Here the predictive value 
was slightly different for STH fracture occurrence, with better ROC curve analysis 
performance for a cutoff value of ≥ 65.5 kg, with a sensitivity of 74.6% and a specificity of 
52.5%. Although we showed some correlation between weight and STH fracture occurrence 
exist, we must highlight that these correlations were essentially negligible (ρ = 0.139, p < 
0.05 in Dataset I-w, and ρ = 0.197, p < 0.05 in Dataset I-m). Nevertheless, having in mind 
experimental data, autopsy studies, and the results reported here, this variable should be 
considered in multivariable analyses and particularly in machine learning model 
development, in a tool capable of detecting non-obvious associations and regularities (see 
further) [75, 76, 78, 80, 94]. 

The final set of variables that were considered in this research were the characteristics 
and distribution of the soft-tissue hemorrhages, sometimes detected at the periosteal surface 
of the sternocleidomastoid muscles (SCM) origin at the clavicles. These are considered one 
of the most common autopsy findings on autopsy of deaths by hanging and could, therefore, 
be a significant tool in knot position assessment [2, 3, 40, 54, 149]. While the first part of the 
study was directed solely to thyrohyoid complex and cervical spine fractures, and the 
second part of the study additionally considered body weight and body height, this third 
and final part of the study aimed to assess the significance of these SCM muscle 
hemorrhages regarding the knot in a noose position. The issue here is the fact that, in 
contrast to straightforward fracture detection on autopsy, the presence of the hemorrhages 
is more prone to subjective interpretation, regarding both its presence at all and the extent. 
Therefore, the cases were carefully selected and included only if the presence of the 
macroscopically visible hemorrhages was unambiguously established and described 
directly on autopsy or by the revision of autopsy photography documentation. Although 
the smallest of all the samples in the present research (main sample of 126 cases and smaller 
derived subsets), presence of these hemorrhages was observed in more than 85% of cases. 

 Contrary to the previously analyzed variables (fractures and anthropometrics), the 
distribution pattern of these hemorrhages was already relatively clearly described, 
particularly in lateral hanging cases [40, 149]. Keil et al. [149] and Hejna & Zátopková [40] 
demonstrated that hemorrhages were more often present at the side of the knot (i.e., the 
highest point in lateral hangings, where “the strain at the points of clavicular attachment of 
sternocleidomastoid muscles” is highest [40] on suspension and due to the “forced lateroflexion 
of the head.” Since these hemorrhages are present in other types of hangings, he suggested 
that the additional mechanism for the appearance is “forced dorsiflexion of the head in cases of 
anterior hanging” [40] – these tend to occur bilaterally often if the knot is placed anteriorly. 
Our results correspond very well with these conclusions. In Dataset I-m, their presence and 
distribution did not aid in crude comparison between typical and atypical hangings. But, 
when the anterior knot position was compared to the lateral ones, it was demonstrated that 
in the former the total number of these hemorrhages was significantly greater than in the 
lateral ones (medians of 2 vs. 1) directly pointing that most often, in anterior hangings there 
are bilateral SCM hemorrhages (seen in 83.3% of anterior hangings compared to 38.5% of 
lateral hangings, despite the insignificant difference on a Fischer’s exact test – the sample of 
anterior hanging cases was too small). Moreover, in lateral hangings, where unilateral SCM 
hemorrhages occurred in every second case (53.8%) while bilateral SCM hemorrhages were 
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present in about every third case (38.5%), a statistically significant association was detected 
with the hemorrhage ipsilateral to the knot position (i.e., the left SCM hemorrhage in the 
left lateral hangings) (Table 4.3.3). Considering this with thyrohyoid fractures, it should be 
noted that in Dataset IV-m, in lateral hangings, the unilateral STH fracture contralateral to 
the knot’s position was significantly more frequent in the left compared to the right lateral 
hangings (Table 4.3.3). Having in mind patterns recognized in the first study part (Dataset 
IV), we can argue that this is a consequence of the much smaller sample (in Dataset IV-m), 
with an incidental grouping of these cases into one group (simply by chance).  

Our results differed from Hejna’s & Zátopková’s in one segment. They did not detect 
any association with sex, age, and body weight regarding the SCM hemorrhage presence 
[40]. In Dataset I-m, body weight was a statistically significant predictor of SCM hemorrhage 
occurrence – those weighing 67.5 kg or more were most likely to have these hemorrhages. 
This cutoff value had a predictive significance with a sensitivity of 62.0% and a specificity 
of 66.7% (AUC 0.639, 95% CI 0.505 – 0.772, Figure 4.3.4). From this cutoff value, it may seem 
that a greater mass load is required to produce SCM hemorrhages than some thyrohyoid 
complex fractures, but we should remember that these were observed in at least 8 – 9 of 10 
subjects, while the overall prevalence of thyrohyoid fractures was less than that (Tables 
4.1.1, 4.2.1, and 4.3.1). To be precise, in Dataset I-m of the third part of the study, body weight 
was a statistically significant predictor only of STH fracture occurrence, with a determined 
cutoff value of ≥ 65.5 kg (sensitivity 74.6%, specificity 52.5%). Despite almost identical cutoff 
values of the subject’s body weight for STH fracture occurrence and for the occurrence of 
SCM muscle hemorrhages, the latter was c. 30% more common in the sample. Besides the 
fact that this was the smallest sample in the entire research, a possible explanation could be 
that SCM muscles are superficial but initially absorb a more significant portion of the kinetic 
energy than structures of the thyrohyoid complex. Moreover, the elastic properties of the 
skeletal muscles significantly differ from those of bone and cartilage, and this may be a 
straightforward explanation. But this should be explored in further studies and adjustments 
for the knot position. 

Only after detailed consideration of all the characteristics of the sample we can now turn 
to the final and crucial part of the thesis – do machine learning models supplement the 
conventional statistical analyses in the knot in a noose prediction, and if so, do they suggest 
any additional conclusions regarding the decision-making process for a forensic 
pathologist, and do they point to additional significant associations between analyzed 
variables? Answering these questions was the main reason for a specific three-part study 
design. In each part, a uniform sample with absolutely complete data of interest (i.e., the 
coded variables) was formed and was as large as possible for this single-institutional 
research. The first part focused on the sole assessment of thyrohyoid complex fracture 
distribution in relation to the knot in a noose position, considering only the subjects’ age as 
an additional input. The second part complemented the previous analysis by adding 
information on each subject’s body weight and height. The third part of the study further 
broadened the inputs by adding information on the presence and distribution of SCM 
muscle hemorrhages at their origins in the clavicles. So, on the one side, we could evaluate 
if providing the additional inputs could improve the predictive capabilities of the machine 
learning models and see if, in the same datasets, analogous models where some variables 
were omitted (e.g., body weight and height) preserved the same or very similar 
classification performances.  The only unfortunate thing was that while increasing the input, 
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the total sample size decreased. However, the inclusion of only relevant cases with complete 
data lies behind this fact, and it is one of the most important parts of the machine learning 
models development process. 

Technically, the ultimate goal is to provide an input on detected neck organ fracture 
distributions, and some of additional information (sex, age, weight, height), and to expect a 
multiclass output: there are four possible outcomes – knot located on a posterior, anterior, 
left lateral or right lateral side of the head/neck. Regarding the design of machine learning 
models, it should be highlighted that we did not approach the solution by creating multi-
class output: the four-class output of a single model, according to the four defined knot 
positions (anterior, posterior, left lateral, or right lateral). We instead defined a “stepwise” 
decision-making process. Since the process in the first study part represents the most 
complete one, that was later replicated and “pruned” in the second and the third part of the 
study, we will discuss the issue here on study part I. The stepwise decision-making process 
in machine learning classification meant that initially (ML models for Datasets I and II) the 
goal was to discriminate between cases of typical (knot located posteriorly) and atypical 
hangings (knot located anteriorly or laterally), and then to separately try to differentiate 
between anterior and lateral knot positions (Dataset III), or only between left and right 
lateral knot positions (Dataset IV). In the first part of the study, except for Dataset III, this 
provided a relatively large number of cases with a well-balanced distribution among the 
two outcome possibilities (the knot positions, Supplement A). The Datasets I and II differed, 
as already explained, in a manner that in the latter, the cases without any fractures were 
eliminated: if there is no event in any classes to be observed, it may strongly underestimate 
the true power of a model to correctly classify it from a set of same defined events.  

