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ABSTRACT

In additive manufacturing (AM), raster angle is recognized as one of the key printing parameters which
strongly influences the strength and stiffness of the final part. In this thesis the effect of raster angle on
tensile properties and anisotropic behaviour of additively manufactured composite plates made from
PET-G polymer reinforced with short carbon fibers are studied. The functional relations between the
corresponding raster angle and obtained values of tensile strength and the tensile elastic constants which
define the anisotropic behaviour of studied material (modulus of elasticity - E,, Poisson’s coefficient -
Vyy and coefficient of mutual influence of the second kind - n,,, ) are established. Aforementioned
functional relations are compared with theoretical results based on the Classical Lamination Theory
(CLT). The ultimate tensile strength average value of 52.2 MPa obtained for specimens printed with
the raster angle of 0° is noticeably higher than the average value obtained for specimens printed with
the raster angle of 90° - 25.4 MPa. Correspondingly, the maximum average value of 4752 MPa for
modulus of elasticity is obtained for specimens printed with the raster angle of 0°, substantially higher
compared to the value of 1569 MPa obtained for specimens printed with the raster angle of 90°. The
fracture surfaces of the tested specimens are inspected under SEM - images of the specimens printed
with the 0° raster angle revealed dominant alignment of short carbon fibers with the printing direction
applied, but also moderate to high level of inhomogeneity and voids. While analysing the SEM images,
considerable volume fraction of captured air is noticed, together with porosity presence in polymer
phase, which are recognised as probable major contributors in relatively low improvement of tensile
strength (from what was expected) obtained for carbon reinforced samples made with the 0° printing
direction, when compared to neat polymer samples. Similarly, voids together with weak bonding
between two adjacent rasters undoubtedly served as influential factors for poor tensile properties of
carbon reinforced samples made with the raster angle of 90°. Comparison of the estimated values
calculated by the CLT expression for modulus of elasticity - E,., with experimentally obtained values,
showed almost perfect matching (mismatching was less than 10% for the whole raster angle range). In
case of Poisson’s coefficient - vy, and coefficient of mutual influence of the second kind - n,,, ,
mismatching was higher than 10% for the whole raster angle range. Thus, comparison of the estimated
values calculated by the CLT expression for Poisson’s coefficient - v,,,, with experimentally obtained
values, showed significant mismatching particularly in 45°- 75° raster angle range. Similarly,
comparison of the estimated values calculated by the CLT expression for coefficient of mutual influence
of the second kind - n,, , with experimentally obtained values, showed significant mismatching
particularly in 15°- 60° raster angle range.

Keywords: composite plates; additive manufacturing; raster angle; tensile mechanical properties;
short carbon fibers