Additionally, with a small number of fracture pattern characteristics detected by 
“conventional” (standard) statistics in mind, it was first decided to include all coded 
variables as available inputs for models’ development. This, of course, increased the 
possibility of developing models that overfit the data on training [75–77]. One step in 
avoiding this was the set inclusion condition – for any model to be accepted, there must not 
be a statistically significant difference in ROC curves between the training and the test 
sample based on the outcome-predicted probabilities for each sample. Of course, this was a 
single metric, but it was an important supplement to other reported metrics of models’ 
performance characteristics [76]. Regarding the sample splitting into training and 
independent testing divisions, it should be noted that before modeling, each dataset 
engaged in machine learning analysis was divided into a portion of 70% of cases for training 
the model and 30% of cases for testing the developed model. Again, to avoid the overfitting 
and to enable comparison of the performance characteristics of different machine learning 
algorithms, another condition was made – the training and test samples were pre-defined 
and did not have any statistically significant differences in the coded variables 
characteristics in-between (see Supplements for each study part). Except for the Naïve Bayes 
models developed in SPSS, which could not be set to use these pre-defined training and test 
sample divisions (it always automatically performed random sample splitting), all other 
developed ML models in all three study parts were trained and tested on the same samples 
described in the Supplementary tables. As a rule, many machine learning models presume 
the prevalences of different outcomes are similar (“50-50 chances”) [75–77]. In the first part 
of the study, the frequency of the analyzed outcomes was similar in Datasets I, II, and IV, 
and the data did not need to be balanced. But, in Dataset III, the SMOTE algorithm was used 



98 

to oversample the minority group (atypical hangings), while in the second part of the study, 
a small number of SMOTE-generated cases of atypical hangings were added into the initial 
dataset – here not only to balance out the outcome frequencies but also to increase the total 
sample size slightly. As the Dataset I-m of the third study part was small, compared to the 
previous parts of the study, and outcome frequencies were balanced, the SMOTE-based 
oversampling was avoided – it would not be appropriate for SMOTE-generated cases to be 
a majority in the test sample. 

Furthermore, in addition to developing several different machine learning algorithms 
(e.g., neural networks, k-nearest neighbors, decision trees), this research involved the 
development of two quite similar artificial neural networks – one using MATLAB, which 
automatically optimized model’s hyperparameters by genetic algorithm, and the second, 
Multilayer Perceptron – Artificial Neural Network, developed in SPSS. Although 
comprising a similar algorithm, the optimization by genetic algorithm theoretically leads to 
better hyperparameter optimization than partially manual, more time-consuming with 
fewer modeling attempts – optimization performed in SPSS [79, 80, 84, 85]. So, in addition 
to analyzing different algorithms, we could compare two artificial neural networks 
developed in different software solutions using different optimization methods.  

Once the models were developed, their classification performance was assessed through 
several metrics (for example, overall accuracy, sensitivity, specificity, positive and negative 
predictive value, and ROC curve analysis) [76]. While the ROC curve analysis was 
performed on the predicted outcome probabilities (for each case, a probability ranges from 
0 to 1), the other classification metrics were calculated based on the predicted group (binary 
outcome, e.g., typical or atypical hanging). The cutoff for this dichotomous classification 
was not modified – it remained at a probability of 0.5. Therefore, we provided classification 
performance based on this cutoff value, but reported the classification metric which is not 
dependent on this binary outcome, too – the ROC curve analysis on predicted outcome 
probabilities, making the interpretation more flexible [76]. 

 The first part of the study had a complete four-step approach in machine learning-based 
reconstruction of the knot in a noose position: in the first two steps discrimination between 
typical and atypical knot positions, in third step discrimination between anterior and lateral 
knot positions, and in final, fourth step a discrimination between left lateral and right lateral 
knot position. In the second study part, the analogous  analysis was performed only on the 
first two steps (discrimination between the typical and atypical knot positions), while in the 
third part of the study only the first step was applied, being limited with the significant 
decrease in sample sizes. And, instead of considering each study part separately, it may be 
clearer to “vertically” analyze machine learning models – comparing first steps in each of 
the three study parts (Datasets I, I-w, and I-m), then turning to the second steps in the first 
and the second part of the study (Datasets II, and II-w, respectively), and, at the end, 
considering the exclusive analysis of the first part of the study – machine learning models 
developed on Datasets III and IV, and discriminative power in atypical and only lateral 
hanging cases, respectively. The focus should be on the models’ classification performances, 
variable selections, and their importance, to extract some practical conclusions. 

 The first step in each study part regarding the machine learning models was to develop 
– train, and then test them on a sample that also contains cases without any fractures of the 
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thyrohyoid complex or the cervical spine. The high expectation was on the performance in 
the first part of the study, in Dataset I, which was the largest of all (1,235 cases included), 
with a well-balanced outcome frequency. Here, the overall accuracy of essentially all 
developed models (ANN optimized by genetic algorithm and models developed in SPSS – 
MLP-ANN, k-NN, DT, and NB) was c. 60.0%, which is about the proportion of the typical 
hangings in Dataset I. What first meets the eye is that these models’ decision-making 
processes may be equivalent to guessing based only on the knowledge of outcome 
prevalences in the sample. However, this approach would mean that the model predicts the 
same outcome (e.g., typical knot position) for all cases in training and test samples, thus 
yielding an overall accuracy of 60%. However, this would lead to a “test” with a sensitivity 
of 100% and a specificity of 0%! If we look at Table 4.1.4, and Table 4.1.8, we can see the 
developed models did not perform this way. What differed between the models most 
strikingly was the balance between the sensitivity and specificity, and other calculated 
metrics. For example, in these terms, artificial neural networks did not surpass the 
performance of the multivariable logistic regression analysis (Table 4.1.8), but, on the other 
hand, the k-Nearest Neighbors model showed more balanced values of the test sensitivity 
and specificity. In Dataset I of the first study part, almost all developed models could 
generalize from training to independent test samples without evident signs of overfitting 
[76]. Furthermore, even in the test sample, the ROC curve analysis had a lower 95% 
confidence interval above 0.5 (indicating a significant predictor), and based on calculations 
from contingency tables, the overall test performances did not have a lower 95% confidence 
interval below 50%. So, in general, as a first attempt to utilize machine learning algorithms 
in predicting the knot in a noose position solely by the distribution of thyrohyoid and 
cervical spine fractures and subjects’ age, the results of this analysis can be considered 
satisfactory. Also, it should be noted that there was no statistically significant difference in 
the ROC curve of GA-optimized ANN developed in MATLAB and the ROC curve of MLP-
ANN developed in SPSS on the same sample – Dataset I (Figure 4.1.3). So, we can say that 
less systematic experiments on MLP-ANN development in terms of hyperparameter 
settings successfully met the “standard” of systematic hyperparameter settings achieved 
through genetic algorithm optimization. Another characteristic of ANN developed in 
MATLAB is that the script provides output on the variables selected for the best-developed 
ANN (the one reported in this research). Looking at these, we can see the GA-optimized 
ANN in Dataset I achieved the reported metrics by considering only six of thirteen available 
variables – inputs, including sex, age, and variables considering the number and 
distribution of only GHH fractures. But remember that even on a conventional statistical 
analysis, a unilateral GHH fracture was a significant discriminator between the typical and 
atypical position of the knot and that this needed to be adjusted for age on multivariable 
logistic regression analysis (see section 4.1.1.1)! The models developed in SPSS for 
discrimination between typical and atypical hangings in Dataset I of the first study part also 
highly ranked the importance of some variables recognized as significant in conventional 
statistics (Table 4.1.12). For example, cervical spine fractures and the simultaneous presence 
of STH and GHH fractures. The not-so-comprehensible concept of the variable importance 
in ML models will be commented on later. For now, we can say that these selected variables 
can suggest the models did not achieve the reported metrics simply by chance, that the 
generalization to the test sample was good, and that similar performances were achieved 
by different approaches (that is, different models ranked coded variables differently 
regarding their importance), and some models did this despite the presence of irrelevant 
data “noise” (non-associated – irrelevant variables) [75, 76, 94]. 
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 Considering the same type of analysis in the second part of this study (analysis on 
Dataset I-w) firstly and directly should be highlighted that the developed machine learning 
models did not perform better if they considered subjects’ body weight and height (Tables 
4.2.4, and 4.2.6, and Figures 4.2.6, and 4.2.7). Two facts, however, should be additionally 
clarified. First, the overall accuracy of the models was lower than in Dataset I (study part I); 
the lower 95% confidence intervals of the accuracies were almost always under the 
threshold of 50%, and the intervals were wide, and the lower 95% confidence intervals of 
the ROC curve analyses in most developed models were below the threshold of a 0.5 on 
AUC analysis – indicating a questionable overall predictive value of the developed models. 
And second, this was the only segment of the present research in which a statistically 
significantly different classification performance was observed between the artificial neural 
network developed in MATLAB (GA-ANN) and analogous neural network developed in 
SPSS (MLP-ANN) (Figure 4.2.5). 

To assess the contribution of body weight (and height) for machine learning models’ 
improvement in classification (knot position estimation) probably, a good approach is to 
develop two analogous models on the exact same dataset (including these variables in one 
while omitting them in the other). This is precisely what was done in this research, rather 
than directly comparing the models from different parts of the study. This also provided the 
opportunity to statistically-mathematically compare classification performances (areas 
under the ROC curves) of the two analogous models (one that considered weight and height 
and the other that did not). So, this was used as an objective measure to detect significant 
improvements or worsening of models’ classification performances. If done otherwise, the 
differences in other metrics could be easily misinterpreted as an improvement. For example, 
there is a better balance of sensitivity and specificity in Dataset I-w than in Dataset I (see 
Tables 4.1.6, and 4.2.6). 

 The concept in machine learning model development for Dataset I (part I of the study) 
and Dataset I-w (part II of the study) was technically identical, but by forming the Dataset 
I-w, the total number of cases was decreased by more than three times (from c. 1200 to c. 
380 cases). Of the included cases, a portion of them did not have any thyrohyoid or cervical 
spine fractures (this may have contributed to the underestimation). Moreover, the models 
that considered the body weight and body height had two more input variables, potentially 
causing additional noise of irrelevant information for models to handle, all on a smaller 
sample. Hence, a slight decrease in performance metrics was expected. All of this 
contributed to wider confidence intervals estimates (i.e., less precise estimations).  

Of the developed models, the most robust to these changes were MLP-ANNs, the one 
which considered subjects’ body weight and height, as well as the analogous one for which 
these two variables were omitted. These two ANNs showed the best classification 
performances, without a significant difference between them, even with the ROC curve 
analyses like those achieved in the first part of the study (Table 4.2.6, Figure 4.2.7). Only in 
these two models did the algorithm manage to generalize the classification ability from the 
training to the test sample [76], which preserved statistically significant predictive ability on 
the ROC curve analysis (the lower 95% confidence intervals remained greater than 0.5, Table 
4.2.6). These models had almost identical overall accuracies as the multivariable logistic 
regression analysis but showed more balanced sensitivity/specificity metrics (Table 4.2.6) 
Additionally, the ANN that did not consider body weight and height was developed, 
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optimized by genetic algorithm, with a very similar performance metrics (there was no 
statistically significant difference in area under the ROC curve analyses for predicted 
outcome probabilities compared to the analogous MLP-ANN algorithm, Figure 4.2.6, and 
4.2.7). This GA-optimized ANN considered only six variables when predicting the knot 
position (sex, cervical spine fracture, total number of thyrohyoid fractures, isolated and 
unilateral STH fractures) – the optimization eliminated many irrelevant variables. On the 
one side, we see the GA-optimized ANN “canceled out” the noise of many irrelevant 
information-variables by excluding them, and on the other, the analogous MLP-ANN 
(SPSS) successfully handled all the input variables to provide the same classification 
performances in the experiment without the body weight and body height despite the same 
“noise” (Tables 4.2.4 and 4.2.6, and Figure 4.2.5). However, out of GA-optimized ANNs, 
which took into account the body weight and body height variables, the selected model (i.e., 
the best one developed) did not perform better and included 13 input variables (more than 
double the analogous GA-ANN model did). Moreover, this GA-optimized ANN had a 
significantly worse classification ability compared to the analogous MLP-ANN developed 
in SPSS (which considered body weight), as shown in Table 4.2.4, and 4.2.6), and as can be 
observed by a direct comparison of the two models’ AUC ROC curves (shown in Figure 
4.2.5). One explanation is that the reported model, which considered the body weight 
variable, was included “by force” to demonstrate if this variable contributes to the better 
performance of a model or if it only produces the “noise” of irrelevant information to the 
model. The other can be that the experiment in SPSS was done on more optimal 
hyperparameter settings (achieved by chance) or the software automatically handled the 
numerous irrelevant variables better (which is also possible to occur by chance). Of note is 
that the developed models, if considered body weight and height, most often highly ranked 
their importance for prediction (Table 4.2.8), with some giving advantage to body height 
compared to weight (remember the theoretical examples from Figure 5.2. – this could 
explain the phenomenon). On the other hand, the ML models in the second study part, if 
not provided with information on subjects’ body weight and height, used primarily 
variables shown to be statistically significant for knot position discrimination in the 
previous (the first) part of the study. This was observed in Dataset I-w even though most of 
these significant associations were not present in the same dataset on the “conventional” 
statistical analysis – it is hard to believe that these have been selected stochastically. 

How the data on body weight (and height) may be irrelevant in knot position assessment 
probably best shows the development of decision tree models. Aside from their low overall 
performance (Table 4.2.6) we can clearly see the overt discrepancy between the metrics 
achieved in the training compared to the test sample. Particularly for the model, which 
considered body weight and body height. The model, forced to use the information on 
subjects’ body weight as a relevant, directly associated body weights of the subjects in the 
training group with the knot’s positions. Once given the new, independent test sample, this 
caused a drastic deterioration of the classification performance – a very poor generalization 
capability. In fact, this was the only model in which there was a statistically significant 
difference in predictive capability in the training sample compared to the test sample. The 
other machine learning models developed on Dataset I-w showed satisfactory 
generalization [76] to the test sample but overall had lower accuracies and wide confidence 
intervals of the calculated accuracy and AUCs (Table 4.2.6). 
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 So, it seems that taking into account subjects’ body weight and height does not contribute 
to better prediction of the knot in a noose position, although in the same sample of this 
research, we saw some crude predictive significance of body weight to the occurrence of 
STH fractures. On the other hand, it was demonstrated that the presence and distribution 
of the SCM muscle origin’s hemorrhages can assist in knot position estimation to some 
extent. So, it remains to be seen if the SCM muscle hemorrhages can improve the machine 
learning-based knot position classification performance. Following the same methodology 
for model development that was applied in the second part of the study (on Dataset I-w), 
the models were developed on the third part of the study, on Dataset I-m. These models 
were provided with additional variables – information on the SCM muscle hemorrhages but 
were at the same time developed on a yet smaller sample – of only 126 cases (see 
Supplementary Table C.1). Here, again, the most robust showed to be artificial neural 
networks. There was no statistically significant difference between the AUCs of the GA-
optimized ANNs developed in MATLAB, and analogous MLP-ANNs developed in SPSS. 
However, we can see in Table 4.3.4. that the GA-optimization resulted in the highest overall 
accuracies (lower 95% CI was just below 50%), and more importantly, ROC analysis showed 
that these statistically were a significant predictor in knot position assessment (lower 95% 
CIs above the value of 0.5). Moreover, as was the case with MLP-ANN (SPSSS), the models 
generalized the classification ability from the training to test sample well. The GA-ANN 
selected a modest number of important variables (eight), amongst which were the body 
height, distribution and number of STH fractures, presence of simultaneous STH and GHH 
fractures, but also the distribution and number of SCM muscle hemorrhages. The analogous 
GA-ANN algorithm – model without information on SCM muscles, achieved very similar 
results by using only six variables, including age, body weight, and variables both on STH 
and on GHH fractures. It should be again noted that the study design with development of 
two analogous models of each ML algorithm (i.e., one considering SCM muscle 
hemorrhages, and other that did not have this input) provides better understanding of the 
variable’s significance. If we would compare only model performances achieved in the first 
study part (Dataset I) with the performances from the third study part (Dataset I-m), we 
would overestimate the significance of additional variables since the overall accuracy of 
artificial neural networks in Dataset I-m were over 65% (vs. c. 60% in Dataset I). This might 
be a consequence of a much smaller sample with a grouping of some “easier” cases, but also, 
there might be some minor contribution of additional variables [75–77]. Although, we failed 
to demonstrate that this contribution is crucial, by developing analogous models in the same 
dataset with statistically same predictive capabilities. Moreover, the variables on SCM 
muscle hemorrhages were not amongst the top five variables ranked by importance in the 
reported MLP-ANN (Table 4.3.6). Of the models other than neural networks in the third 
part of the study, Naïve Bayes provided better results than others (k-NN and DT), but this 
should be interpreted with caution. As already explained, the settings in SPSS prevented 
the NB algorithm from constantly using manually predefined sample division into the 
training and test groups. The model automatically formed new groups each time in a 
defined proportion of approximately 70% to 30%. 

 So, considering the first step in machine learning algorithms development in all three 
study parts, the impression is that the artificial neural networks showed the best robustness 
but also indicated the classification performance did not significantly improve if additional 
anthropometrics (weight and height) and some autopsy finding other than presence and 
distribution of the neck fractures (i.e., SCM muscle hemorrhages) were considered. The next 
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step was to see if the inclusion of cases without any lesions to detect – the fractures strongly 
impacted the predictive capabilities of the models. So, the models developed on Dataset II 
(study part I) and Dataset II-w (study part II) comprised only cases with at least one 
thyrohyoid or cervical spine fracture. By doing this, the overall accuracy of all models in 
Dataset I (part I) increased minimally – by a couple of percent (all being around 62.0.% of 
overall accuracy). However, the sensitivity and specificity balance improved, which was 
particularly appreciable in both artificial neural networks (see Tables 4.1.5, and 4.1.8). In 
Dataset II, a similar trend was observed (Tables 4.2.4, and 4.2.7). Here, it was also observed 
that some models performed slightly better on a test than on the training sample, which 
should be cautiously considered. But let’s remember the condition of the methodology was 
to include the models in which there was no statistically significant difference between the 
area under the ROC curve analysis in training compared to the test sample. What is more 
important when looking at Dataset II-w (part II) is that the models that considered 
information on subjects’ body weight and body height did not perform better than the 
analogous model–algorithms without information on this variable. Thus, further indicating 
their low importance in knot position assessment by machine learning. Some algorithms (k-
NN) developed a model (with the weight and height considered) with a slightly better 
overall accuracy than the analogous model without these variables (still, this was a 
statistically insignificant difference) but, as shown in Table 4.2.8, we can see that these 
variables were not considered to be among the top five most important of all the used. 