CA’KETAK

VY aguTHBHO] NPOM3BOAKU Yrao JEMOHOBamba MaTepHjaia je Mperno3HaT Kao jefaH of KIbyYHHX
napameTapa nporieca 1o0ujarma (Iramie) 1e70Ba KOji y BEJTUKOj MEPH YTHYE Ha YBPCTONY M KPYTOCT
3aBPITHOT Aefia. Y 0BOj Te3H Ce MpoydaBa yTHIla] yIiia AeTOHOBakha MaTeprjalia Ha 3aTe3Ha MeXaHuIKa
CBOjCTBAa W aHU3OTPONHO MOHAIIAKE AJAUTHBHO MPOM3BENEHMX KOMNO3WTHHMX Tuioda ox [IET-T
nojiMepa OjadyaHor KpaTKUM YIJbeHHUYHMM BiakHMMa. DyHKUMOHamHe penauuje u3Melhy
onropapajyher yria femoHOBama W TOOMjEHUX BPETHOCTH 3aTe€3HE UBpCTOhE M 3aT€3HHX KOHCTAHTH
CIIACTUYHOCTH Koje JAe(MHHINY aHM30TPOITHO TOHAIake MpOydaBaHOI MaTepujaia (MOIYI
€NACTUYHOCTH - E, I10aCOHOB KOEDUIM]EHT - Viy, M KOEDHIM]EHT y3ajaMHOT yTULIdja IPYre BPCTE -
Nyy x)- [IOMEHyTe QYyHKIMOHAHE 3aBUCHOCTH Cy yropeheHe ca TeOpHjCKUM pe3ynraTuMa 3aCHOBAHUM
Ha Kiacuanoj teopuju mamunanuje (CLT). Ilpoceuna BpemHocT 3are3He uBpcrohe ox 52,2 MPa
noOujeHa 3a y30pKe IITaMIaHe ca YIJIoM JernoHoBama o (° je MpUMETHO BHUINA OJ MPOCEYHE
BpPEITHOCTH AOOMjEHE 3a y30pKe IITaMmIlaHe ca YoM AenoHoBama o 90° - 25,4 MPa. ¥V ckiany ca
TAM, MaKCHMAaJIHA MPOCEYHA BPETHOCT MOAYyNa enactudHocTH on 4752 MPa nobujena je 3a y3opke
IITaMITaHe ca YTIIoM JIeTIoHOBama o1 0°, miTo je 3HaTHO BuIIe y mopehemy ca Bpeanomthy o 1569 MPa
JNOOWjeHOM 3a y30pKe INTaMIIaHe ca yriioM JenoHoBama o 90°. [IperoMHe MOBPUIMHE WCIUTAHUX
y3opaka cy ananuzupane nomohy CEM cHuMaka — cimke y30paka ITaMIaHuX ca YoM JEeNOHOBamka
on 0° OoTKpWBajy JOMHUHAHTHO MOPAaBHAKE KPATKUX YIJbEHWYHUX BIIAKaHA ca MPUMEHEHHM CMEpOM
mraMine (yrjioM JeMOHOBama), ajlld U YMEPEH J0 BHUCOK HHUBO HEXOMOIEHOCTH U IPHCYCTBa
,»3apo0speHor™ Baszmyxa. Anamm3oM CEM chHumaka npumehliyje ce 3HauajaH 3anpeMUHCKH YO
,»3apO0JBEHOT™ BasIyxa, 3ajelH0 ca MOPO3HOIIhy y ToauMepHO] (a3wm, KOju Cy Mpermo3HaTH Kao
BEPOBATHU TJIaBHU (PAKTOPH KOjH AOMPHHOCE PEIaTHBHO HUCKOM MOOOJBINamy 3aTe3He uBpcTohe (ox
OHOT'a INTO CE OYCKUBAJIO) JIOOMjEHOM 3a Y30pKE OjayaHe YIJbeHWYHHMM BJIaKHMMa HalpaB/bEHUM Ca
yriaoMm paemnoHoBama o 0°, y mopehemy ca y3zopumma of ,.guctor moimmepa. CIMYHO TOMe,
HEXOMOTEHOCTH 3ajeH0 ca ciaboMm Be3oM u3Mely 1Be cycelHe JIMHHUje MTaMIle HECYMEUBO CYy
MOCTYXHUJIEe Kao YTHLAjHM (aKTOpH 3a HUCKA 3aTe3Ha CBOjCTBA YIJLCHUKOM OjadaHUX Y30paka
HaTpaBJbeHUX ca YriioM JaenoHoBama on 90°. [lopeheme npouemennx BpegHocTu m3pauynatux CLT
M3pa3oM 3a MOJYJ €aCTUYHOCTH - E, ca eKCIIepHMEHTANHO JOOWMjeHHM BPEeIHOCTHMA, TTIOKA3allo je
CKOPO CaBpIICHO MOKIaname (HeyckiaheHocT je mama o 10% 3a 11e0 orcer yriioa JeNoHOBama). Y
ciyuajy IloaconoBor koepuumjenTa - vy, ¥ KOeQUIMjeHTa y3ajaMHOT YTHIA]ja IPYTE BPCTE - My
Heyckiahenoct je Omma Behia on 10% 3a 110 pacmoH yrjoBa jemnoHoBama. Jlakie, mopeheme
NpoUewEeHnX BpeaHocTn u3padyHatux CLT wu3pasom 3a [10acoHOB KOEQUIMJEHT - 7V, ca
eKCIIEPUMEHTAIHO JTI00Hj€HIM BPETHOCTUMA, [TOKA3aJIO0 j€ 3HaYajHO Hecarame MoceOHO y OIIcery yria
JeToHoBama o1 45° o 75°. Cnuuano, nopeheme mporemeHnx BpeqHocT n3pauynatux CLT uzpazom
3a KoepuIHMjeHT MelycoOHOT yTHIaja Jpyre BPCTE - My, Ca EKCIHEPUMEHTATHO JOOHMjeHHM
BPEIHOCTHMA MOKA3aJIo je& 3HaYajHO Hec/Iarame Moce0HO y OTICEry yria JenoHoBama o1 15° mo 60°.

K'/bylmepetm: KOMNoO3umHe nioue, aoumueHa npomeodrba; yeao ()el’lOHOGGI-ba,' 3ame3Ha MexaHuiuka
ceojcmea; Kpamka ye/e€HUu4Ha 6J1aKna
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1 Introduction, literature survey and objectives of the research

1.1 Introduction

1.1.1 Background

When establishing research into composite materials, the term composite is first introduced and
therefore should be explained in its broadest sense. The term composite refers to a system
consisting of two or more ingredients with different material properties, designed to obtain
enhanced final product’s properties compared to those characterising the individual
constituents. Typically, mechanical properties of the constituents largely differ. One of them is
usually discontinuous, stiffer and stronger and is called the reinforcement, whereas the less stiff
and weaker one is continuous and is called the matrix [1].

Fibers are the most common reinforcing and load-bearing element of the composites, while the
matrix has the function of transferring the load to the fibers in addition to holding the fibers
together. Therefore, the matrix gives the composite a geometric shape.

Carbon fibers used as reinforcements in composite materials, are without a doubt the most
widespread today, especially in the heavily loaded parts of structures where high stiffness and
strength together with low mass are required. Usual properties of carbon fibers are the
following: diameter of 5-10 um, density of 1.75-1.9 g/cm?, strength of 2.5-5.5 GPa, modulus
of elasticity of 240-400 GPa and breaking strain at 1-2 % [2]. As such, they represent an
excellent choice for the reinforcement, most often in combination with an epoxy matrix, for
high-performance structural composites, which are used in the aerospace and automotive
industries.

The basic functions of the matrix in the composite material are:
- transferring the load to the reinforcements,

- separating the reinforcements from each other,

- forming an external shape of the composite structure,

- potentially protecting from environmental influences.

That being the case, properties of the matrix often determine the properties of the whole
composite, as well as its application limitations in terms of external influential agents
(moisture, temperature, etc.). Also, properties of the matrix are important for determining the
longitudinal tensile strength, transverse strength and interlayer shear strength of the composite

[3].

When talking about polymers used as matrices in composites, they can be divided into two
groups: thermosets and thermoplastics. When heated, thermosets (thermostable polymers)
create irreversible chemical bonds between polymer chains that are strongly cross-linked.
When reheated, they do not change their state, but remain rigid. This points to a big problem
in their application, which is increasingly important nowadays — it is not possible to recycle
them by softening the matrix, but only to grind them mechanically, which results in small
granules that contain both fibers and matrix. Unlike them, thermoplastics have the property
that they harden when cooled, but soften when reheated, so they can be shaped again. This
enables the repair of parts made from these composites, as well as their partial recycling.



Moreover, thermoplastics are used in processes including extrusion, thermoforming and
injection moulding. Common thermoplastics include polyethylene (PE), polycarbonate (PC),
polyvinylchloride (PVVC), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate
(PET), the last with added glycol (PET-G) being the choice for further examining throughout
this thesis as a matrix material for obtaining the studied composite plate specimens.

The characteristic temperature called the glass transition temperature - (GTT) is a very
important property of the matrix and defines the transition between the soft rubbery state of a
polymeric matrix and its more stiff, or glassy, state [4]. This temperature defines the final
properties of the matrix in terms of the usability of the composite at elevated temperatures.
Namely, when used above the glass transition temperature, the properties of the matrix are
significantly degraded. It should be noted that moisture in the composite can significantly lower
the glass transition temperature.