 While we can say that in the first two steps (discrimination between typical and atypical 
hangings), the machine learning models’ prediction was modest, at most, the ability to 
correctly classify the knot position was much better in attempts to discriminate between 
anterior and lateral knot position (Dataset III), as well as discriminating between left and 
right knot position in a separate analysis of lateral hangings (Dataset IV), that was 
particularly good (first part of the study). The overall accuracies for discrimination between 
anterior and lateral hangings substantially increased to about 85.0% of correctly classified 
cases, which was also possible to achieve through multivariable logistic regression analysis. 
Given the imbalance in the sample Dataset III, the high accuracy of the developed models 
can, to some extent, be attributed to this limitation of the sample. However, in Dataset IV, 
with equal distribution of left lateral and right lateral hangings and with a low accuracy of 
the logistic regression model, a substantial result is the development of models with overall 
accuracies over 90.0% (Table 4.1.12). With no overt evidence of models’ overfitting [76, 77], 
with good generalization from the training to test sample, we can consider these findings 
promising. But, having in mind a vast amount of information presented, the usefulness of 
metrics’ characteristics alone and in combination with conventional statistics will be further 
discussed, pointing to some implications for practice and for future research.  

There are two aspects on which the summary of the presented research should reflect – 
the practical implications and the additional academic significance this thesis provides. The 
application of these results directly in current practice is limited from the professional, 
medicolegal perspective. In cases where an expert opinion is not possible to confirm a single 
scenario (e.g., due to low test sensitivity), but to “only” exclude or significantly lower the 
probability of one of four possible events can be decisive. For example, an opinion that a 
thyrohyoid and cervical spine injury pattern in a body found hanged with an anteriorly 
placed knot in the noose, without evident ligature mark, is very unlikely to be a consequence 
of this hanging event (potentially a concealed homicide by neck strangulation, with later 
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simulation hanging of a dead body) can be supported by a highly specific test (that is, to 
exclude a single distinct scenario). The essential problem with machine learning algorithms 
is the black box concept – the inability to comprehend their decision-making process and 
underlying “rules” to make a same decision by a common sense, and therefore, these models 
can be considered untrustworthy [76, 77, 87, 90, 92, 93, 119]. Particularly as the case in our 
study is, with artificial neural networks, some k-NNs or NBs showing the best performances 
overall and /the first two) especially in lateral hanging analysis. And with a lack of 
consistent and broader evidence – with good reason. The black boxes, lacking 
argumentation comprehensible by forensic experts, not only limit the “courtroom” 
usefulness of ML models but also do not explain per se the decision-making process that can 
point to currently undefined biomechanics of thyrohyoid fracture occurrence in hangings 
[119, 120]. On the other hand, developing a decision tree model with a very high accuracy 
would be quite a useful in these terms, as this model provides understandable, step-by-step 
instructions on making decisions with a defined event certainty through the concept if-then. 
Unfortunately, this was not achieved in the present study.  

For now, we should probably interpret the characteristics of the developed models only 
alongside the detected significant associations of the knot in a noose position with defined 
variables. The variables we used and coded for these analyses are easily and directly 
observable by a forensic pathologist performing an autopsy, and on-the-spot decision-
making based on the thyrohyoid complex and cervical spine fractures pattern would be 
instrumental in directing the further body examination and investigation. Therefore, we 
could point out the key elements to further investigate alongside crude and multivariable 
analysis of fracture patterns (descriptives and logistic regression) and the knowledge about 
the relative importance of coded variables for machine learning algorithms (Tables 4.1.12, 
4.2.8, and 4.3.7). Finally, this can indirectly point to the biomechanics underlying the 
occurrence of neck fractures in hangings and the distribution of the force a noose applies to 
the neck. These facts are the most important findings of the present study. 

 

The research presented in this thesis provides several comprehensible answers for 
forensic pathology research on the long-standing problem of thyrohyoid complex injury in 
hangings: 

• Until now, researchers who tried to figure out the thyrohyoid complex fracture 
patterns often designed the studies by analyzing variables that were expected to directly 
discriminate between the four or even eight-knot positions in a single step – by 
immediately defining on which side a particular horn was fractured (left or right). 
Instead, here it is demonstrated that the distribution pattern can be analyzed by 
combining biomechanically similar scenarios (left and right hangings are biomechanical 
mirror images – the same outcome). Avoiding the use of two sides (left/right – 
biomechanically “mirror-images”) and defining if the fractures were unilateral or 
bilateral made some insight into fracture patterns possible to observe on a large sample. 
 

• The single most significant and directly observable finding on autopsy, about five 
times more likely to occur in the atypical than in the typical hangings, was the fracture 
of the cervical spine. It was followed by the unilateral fracture of the hyoid bone’s greater 
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horn, which was about 1.4 – 1.7 times more likely to occur if the knot was placed atypically. 
Both findings were valid irrespective of the subject’s age and independent of the presence 
or absence of the thyroid cartilage’s superior horns (see sections 4.1.1.1 and 4.1.1.2). With 
less certainty of true independent association with an atypical knot, the position was also 
the simultaneous fractures of the hyoid bone’s greater horns and thyroid cartilage’s superior 
horns. On the other hand, a similar association with the typical knot position was the 
presence of isolated fractures of the thyroid cartilage’s superior horn (while the hyoid bone 
remains uninjured). Still, adjustments for the subject’s age and the presence of other injuries 
failed to confirm the last two results unambiguously. 

 

• The cervical spine fracture was useful not only in discriminating between atypical 
and typical knot positions but also between anterior and lateral knot positions. It was at 
least ten times more likely to occur if the knot was placed anteriorly compared to left or 
right lateral knot positions and independently of the thyrohyoid fractures (see section 
4.1.1.3). The isolated fractures of the thyroid cartilage’s superior horns (without other neck 
hard structure injury), while rare in anterior hangings, were significantly more common in 
typical hangings and in lateral hangings. 

 

• If the knot was located at the lateral sides, the fractures of the thyroid cartilage’s 
superior horns tended to be unilateral (but this is not always the case!) and were almost two 
times (1.8) more likely to occur on the side opposite to the knot position (contralaterally). 
Irrespective of this, in lateral hangings, the fractures of the hyoid bone’s greater horns, 
despite not occurring only unilaterally, were almost two times (1.9) more likely to happen 
at the side of the knot (ipsilaterally; see section 4.1.1.4).  

 

• Of the other analyzed autopsy findings, the discrimination between left and right 
lateral knot position could be improved by considering the distribution of the hemorrhages 
at the periosteum of the clavicles – the origins of sternocleidomastoid muscles, which were 
more likely to occur on the side of the knot (left or right). 

 

• There are several implications for the hanging biomechanics. One on a cervical spine 
mechanism fracture corresponds to the previous suggestions – it is most likely caused by a 
hyperextension occurring when the knot is placed anteriorly [6, 22, 40, 43, 45, 58]. Findings 
can implicate the biomechanics of thyrohyoid complex fractures in lateral hangings – the 
fractures of the superior horns of thyroid cartilage occur most probably due to direct 
pressure of the ligature (compressive fractures) either on the cartilage or on the thyrohyoid 
membrane. At the same time, greater hyoid bone’s horn fractures, if not directly compressed 
by the ligature loop, could occur either indirectly – due to the traction of adjacent soft tissue 
(traction fractures) or by compression against the cervical portion of the spine column [26, 
49, 50, 59, 98, 142, 147].  Postmortem imaging studies could also corroborate the latter claim 
[49, 50, 135]. The direct compressive fractures of the thyroid cartilage would also explain 
their low occurrence in anterior hangings (characteristically without a significant direct 
compression by the ligature) [43], as will their significantly more frequent and isolated 
occurrence in typical hangings observed in this research. 

• The major anthropometric factors can contribute to thyrohyoid complex and cervical 
spine fracture occurrence, but their clear significance in reconstructing the knot position was 
not observed. Regarding age – the most significant of three considered anthropometrics, it 
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was already well-demonstrated that subjects older than 40 years were more prone to 
these fractures. The present research adds to this by demonstrating that age significantly 
impacted only the occurrence of hyoid bone’s greater horns fractures (more likely after 
the age of about 37 – by approaching the forties) and cervical spine fractures (more likely 
after the age of about 65 years). The body weight was associated only with the fractures 
of the thyroid cartilage’s superior horns (more likely in persons heavier than 65 – 72 kg) 
and with the appearance of sternocleidomastoid muscle hemorrhages at their origin – 
the periosteum of the collarbones (more likely in persons heavier than about 67 kg). 