The technology of making the composite significantly affects its final properties, because it
must ensure a good bond between the fiber and the matrix, as well as a minimal fraction of
porosity or micro-cracks in the composite. Additive manufacturing (AM), more commonly
known as 3D printing, is the process of additively building up a part one layer at a time (see
Figure 1). There are a range of 3D printing technologies with each having their own benefits
and limitations and each being able to print parts from different materials [6]. Extrusion based
AM, known as Fused Deposition Modelling (FDM) or Fused Filament Fabrication (FFF), has
become a widespread AM technique. As a result, the development and production of polymer-
based parts via AM is a continuously emerging research trend [7].

Additive manufacturing

7 ==

Figure 1.1 A schematic of how additive manufacturing technologies produce parts [6]

Carbon Fiber Reinforced Polymers (CFRP) in additive manufacturing gained much
engineering attention in recent decade because of the potential for superior structural
performance compared to base polymeric feedstock materials. In general, an anisotropic and
heterogeneous character of the obtained composite material provides the composite with many
degrees of freedom for optimum configuration of the material system [1] Therefore, carbon
reinforcements put in filaments used for additive manufacturing receive researchers’ attention
as well — demands for material characterization, design and optimisation. That being the case,
despite AM offers considerable freedom in design and production of 3D printed parts,
anisotropy and inhomogeneity of final product still remain uncertain [8, 9], so there is current
need for contribution in analysing and predicting the mechanical properties of such parts made
from reinforced polymeric materials (actually composite materials).



1.1.2 Classification of composite materials based on the geometry of reinforcement
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Figure 1.2 Composites classification [5]

The term laminated composites is used to define layers of material usually reinforced with long
continuous fibers. These layers can contain fibers laying within differently oriented directions
and are called laminas. Laminas that are interconnected (glued) into one unbreakable unit form
a multi-layer composite, so-called laminate.

Since polymers have limited mechanical properties, aiming to make FDM suitable for
producing functional load-bearing parts, Short Carbon Fibers (SCF) have been introduced into
polymeric feedstock materials as reinforcements [10]. Although continuous fiber reinforced
composites offer higher mechanical performance, their processing through FDM is not
commonplace due to printing complexity [11]. On the other hand, short fiber reinforced
polymers (SFRPs) are used more often due to availability of feedstock materials and low-cost
fabrication, but with moderately improved mechanical properties [12, 13, 14]. Composites
reinforced with fibers generally differ in their properties from conventional engineering
materials. Conventional engineering materials (like steel) are almost always considered to be
isotropic and homogeneous. In the case of an isotropic material, the physical and mechanical
characteristics are the same in all directions, and a homogeneous material is a material that has
a uniform composition or the same composition in every point or particle of the body. In this
thesis, polymeric thin plates reinforced with milled SCF of around 200 um in length, suitable
for FDM processing on desktop 3D printers, will be considered.

1.1.3 Fused Deposition Modelling (FDM) and process parameters

Aforementioned fused deposition modelling as an additive manufacturing (3D printing)
technique implies material extrusion through a heated nozzle, melting it in the process and
depositing on a build platform in a predetermined path, where the material cools and solidifies
to form a solid part [6]. In extrusion-based additive manufacturing final printed part has



material properties which differ from those of the filament material used for its fabrication.
This difference arises from the FDM process parameters, mainly the following ones [15, 16,
17]:

e Duild orientation (flat, on-edge, upright — see Figure 1.3),
e printing direction (raster angle),

e layer thickness,

e infill density,

e infill print speed,

e extrusion width,

e nozzle temperature and

e printing bed temperature.

Figure 1.3 Build orientation in FDM

The layer-by-layer FDM nature leads to final parts that are generally characterised by discrete
mechanical properties in different directions. The FDM process parameters altogether and their
different combinations can actually intensify the anisotropic nature of AM parts. Therefore, it
is of great importance to correctly understand how the process parameters influence
performance of the final part and optimise them to match the intended application.