• The present study also demonstrated that it is possible to develop machine 
learning models for classification purposes of the knot in a noose position that are 
capable of generalization from training to test samples. This was achieved in genetic 
algorithm-optimized artificial neural networks developed in MATLAB, as well as in 
artificial neural networks and several other algorithms in SPSS. The ANN was probably 
the most robust of all developed models, with some successful results also observed in, 
for example, k-Nearest Neighbors models. Although the overall accuracy of some 
classification attempts was relatively low or modest (discrimination between typical and 
atypical hangings) and comparable to logistic regression, very high accuracy for some 
discriminations was achieved, especially for the knot side estimation in the lateral 
hangings (discrimination between left lateral and right lateral knot position). Even 
though far from a solution for a ‘witness’ or ‘expert’ opinion in a courtroom, some 
probable biomechanics explanations for thyrohyoid fracture patterns occurrence are 
suggested. Firstly, it was directly demonstrated that information on the subjects’ body 
weight and body height did not improve models’ classification performances, despite 
presumed theoretical explanations for their significance and despite presented findings 
on the crude associations with fracture occurrence. Additionally, the information on the 
presence and distribution of SCM muscle-origin hemorrhages did not improve 
classification performance for discrimination between typical and atypical hangings. 
However, with further analysis and discussed biomechanics in lateral hangings in mind, 
this must be explored further. Most developed models either selected or ranked highly 
important coded variables, which were significant discriminators in standard statistical 
analyses. And the conclusions based on the conventional statistics are in fact further 
corroborated by the variables’ relative importance in many MLA models analyzed 
herein. Given that the aims were to assess the predictive usefulness of machine learning 
models in a problem previously unexplored by this method, which was not possible to 
explain by conventional descriptive analyses, the present study provided useful and 
even promising results.  

To the best of the author’s knowledge, this is the first attempt to determine the 
thyrohyoid and cervical spine fracture patterns in hangings concerning the position of the 
ligature’s knot using machine learning algorithms. Considering this, the information about 
the achieved hyperparameter MLA settings for these distinct datasets and variable coding 
that showed some valuable results may prove helpful in further studies of this specific 
problem. Particularly with conventional statistical software solutions now capable of 
machine learning modeling, with graphic user interfaces becoming relatively easy to 
operate on by less experienced users (but preferably not completely lay), that forensic 
pathologists are, with appropriate supervision. Ultimately, the in-detail report on 
methodology (e.g., variable coding), sample characteristics (basic descriptives and 
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inferential statistics), and developed machine learning algorithm models characteristics 
(e.g., hyperparameter settings) ensure study transparency, accuracy, and reproducibility, 
which is a prerequisite for Artificial Intelligence-based research. 

At the very end, the study limitations should be discussed. Data on which the machine 
learning experiments and other analyses were performed were obtained retrospectively. 
The quality of the data source defines the quality of the experiment. Fortunately, the 
systematic approach at the Institute provided a complete and uniform source. Information 
on subjects’ body weight, height, and particularly hemorrhages of the sternocleidomastoid 
muscles was available for a small portion of the sample, which probably impacted the 
models’ classification performances. The priority was to give an advantage to uniform and 
complete data sets over many missing inputs. Finally, additional data could be significant 
and lead to better model development. But the exact circumstances data are often 
unavailable and non-systematically obtainable (e.g., point of suspension and completeness 
of hanging, a drop length, ligature diameter, and softness/hardness – the material) it may 
further improve machine learning models’ performances and knot in a noose position 
assessment. On the other hand, some recent reports suggest that, for example, a ligature 
diameter did not impact thyrohyoid fracture occurrence. An additional increase in sample 
size without missing significant data probably requires multicenter studies, but 
representative samples could be obtained with broadly applied standards in autopsy 
practice. These collaborations should be highly encouraged. The future collaboration of 
forensic experts and engineers in machine learning may prove very useful in academic 
research and general practice. 

 

 
5.1. Study implications and perspective 

 

The present study was the first attempt to utilize machine learning algorithms to 
reconstruct the knot in a noose position by analyzing the distribution and pattern of the 
thyrohyoid complex and cervical spine fractures. Before this is considered, it should be 
noted that the initial step in forming machine learning models – the data acquisition and 
data set forming was done distinctly – the variables coding the presence and distribution of 
thyrohyoid complex fractures were designed to specify the biomechanical characteristic 
(e.g., the general relation of the fracture to the knot position), and not to only directly specify 
the exact side of the knot – the knot is not only located on the left or right side, but it is, for 
example an unilateral fracture in general or it is a fracture at the same – ipsilateral side to 
the knot in lateral hangings. By this variable coding, not only was the development of 
several valid supervised machine learning models possible, but some crude significant 
patterns of the fractures and knot positions were also revealed, and some previous 
observations were confirmed. 

 The developed machine learning models are, nevertheless, of limited to no direct 
applicability in routine practice – either the accuracies were modest, or the algorithm and 
model that performed the best in classification do not provide an understandable decision- 
 



108 

 

making process (e.g., artificial neural networks) – these are the black boxes.  
So, further attempts could be made to develop highly accurate, comprehensible models, 
such as decision trees, with potentially sound step-by-step decisions for forensic 
pathologists. The potential variables that could be of limited use or create the “noise” are 
also pointed out here, including some major anthropometric factors.  

Apart from this, how the present research adds in the current form should be considered. 
When providing expert opinion on some topic - forensic expertise claims cannot always be 
made on a discrete particular level of probability, and sometimes it is even based on a case-
based anecdotal experience. Providing objective measures of certainty is welcome in 
contrast to such a biased approach. The present research can also be a proof-of-concept for 
this sort of reasoning in modern forensic expertise of various issues in forensic medicine 
and pathology. The applicability and potential benefits of artificial intelligence-based and 
assisted methods should invariably be further explored, including the topic considered in 
this research. If it fails to prove useful, it could be the ultimate sign that one is heading 
through a dead-end street.  
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6. CONCLUSIONS 

 

I Based on the analysis of the systematically obtained data on 1,235 suicidal hangings with 
a short drop or without a drop, the overall frequency of thyrohyoid fractures was 
estimated to be 60.6%, with fractures of the superior horns of the thyrohyoid complex 
being more frequent than the fractures of the greater horns of the hyoid bone – 44.5% 
and 34.4% of cases, respectively. In the same sample, cervical spine fracture was 
observed in 3.6% of cases. The sample comprised 57.2% hangings with a typical 
(posterior) knot position, 33.4% with lateral knot positions (left and right positions 
almost identical in frequency), and 9.4% of cases with anteriorly placed knots. 

On a conventional analysis, subjects’ age significantly impacted only the occurrence 
of hyoid bone’s greater horns fractures, which were more likely after the age of about 38 
years, and cervical spine fractures, which were more likely after the age of about 65 
years. It is an essential contributor to thyrohyoid fracture susceptibility. 

By analyzing the association of the coded variables and knot in a noose position, the 
following significant associations were identified: for discrimination between atypical 
(anterior and lateral) and typical (posterior) hangings, significant were cervical spine 
fracture, unilateral hyoid horn fracture, simultaneous thyroid and hyoid horns fractures, 
all with higher odds to occur in atypical hangings but of course not exclusive to them. 
Of those, only the cervical spine and unilateral hyoid horn fractures indicated atypical 
knot position independently of other fractures and the subject’s age. The independent 
association of other mentioned variables was less clear. In typical hangings, on the other 
side, isolated thyroid horn fractures were more likely to occur than in atypical.  

Finally, in lateral hangings, the hyoid and thyroid horn fractures occurred with 
higher odds on the ipsilateral and contralateral sides to the knot position, respectively.  

 
 

II It is possible to develop machine learning models capable of classification of the knot in 
a noose position in suicidal hangings based on the thyrohyoid complex and cervical 
spine fractures.  

In the first part of the study, this was achieved by considering only fracture presence, 
the subject’s sex, and age. All the developed models (GA-optimized ANN, MLP-ANN, 
k-NN, DT, NB) could adequately generalize from training to test samples. The genetic 
algorithm-based ANN hyperparameter optimization in MATLAB did not result in a 
significantly better model than partially manual adjustment experiments performed in 
SPSS for MLP-ANN, based on the Receiver Operating Characteristic curve analysis. 

The discrimination between typical and atypical hangings was modest, with overall 
accuracies of about 60.0%, and this performance improved only slightly (to about 62%) 
if the cases without any fractures were excluded. However, the overall classification 
accuracies improved significantly in discriminating between anterior and lateral atypical 
hangings, and then particularly between left and right lateral hangings. In the latter case, 
the ANN and k-NN achieved accuracies higher than 90%, with areas under the receiver 
operating characteristic curve in the test sample of 0.98 and 0.97, respectively. Most of 
the developed models highly ranked the importance of variables observed to be 
significant for discrimination by the conventional (standard) statistical methods.  

In addition to the input on fractures, age should be invariably considered. 
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III The analogous machine learning algorithm models developed on the same smaller 
dataset of the study part II, one with additional inputs on subjects’ body weight (and 
body height) and one without them, did not statistically significantly differ in the 
classification performance, based on the ROC curve comparison, in discriminating 
between typical and atypical hangings. This holds true irrespective of considering cases 
without any thyrohyoid or cervical spine fracture. 

The study's results imply that considering the body weight and height does not 
significantly improve machine learning classification between typical and atypical knot 
positions – it is possible to develop valid models of similar classification capabilities only 
through the fracture distribution and subject’s age. Indirectly, this suggests that body 
weight and height are not of vast importance in reconstructing the knot position through 
thyrohyoid fracture patterns.  

In fact, the decision tree algorithm overfitted the model if forced to consider body 
weight. Moreover, most of the developed models highly ranked the importance of 
classifying variables that were detected to be significant by conventional (standard) 
statistical methods in the first study part, even though most of these crude associations 
were not possible to detect in the sample of the second part of the study. 

However, body weight was significantly associated with the superior horns of the 
thyroid cartilage fracture occurrence on a conventional statistical analysis: these were 
more likely to occur in persons heavier than 65 – 72 kg. This could be a rationale for 
including the variable in more complex models (on a larger sample with more inputs). 

 
 

IV The analogous machine learning algorithm models developed on the same smaller 
dataset of the study part III, one with additional inputs on the presence and distribution 
of the periosteal hemorrhages at the sternocleidomastoid muscle origin at the clavicles 
and one without them, did not statistically significantly differ in their classification 
performance based on the ROC curve comparison, in discriminating between typical 
and atypical hangings (considering cases with fractures and without fractures, and with 
and without the muscle hemorrhages).  

The study's results imply that considering the sternocleidomastoid muscle 
hemorrhages does not improve discrimination between typical and atypical knot 
positions. Indirectly, it suggests this input is not crucial in differentiating typical from 
atypical knot positions through thyrohyoid fracture patterns. However, given the 
significant pattern in hemorrhage distribution in lateral hangings - which were more 
likely to occur on the side of the knot, these should be considered in a more complex 
model to discriminate between left and right lateral hangings and maybe even between 
anterior and lateral hangings.  

Again, most of the developed models highly ranked the importance of classifying 
variables that were detected to be significant by conventional (standard) statistical 
methods in the former study parts, even though most of these crude associations were 
not possible to detect in the sample of the second part of the study. 

Of potentially significant additional associations between the input variables, body 
weight was significantly associated with the appearance of sternocleidomastoid muscle 
hemorrhages at their origin—the periosteum of the clavicles, which were more frequent 
in persons heavier than about 67 kg. 
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SUPPLEMENTS 

Supplement A – Part I of the study 

Supplementary Table A.1. Training and test groups in Dataset I: the coded variables characteristics 
comparison. 

Characteristics 
Total  

(N = 1,235) 
Training   

(N = 865, 70%) 
Test  

(N = 370, 30 %) 
p-

value 

Sex 
Male 937 (75.9 %) 654 (75.6%) 283 (76.5 %) 

> 0.05 
Female 298 (24.1 %) 211 (24.4 %) 87 (23.5%) 

Age (years)  54.2 ± 17.9 53.8 ± 17.6 55.3 ± 18.5 > 0.05 

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS 

Unilateral STH fracture 
Yes 369 (29.9 %) 262 (30.3 %) 107 (29.0 %) 

> 0.05 
No 866 (70.1 %) 603 (69.7 %) 263 (71.0 %) 

Bilateral STH fracture 
Yes 181 (14.7 %) 129 (14.9 %) 52 (14.1 %) 

> 0.05 
No 1054 (85.3 %) 736 (85.1 %) 318 (85.9 %) 

Total N of STH fractures (0 – 2) 0 (0 – 2) 0 (0 – 2) 0 (0 – 2) > 0.05 

Unilateral GHH fracture 
Yes 339 (27.4 %) 241 (27.9 %) 98 (26.5 %) 

> 0.05 
No 896 (72.6 %) 624 (72.1 %) 272 (73.5 %) 

Bilateral  GHH fracture 
Yes 86 (7.0 %) 59 (6.8 %) 27 (7.3 %) 

> 0.05 
No 1149 (93.0 %) 806 (93.2 %) 343 (92.7 %) 

Total N of  GHH fractures (0 – 2) 0 (0 – 2) 0 (0 – 2) 0 (0 – 2) > 0.05 
Total N of TyHy fractures (0 – 4) 1 (0 – 4) 1 (0 – 4) 1 (0 – 4) >0.05 

Isolated STH fracture(s) 
Yes 324 (26.2%) 225 (26.0%) 99 (26.8%) 

> 0.05 
No 911 (73.8%) 640 (74.0%) 271 (73.2%) 

Isolated GHH fracture(s) 
Yes 199 (16.1%) 134 (15.5%( 65 (17.6%) 

> 0.05 
No 1036 (83.9%) 731 (84.5%) 305 (82.4%) 

Simultaneous STH and 
GHH fractures 

Yes 226 (18.3%) 166 (19.2%) 60 (16.2%) 
> 0.05 

No 1,009 (81.7%) 699 (80.8%) 310 (83.8%) 

Cervical Spine fracture 
Yes 44 (3.6 %) 32 (3.7 %) 12 (3.2 %) 

> 0.05 
No 1,191 (96.4 %) 833 (96.3 %) 358 (96.8 %) 

KNOT POSITION 

Knot position – Hanging 
type 

Typical 707 (57.2 %) 497 (57.5 %) 210 (56.8 %) 
> 0.05 

Atypical 528 (42.8 %) 368 (42.5 %) 160 (43.2 %) 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard 
deviation or median and range. For comparison of categorical data, the χ² test was performed, while 
the Student’s t-test for two independent samples or Mann-Whitney U test were performed for 
numerical data.  

Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TyHy – 
Thyrohyoid. 

Adopted from: Leković et al. [62] 



 

Supplementary Table A.2. Training and Test groups in Dataset II: the coded variables characteristics 
comparison. 

 

Characteristics Total 
(N = 773) 

Training 
(N = 540, 69.9 %) 

Test 
(N = 233, 30.1 %) 

p-
value 

Sex 
Male 600 (77.6%) 419 (77.6% 181 (77.7%) 

> 0.05 
Female 173 (22.4%) 121 (22.4%) 52 (22.3%) 

Age (years) 56.1 ± 16.9 55.5 ± 16.9 57.3 ± 17.0 > 0.05 

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS 

Unilateral STH fracture 
Yes 369 (47.7%) 257 (47.6%) 112 (48.1%) 

> 0.05 
No 404 (52.3%) 283 (52.4%) 121 (51.9%) 

Bilateral STH fracture 
Yes 181 (23.4%) 124 (23.0%) 57 (24.5%) 

> 0.05 
No 592 (76.6%) 416 (77.0%) 176 (75.1%) 

Total N of STH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) > 0.05 

Unilateral GHH fracture 
Yes 339 (43.9%) 233 (43.1%) 106 (45.5%) 

> 0.05 
No 434 (56.1%) 307 (56.9%) 127 (54.5%) 

Bilateral  GHH fracture 
Yes 86 (11.1%) 59 (10.9%) 27 (11.6%) 

> 0.05 
No 687 (88.9%) 481 (89.1%) 206 (88.4%) 

Total N of GHH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) >0.05 

Total N of TyHy fractures (0 – 4) 1 (0 – 4) 1 (0 – 4) 1 (0 – 4) >0.05 

Isolated STH fracture(s) 
Yes 324 (41.9%) 233 (43.1%) 91 (39.1%) 

>0.05 
No 449 (58.1%) 307 (56.9%) 142 (60.9%) 

Isolated GHH fracture(s) 
Yes 199 (25.7%) 144 (26.7%) 55 (23.6%) 

>0.05 
No 574 (74.3%) 396 (73.3%) 178 (76.4%) 

Simultaneous STH and 
GHH fractures 

Yes 226 (29.2%) 148 (27.4%) 78 (33.5%) 
>0.05 

No 547 (70.8%) 392 (72.6%) 155 (66.5%) 

Cervical Spine fracture 
Yes 44 (5.7%) 28 (5.2%) 16 (6.9%) 

> 0.05 
No 729 (94.3%) 512 (94.8%) 217 (93.1%) 

KNOT POSITION 

Knot position – Hanging 
type 

Typical  433 (56.0%) 298 (55.2%) 135 (57.9%) 
> 0.05 

Atypical 340 (44.0%) 242 (44.8%) 98 (42.1%) 

 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard 
deviation or median and range. For comparison of categorical data, the χ² test was performed, while 
the Student’s t-test for two independent samples or Mann-Whitney U test were performed for 
numerical data. 

Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TyHy – 
Thyrohyoid. 

Adopted from: Leković et al. [62] 

  



 

Supplementary Table A.3. Training and Test groups in Dataset III: the coded variables 
characteristics comparison. 