The printing direction commonly referred to as the raster angle appear to be one of the main
influential parameters, especially for those parts printed with flat build orientation [8, 18].
Therefore, the raster angle has been selected for further observation throughout the thesis as
determination of its influence on tensile properties of specific AM parts may be a valuable
research activity. Additionally, the presence of porosity within the extruded material, especially
the reinforced one, could also be research appealing, since various kinds of potential polymer-
reinforcement mixing originated inhomogeneities may substantially degrade final part’s
mechanical properties such as strength and stiffness [19, 20]. This is particularly important
when material is used for producing parts as structural members intended for carrying load.



1.2 Literature survey

Apart from six textbooks on Mechanics of Composite Materials (Refs. [1-5, 34]) and one
handbook on 3D Printing Technologies (Ref. [6]), number of scientific papers (Refs. [7-33])
covering various issues related to the thesis topic have served as the basis for the candidate’s
research and guided further work on the thesis.

The review papers [21, 22] contain a comprehensive overview of additive manufacturing
techniques, as well as a review of the base materials used in additive manufacturing and their
mechanical properties. Since polymer-based structures reinforced with fibers provide improved
properties of functional parts in use, such as lower density compared to conventional materials,
but also increased mechanical performances compared to base materials ("neat” polymers), the
review paper [21] additionally emphasizes the importance and potential of developing such
parts through additive manufacturing technologies and their application as structural elements.
Noticeable progress in newly developed polymer and composite materials and the recentness
of their production by additive manufacturing are also addressed. In the review paper [23], a
detailed description of the previous experimental approaches to these materials’
characterization and attempts for constitutive models definition was given, aiming to
summarize the applicability and limitations of these approaches. Additionally, paper [22] lists
the common ASTM and ISO standards used by different research groups for testing the
mechanical properties of parts obtained by additive manufacturing.

As one of the conclusions based on the technological state-of-the-art review, the paper [9]
highlights the possibility of improving the characteristics of new materials by using carbon
fibers as reinforcements of polymeric base materials exploited in additive manufacturing. The
analyses of final mechanical characteristics carried out on additively manufactured polymer
paper [24] polypropylene (PP) is considered as the base material, while papers [11, 26]
encompass ABS polymer and paper [10] additionally observes PLA and PET-G polymers.
Papers [18, 27, 28] examine the relevance of the mechanics of conventional composite
laminates for characterizing the mechanical behaviour of additively manufactured parts, i.e.
possibilities and limitations of the application of classical lamination theory.

The occurrence of anisotropy in additively manufactured polymeric parts is analysed in the
paper [16], with a detailed review of previous research aimed at understanding the nature of
this phenomenon as well as the main factors and parameters that affect the intensity of this
phenomenon. When depositing melted filament in FDM as the most common technique of
additive manufacturing, inhomogeneities in various forms of “trapped” air between the
deposited material lines as well as between adjacent layers appear, resulting in the weakening
of mechanical properties. The pores between the deposited lines that follow the applied raster
angle, together with the causes of the anisotropic behaviour occurrence and the consequent
effects on the mechanical characteristics are investigated in the paper [29] for ABS polymer
reinforced with short carbon fibers.

The influence of different FDM parameters is evaluated in papers [15, 17, 30, 31] dedicated to
the study of production parameters’ effects on the tensile strength and stiffness of the obtained
parts. The paper [30] emphasized the influence of raster angle on the mechanical properties
and thermal conductivity of additively manufactured composites of PP polymer reinforced with



short carbon fibers. The building orientation throughout the deposition process, layer thickness
and printing speed as influential parameters are observed in the paper [15], nozzle temperature
and again printing speed in the paper [17], while paper [31] examines nozzle diameter and the
gap between the two deposited lines (rasters) as influential parameters in the FDM process.

In the available literature, a lack of analysis comprehending the raster angle influence on the
mechanical properties of composites additively manufactured from PET-G polymer reinforced
with different percentages of short carbon fibers is noticed, as well as a lack of the raster angle
impact assessment on the anisotropy occurrence and its intensity in this type of material. Also,
there is a lack of model proposals that would establish the functional relation between the
elastic constants and strength properties on one hand and the raster angle on the other,
concerning thin-plate parts obtained by additive manufacturing using the here considered
composite material (PET-G polymer reinforced with short carbon fibers).