 

Characteristics 
Total 

(N = 340) 
Training 

(N = 238, 70 %) 
Test 

(N = 102, 30 %) p-value 

Sex 
Male 271 (79.7%) 193 (81.1%) 78 (76.5%) 

> 0.05 
Female 69 (20.3%) 45 (18.9%) 24 (23.5%) 

Age (years) 58.00 (16 – 94) 58.5 (19 – 94) 56.0 (16 – 86) > 0.05 

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS 

Unilateral STH fracture 
Yes 156 (45.9%) 108 (45.4%) 48 (47.1%) 

> 0.05 
No 184 (54.1%) 130 (54.6%) 54 (52,9%) 

Bilateral STH fracture 
Yes 73 (21.5%) 48 (20.2%) 25 (24.5%) 

> 0.05 
No 267 (78.5%) 190 (79.8%) 77 (75.7%) 

Total N of STH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) > 0.05 

Unilateral GHH fracture 
Yes 174 (51.2%) 125 (52.5%) 49 (48.0%) 

> 0.05 
No 166 (48.8%) 113 (47.5%) 53 (52.0%) 

Bilateral  GHH fracture 
Yes 33 (9.7%) 22 (9.2%) 11 (10.8%) 

> 0.05 
No 307 (90.3%) 216 (90.8%) 91 (89.2%) 

Total N of GHH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) >0.05 

Total N of TyHy fractures (0 – 4) 1 (0 – 4) 1 (0 – 4) 2 (0 – 4) >0.05 

Isolated STH fracture(s) 
Yes 113 (33.2%) 78 (32.8%) 35 (34-3%) 

>0.05 
No 227 (66.8%) 160 (67.2%) 67 (65.7%) 

Isolated GHH fracture(s) 
Yes 91 (26.8%) 69 (29.0%) 22 (21.6%) 

>0.05 
No 249 (73.2%) 169 (71.0%) 80 (78.4%) 

Simultaneous  
STH and GHH fractures 

Yes 116 (34.1%) 78 (32.8%) 38 (37.3%) 
>0.05 

No 224 (65.9%) 160 (67.2%) 64 (62.7%) 

Cervical Spine fracture 
Yes 34 (10.0%) 24 (10.1%) 10 (9.8%) 

> 0.05 
No 306 (90%) 214 (89.9%) 92 (90.2%) 

KNOT POSITION 

Knot position –  
Hanging type 

Anterior  54 (15.9%) 37 (15.5%) 17 (16.7%) 
> 0.05 

Lateral 286 (84.1%) 201 (84.5%) 85 (83.3%) 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard 
deviation or median and range. For comparison of categorical data, the χ² test was performed, while 
the Mann-Whitney U test was performed for numerical data. Only the preprocessed sample 
characteristics are shown. After the SMOTE algorithm was performed to reduce the disproportion 
of the group sample sizes, the absence of statistically significant difference in the analyzed variables 
was preserved (not shown, see Results, section 3.2.).  

Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TyHy – 
Thyrohyoid. 

Adopted from: Leković et al. [62] 

  



 

Supplementary Table A.4. Training and test groups in Dataset IV:  
the coded variables characteristics comparison. 

 

Characteristics 
Total 

(N = 286) 
Training 

(N = 201, 70 %) 
Test 

(N = 85, 30 %) p-value 

Sex 
Male 233 (81.5%) 166 (82.6%) 67 (78.8%) 

> 0.05 
Female 53 (18.5%) 35 (17.4%) 18 (21.2%) 

Age (years) 57.0 (16 – 94) 56.0 (18.0 – 94.0) 59.0 (16.0 – 94.0) > 0.05 

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS 

Unilateral STH fracture 
Yes 138 (48.3%) 101 (50.2%) 37 (43.5%) 

> 0.05 
No 148 (51.7%) 100 (49.8%) 48 (56.5%) 

Bilateral STH fracture 
Yes 65 (22.7%) 43 (21.4%) 22 (25.9%) 

> 0.05 
No 221 (77.3%) 158 (78.6%) 63 (74.1%) 

Total N of STH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) > 0.05 

Contralateral STH fracture 
Yes 80 (28.0%) 58 (28.9%) 22 (25.9%) 

> 0.05 
No 206 (72.0%) 143 (71.1%) 63 (74.1%) 

Left STH fracture 
Yes 136 (47.6%) 95 (47.3%) 41 (42.2%) 

> 0.05 
No 150 (52.4%) 106 (52.7%) 44 (51.8%) 

Right STH fracture 
Yes 132 (46.2%) 92 (45.8%) 40 (47.1%) 

> 0.05 
No 154 (53.8%) 109 (54.2%) 45 (52.9%) 

Unilateral GHH fracture 
Yes 152 (53.1%) 108 (53.7%) 44 (51.8%) 

> 0.05 
No 134 (46.9%) 93 (46.9%) 41 (48.2%) 

Bilateral  GHH fracture 
Yes 26 (9.1%) 18 (9.0%) 8 (9.4%) 

> 0.05 
No 260 (90.9%) 183 (91.0%) 77 (90.6%) 

Total N of GHH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) >0.05 

Left GHH fracture 
Yes 99 (34.6%) 69 (34.3%) 30 (35.3%) 

> 0.05 
No 187 (63.3%) 132 (65.7%) 55 (64.7%) 

Right GHH fracture 
Yes 105 (36.7%) 75 (37.3%) 30 (35.3%) 

> 0.05 
No 181 (63.3%) 126 (62.7%) 55 (64.7%) 

Ipsilateral GHH fracture 
Yes 90 (31.5%) 62 (30.8%) 28 (23.9% 

> 0.05 
No 196 (68.5%) 139 (69.2%) 57 (67.1%) 

Total N of TyHy fractures (0 – 4) 1 (0 – 4) 1 (0 – 4) 2 (0 – 4) >0.05 

Isolated STH fracture(s) 
Yes 103 (36.0%) 72 (35.8%) 31 (36.5%) 

>0.05 
No 183 (64.0%) 129 (64.2%) 54 (63.5%) 

Isolated GHH fracture(s) 
Yes 78 (27.3%) 54 (26.9%) 24 (28.2%) 

>0.05 
No 208 (72.7%) 147 (73.1%) 61 (71.8%) 

Simultaneous  
STH and GHH fractures 

Yes 100 (35.0%) 72 (35.8%) 28 (32.9%) 
>0.05 

No 186 (65.0%) 129 (64.2%) 57 (67.1%) 

Cervical Spine fracture 
Yes 12 (4.2%) 9 (4.5%) 3 (3.5) 

> 0.05 
No 274 (95.8%) 192 (95.5%) 82 (96.5%) 

KNOT POSITION 

Knot position – Hanging type 

Left 
Lateral 

140 (49.0%) 101 (50.2%) 39 (45.9%) 
> 0.05 

Right 
Lateral 

146 (51.0%) 100 (49.8%) 46 (54.1%) 

 
Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard 
deviation or median and range. For comparison of categorical data, the χ² test was performed, while 
the Mann-Whitney U test was performed for numerical data.   
Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TyHy – 
Thyrohyoid. Adopted from: Leković et al. [62] 



 

Supplement B – Part II of the study 

 

Supplementary Table B.1. Training and test groups in Dataset I-w:  
the coded variables characteristics comparison. 

Characteristics Total  
(N = 385) 

Training   
(N = 270, 70.1%) 

Test  
(N = 115, 29.9%) p-value 

Sex 
Male 298 (77.4%) 207 (76.7%) 91 (79.1%) 

> 0.05 
Female 87 (22.6%) 63 (23.3%) 24 (20.9%) 

Age (years) 57.0 (16-94) 56.5 (16-94) 58.0 (20-90) > 0.05 
Body weight (kg) 71.0 (34-148) 70.0 (34-148) 72.0 (46-108) > 0.05 
Body height (cm) 176.0 (145-205) 176.0 (145-205) 175.0 (153-195) > 0.05 

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS 

Unilateral STH fracture 
Yes 116 (30.1%) 82 (30.4%) 34 (29.6%) 

> 0.05 
No 269 (69.9%) 188 (69.6%) 81 (70.4%) 

Bilateral STH fracture 
Yes 65 (16.9%) 47 (17.4%) 18 (15.7%) 

> 0.05 
No 320 (83.1%) 223 (82.6%) 97 (84.3%) 

Total N of STH fractures (0 – 2) 0 (0-2) 0 (0-2) 0 (0-2)  

Unilateral GHH fracture 
Yes 101 (26.2%) 72 (26.7%) 29 (25.2%) 

> 0.05 
No 284 (73.8%) 198 (73.3%) 86 (74.8%) 

Bilateral  GHH fracture 
Yes 33 (8.6%) 23 (8.5%) 10 (8.7%) 

> 0.05 
No 352 (91.4%) 247 (91.5%) 105 (91.3%) 

Total N of  GHH fractures (0 – 2) 0 (0-2) 0 (0-2) 0 (0-2) > 0.05 
Total N of TyHy fractures (0 – 4) 1 (0-4) 1 (0-4) 1 (0-4) > 0.05 

Isolated STH fracture(s) 
Yes 106 (27.5%) 79 (29.3%) 27 (23.5%) 

> 0.05 
No 279 (72.5%) 191 (70.7%) 88 (76.5%) 

Isolated GHH fracture(s) 
Yes 59 (15.3%) 45 (16.7%) 14 (12.2%) 

> 0.05 
No 326 (84.7%) 225 (83.3%) 101 (87.8%) 

Simultaneous STH and 
GHH fractures 

Yes 75 (19.5%) 50 (18.5%) 25 (21.7%) 
> 0.05 

No 310 (80.5%) 220 (81.5%) 90 (78.3%) 

Cervical Spine fracture 
Yes 16 (4.2%) 10 (3.7%) 6 (5.2%) 

> 0.05 
No 369 (95.8%) 260 (96.3%) 109 (94.8%) 

KNOT POSITION 

Knot position – Hanging 
type 

Typical 197 (51.2%) 144 (53.3%) 53 (46.1%) 
> 0.05 

Atypical 188 (48.8%) 126 (46.7%) 62 (53.9%) 

 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard 
deviation or median and range. For comparison of categorical data, the χ² test was performed, while 
the Mann-Whitney U test or Student’s t test were performed for numerical data.  

Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TH – 

Thyrohyoid. 

  



 

Supplementary Table B.2. Training and test groups in Dataset II-w:  
the coded variables characteristics comparison. 

 

 

Characteristics Total  
N =250 

Training   
N = 175 (70.0%) 

Test  
N = 75 (30.0%) 

p-  
value 

Sex 
Male 193 (77.2%) 134 (76.6%) 59 (78.7%) 

> 0.05 
Female 57 (22.8%) 41 (23.4%) 16 (21.3%) 

Age (years) 58.2 ± 17.9 59.4 ± 18.0 55.6 ± 17.6 > 0.05 
Body weight (kg) 70.5 (38 – 146) 72.0 (38 – 146) 70.0 (46 – 117) > 0.05 
Body height (cm) 176 (145 – 205) 175 (145 – 205) 176 (152 – 200) > 0.05 

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS 

Unilateral STH fracture 
Yes 118 (47.2%) 81 (46.3%) 37 (49.3%) 

> 0.05 
No 132 (52.8%) 94 (53.7%) 38 (50.7%) 

Bilateral STH fracture 
Yes 65 (26.0%) 45 (25.7%) 20 (26.7%) 

> 0.05 
No 185 (74.0%) 130 (74.3%) 55 (73.3%) 

Total N of STH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2)  

Unilateral GHH fracture 
Yes 105 (42.0%) 72 (41.1%) 33 (44.0%) 

> 0.05 
No 145 (58.0%) 103 (58.9%) 42 (56.0% 

Bilateral  GHH fracture 
Yes 33 (13.2%) 24 (13.7%) 9 (12.0%) 

> 0.05 
No 217 (86.8%) 151 (86.3%) 66 (88.0%) 

Total N of  GHH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) > 0.05 
Total N of TyHy fractures (0 – 4) 1 (0 – 4) 1 (0 – 4) 2 (0 – 4) > 0.05 

Isolated STH fracture(s) 
Yes 106 (42.4%) 74 (42.3%) 32 (42.7%) 

> 0.05 
No 144 (57.6%) 101 (57.7%) 54 (57.3%) 

Isolated GHH fracture(s) 
Yes 61 (24.4%) 44 (25.1%) 17 (22.7%) 

> 0.05 
No 189 (75.6%) 131 (74.9%) 58 (77.3%) 

Simultaneous STH and 
GHH fractures 

Yes 77 (30.8%) 52 (29.7%) 25 (33.3%) 
> 0.05 

No 173 (69.2%) 123 (70.3%) 50 (66.7%) 

Cervical Spine fracture 
Yes 16 (6.4%) 13 (7.4%) 3 (4.0%) 

> 0.05 
No 234 (93.6%) 162 (92.6%) 72 (96.0%) 

KNOT POSITION 

Knot position – Hanging 
type 

Typical 128 (51.2%) 90 (51.4%) 38 (50.7%) 
> 0.05 

Atypical 122 (48.8%) 85 (48.6%) 37 (49.3%) 

 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard 
deviation or median and range. For comparison of categorical data, the χ² test was performed, while 
the Mann-Whitney U test or Student’s t test were performed for numerical data.  

Abbreviations: STH – Superior thyroid cartilage horn; GHH – Greater hyoid bone horn; TH – 

Thyrohyoid. 

  



 

Supplement C – Part III of the study 

Supplementary Table C.1. Training and test groups in Dataset I-m:  
the coded variables characteristics comparison. 

Characteristics Total  
(N = 126) 

Training   
(N = 88, 69.8%) 

Test  
(N = 38, 30.2%) 

p- 
value 

Sex 
Male 99 (78.6%) 72 (81.8%) 27 (71.1%) 

> 0.05 
Female 27 (21.4%) 16 (18.2%) 11 (28.9%) 

Age (years) 55.0 (18 – 94) 55.5 (17 – 94) 54.0 (20 – 90) > 0.05 
Body weight (kg) 70.0 (40 – 125) 70.0 (40 – 125) 70.0 (41 – 124) > 0.05 
Body height (cm) 176.0 (145 – 205) 176.5 (145 – 190) 173.5 (151 - 205) > 0.05 

THYROHYOID and CERVICAL SPINE FRACTURE PATTERNS 

Unilateral STH 
fracture 

Yes 41 (32.5%) 26 (29.5%) 15 (39.5%) 
> 0.05 

No 85 (67.5%) 62 (70.5%) 23 (60.5%) 

Bilateral STH fracture 
Yes 24 (19.0%) 19 (21.6%) 5 (13.2%) 

> 0.05 
No 102 (81.0%) 69 (78.4%) 33 (86.8%) 

Total N0of STH fractures (0 – 2) 1 (0 – 2) 1 (0 – 2) 1 (0 – 2) > 0.05 

Unilateral GHH 
fracture 

Yes 28 (22.2%) 22 (25.0%) 6 (15.8%) 
> 0.05 

No 98 (77.8%) 66 (75.0%) 32 (84.2%) 
Bilateral  GHH 
fracture 

Yes 11 (8.7%) 7 (8.0%) 4 (10.5%) 
> 0.05 

No 115 (91.3%) 81 (92.0%) 34 (89.5%) 
Total N0 of  GHH fractures (0 – 2) 0 (0 – 2) 0 (0 – 2) 0 (0 – 2) > 0.05 
Total N0 of TyHy fractures (0 – 4) 1 (0 – 4) 1 (0 – 4) 1 (0 – 4) > 0.05 
Isolated STH 
fracture(s) 

Yes 44 (34.9%) 30 (34.1%) 14 (36.8%) 
> 0.05 

No 82 (65.1%) 58 (65.9%) 24 (63.2%) 
Isolated GHH 
fracture(s) 

Yes 18 (14.3%) 14 (15.9%) 4 (10.5%) 
> 0.05 

No 108 (85.7%) 74 (84.1%) 34 (89.5%) 
Simultaneous STH 
and GHH fractures 

Yes 23 (18.3%) 16 (18.2%) 7 (18.4%) 
> 0.05 

No 103 (81.7%) 72 (81.8%) 31 (81.6%) 
Cervical Spine 
fracture 

Yes 3 (2.4%) 2 (2.3%) 1 (2.6%) 
> 0.05 

No 123 (97.6%) 86 (97.7%) 37 (97.4%) 

STERNOCLEIDOMASTOID MUSCLE’S ORIGIN HEMORRHAGES 

Unilateral  
SCM hemorrhage 

Yes 50 (39.7%) 36 (40.9%) 14 (36.8%) > 0.05 

No 76 (60.3%) 52 (59.1%) 24 (63.2%) > 0.05 

Bilateral  
SCM hemorrhage 

Yes 58 (46.0%) 39 (44.3%) 19 (50.0%) > 0.05 

No 68 (54.0%) 49 (55.7%) 19 (50.0%) > 0.05 

Total N0  
of SCM hemorrhages (0 – 2) 

1 (0 – 2) 1 (0 – 2) 1.5 (0 – 2) > 0.05 

Knot position – 
Hanging type 

Typical 62 (49.2%) 46 (52.3%) 18 (47.4%) 
> 0.05 

Atypical 64 (50.8%) 42 (47.7%) 20 (52.6%) 

Note: The categorical data is presented as frequency and ratio, and numerical as average ± standard 
deviation or median and range. For comparison of categorical data, the χ² test was performed, while 
the Mann-Whitney U test was performed for numerical data. Abbreviations: STH – Superior thyroid 
cartilage horn; GHH – Greater hyoid bone horn; TH – Thyrohyoid; SCM – sternocleidomastoid 
muscle.
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даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу 
на  све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења 
дела.   

4. Ауторство – некомерцијално – делити под истим условима. Дозвољавате  
умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име  
аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада  
дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава  
комерцијалну употребу дела и прерада.   

5. Ауторство – без прерада. Дозвољавате умножавање, дистрибуцију и јавно  
саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако 
се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова  
лиценца дозвољава комерцијалну употребу дела.  

6. Ауторство – делити под истим условима. Дозвољавате умножавање, дистрибуцију  
и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од  
стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или  
сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада.  
Слична је софтверским лиценцама, односно лиценцама отвореног кода. 