1.3 Objectives of the research

Within this doctoral thesis, the following objectives of the research are acknowledged:

- Analysis of the raster angle influence on the tensile mechanical properties (stiffness and
strength) of additively manufactured plates made of PET-G polymer reinforced with SCF
suitable for FDM;

- Establishment of a functional relation between the measured values of tensile strength and
stiffness and the corresponding raster angle;

- Determination of the tensile elastic constants for different raster angles that define the
anisotropic behaviour of the observed type of material composition, primarily the coefficient
of mutual influence of the second kind which represents the coupling between the occurrence
of sliding in the plane of the sample and the effect of normal stress during uniaxial tension;

- Establishment of a functional relation between the values of elastic constants and the value
of raster angle, as well as comparison of these functional relations with the results given by the
Classical Lamination Theory (CLT).

It is expected that after the realization of the research objectives, the thesis will contribute to
the definition of future constitutive model that will enable the application of numerical
structural analysis on thin plate-like parts made from observed material composition and
produced by additive manufacturing. Accordingly, it is also expected that the dissertation will
contribute to a better understanding and further enhancements in possible applications of this
type of composite materials for quick and efficient production of parts intended for moderate
loadings.

- Initial hypotheses of the thesis

The initial hypotheses based on the literature review are the following:

1. The use of composite parts made of PET-G polymer reinforced with short carbon fibers is
possible for load-bearing members that are intended for moderate intensity loadings.



2. It is possible to establish a linear relationship between the stress tensor and the strain tensor
for this type of material in the elastic deformation region.

3. It is possible to determine all the elastic constants that define the anisotropic behaviour of
this type of composite material by conducting appropriate experimental testing.

4. The change of elastic constants with the value of raster angle can be presented by applying
the principles of the Classical Lamination Theory (CLT).

- Research methods
The following research methods and approaches are proposed:

1. Analysis of the existing approaches as well as previous engineering knowledge base of the
subject thesis area. This involves a review of the available literature relevant to the topic of the
doctoral thesis.

2. Statement of the considered problem (description method).

3. Combined analytical-experimental methods for determining all elastic constants that define
the anisotropic behaviour of the observed type of composite material.

4. Experimental methods for the purpose of contemplating and verifying the previously
mentioned calculations (comparison method).

1.4 The structure of the thesis

The thesis is structured into six main Chapters, as summarised within the following:

Chapter 1 comprises basic information on the composite material and its constituents in
general (matrix and reinforcement), classification of composite materials based on the
geometry of reinforcement and introductory notes about the Additive Manufacturing,
particularly its extrusion based technique called Fused Deposition Modelling. The material
which will be further analysed throughout the thesis is defined in this Chapter, together with
the manufacturing technique which will be utilised, as well as objectives of the research, initial
hypotheses and research methods. Literature survey for the previously defined area of research
is given briefly at the end of this Chapter.

In Chapter 2, the fundamentals of elasticity of anisotropic body are outlined in short, referring
to general state of stress and strain, leading to their relations represented through matrix layout
of generalised Hook’s law. A simplified form of the general Hook’s law for the orthotropic
body is then given in this Chapter, as a step towards lamina-related equations known from
Classical Lamination Theory, to later check if applicable to the results containing mechanical
performances of thin-plate samples examined in the thesis. Fundamentals of mechanics of
composite materials are continued with thin plates reinforced with continuous fibers. Hooke’s
law for an orthotropic plate for the case of plane stress is presented, together with the remaining
non-zero coefficients of the compliance matrix. Here it was essential to provide relations
between elastic constants and compliance matrix coefficients known from Classical
Lamination Theory (CLT) for composite plates reinforced with continuous fibers. This gives
basic understanding critical for the subsequent study aimed to inspect if experimental results



obtained for additively manufactured thin-plate samples made derived from PET-G polymer
reinforced with short carbon fibers would fit those CLT curves.

Chapter 3 is referenced to PET-G polymer based plates reinforced with short carbon fibers.
The Short Carbon Fibers (SCF) used as reinforcements of filaments intended for extrusion
based additive manufacturing (FDM) are observed more closely. The focus is on the percent
fraction of SCF and their orientation within filament. On top of that, raster angle as influential
parameter of FDM process is addressed as key factor to investigate further throughout the
thesis, i.e. its influence on tensile mechanical properties of the surveyed thin-plate samples.

In Chapter 4 experimental procedure and obtained results are demonstrated. Samples used for
testing are specified along with FDM process parameters used for their fabrication. Tensile
testing results are presented, preceded by explanation of the experimental setup used, including
the universal testing machine and Digital Image Correlation (DIC) apparatus. Finally,
evaluated elastic constants are delivered together with assessed strength properties of the
samples tested.

Chapter 5 establishes functional relations between the obtained values for tensile elastic
constants and the applied raster angle, as well as between calculated strength properties and
corresponding raster angle. This Chapter is the key one since it combines already known
analytical methods and experimental measurements producing relevant data for the purpose of
contemplating and verifying the anisotropic behaviour of the observed type of composite
material.

Chapter 6 brings conclusions of the thesis and provides recommendations for future research
which would advance the findings established in the thesis.



2 Mechanics of fiber reinforced composite plates

2.1 Generalised Hook’s law for an anisotropic body

Formulating equations which describe material’s behaviour in terms of deformation under the
influence of external load, i.e. defining the equations that relate stress to strain for all load-
cases, can be extremely complex. If these equations can be formulated, then they are called
constitutive equations of the material. The set of all these equations for a material is called the
constitutive model of material behaviour. The best way to define a constitutive model, ie.
connections between stress and strain are appropriate experiments.

It is clear that it is almost impossible to formulate a single equation or a set of equations that
will fully describe the material's behaviour in all possible conditions. However, for a load
below a certain limit, almost all structural materials that carry (transmit) loads, deform
elastically, so for that range of deformations and loads, a set of equations is formulated that
relate stress and strain. However, when the load exceeds a certain limit, the material begins to
deform inelastically, so additional deformation parameters are necessary to calculate the stress
in that range. These problems are dealt with in detail by special scientific fields such as Theory
of plasticity and Mechanics of fracture.

2.1.1 General state of stress

If three stress vectors are known for a certain point for three mutually perpendicular
intersecting planes passing through that point, we can say that we know the stress state in it.
As it is necessary to know 3 data (components of the vector) to define each vector, it is clear
that 9 data are necessary to know the stress at a certain point, namely stress components (Figure
2.1). As a result, the stress at a point represents a higher form of abstraction than a vector and
in continuum mechanics represents a tensor of the second order.

A tensor can be described as a mathematical representation of a physical quantity in defined
coordinate system. If one piece of data is sufficient for the representation of a physical quantity
in some coordinate system, such physical quantity is a zero-order tensor - a scalar quantity (e.g.
mass, temperature), if three pieces of data are sufficient, then it is a first-order tensor - a vector
quantity (e.g. force, speed). In the case when nine data are required, then physical quantity
represents a second-order tensor (e.g. stress, strain), etc. In continuum mechanics, operations
with tensors are performed using the so-called tensor calculus. The state of stress at a point of
a stressed body, in the general three-dimensional case, for orthogonal coordinate system
defined by the axes x, y, z (forming the planes x—y, y—z, x—z), can be described by stress
tensor which have nine stress components as shown in Figure 2.1. Usually, stress tensor is
presented in following matrix notation:

{o} = (2.1)

Ox Txy Txz
Tyx Oy Tlyz

Tzx Tzy Oy

where g; is component of normal stress, while z;; is component of shear stress. The subscript
of normal stress refers to the axis direction in which the stress component acts. The first
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subscript of shear stress component refers to the direction of the outward normal to the face on
which the stress component acts, while the second subscript refers to the direction in which the
stress component itself acts. All of stress components shown in Figure 2.1 have positive sign.

ZT
dz

2 N

dy dx
Figure 2.1 Three-dimensional stress state

2.1.2 General state of strain

In the general case of exposing the body to external loads, the body is deformed. When the
body is deformed, there are translational and/or angular movements (rotation) of points inside
the stressed body. The state of strain at a point is completely determined if the components of
strain are known for 3 mutually perpendicular directions, that is, for 3 mutually perpendicular
planes to which these directions are normal. Then we say that the strain tensor at that point is
known. The strain tensor, as the second-order tensor, is usually written as a 3x3 matrix of the
form:

1 1

S - —
gx gxy sz X 2 ny 2 sz
1 1
{ed=% & &z|=[nx & W2 (2.2)
Ezx €2y & 1 1
Eyzx EYZy &z

where &, &, and €, are normal strains which describe the extension or contraction per unit
length along the x, y and z direction, respectively, while y;; is shear strain (describe the
distortional deformations associated with lines that were originally parallel to the i and j axes).
It is important to make a difference between the component of “tensor” strain - ¢;; and the
component of “engineering” shear strain - y;;. Engineering shear strain y;; describes the total
distortional change in the angle between lines that were originally parallel to the x; and x; axes,
but the tensor shear strain ¢;; describes the amount of rotation of either of the lines.

10



2.1.3 Generalised Hook’s law

As it is well known from any book related to Theory of elasticity, both stress and strain
are symmetric tensors (i.e., 7;; = t;; and y;; = yj;) so that there are only six independent stress
components and six independent strain components. Having that in mind, in general case, in
some point of stressed anisotropic body made from the linear elastic material, components of
stress are related to components of strain through the following relationship, usually called
Generalised Hook’s law:

_ O'x —_ — gx —
o £
ay Cix - Cip ey
Z Z
=1 : 2.3
Tyz Vyz ( )
Txz C61 o Cﬁ6 Yxz
[ Ty | [ Vxy

or in compact form:

[o] = [C]le]
In the above equations, matrix [C] is called stiffness matrix while coefficients C;; are called
stiffness matrix coefficients. Total number of stiffness matrix coefficients is 36.

It is clear that by inverting the above equation, components of strain can be expressed via
stresses in matrix form:

— gx —_ _ O'x -
& 0.
gy S11 Si6 ay
z . . . z
=| : . : (2.4)
Vyz Tyz
Yxz 561 SR 664 | Txz
[ Vxy [ Txy

or in compact form:
[e] = [S][o]

In the above equations, matrix [S] is called compliance matrix while coefficients S;; are called
compliance matrix coefficients or elastic compliances. It is obvious that stiffness matrix and
compliance matrix are related as inverted matrices:

[C]=[s1"" (2.5)

Total number of compliance matrix coefficients is 36 (same as the number of stiffness matrix
coefficients). As shown in any mechanics of materials book, due to the existence of the strain
energy density, the stiffness and compliance matrices are also symmetric. Due to this fact, only
21 of the 36 elastic compliances are independent. Similarly, the stiffness matrix has also only
21 independent stiffness matrix coefficients.

Sometimes, stiffness and compliance constants are referred to as elastic constants. Once these
constants are found for a particular point, the stress and strain relationship can be developed
(at that point). Note that these constants can vary from point to point if the material is
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nonhomogeneous. Even if the anisotropic material is homogeneous (or assumed to be), one
needs to find these 21 elastic constants experimentally.

In case of anisotropic material stiffness and compliance matrix coefficients are dependent on
the coordinate system — in other words, they change with rotation of coordinate system.

2.1.4 Stress-strain relationship for orthotropic body

Consider the case when the body has three mutually orthogonal planes of material property
symmetry as shown in Figure 2.2 where planes 1-2, 2-3 and 3-1 are planes of material
symmetry. In that case the 1,2 and 3 coordinate axes are referred to as the principal material
coordinates. The body which has three planes of elastic symmetry is-called orthotropic body
- orthogonally isotropic material. It can be easily shown that the equations of the general
Hooke's law can be simplified when the body possesses planes of material symmetry.

The Hooke's law for an orthotropic material, with planes 1-2, 2-3 and 31, as planes of material
symmetry, for three dimensional stress state (Figure 2.3) can be written in the following form:

017 [Ci1 Cip Ci3 O 0 0 9ré11

07 Ci; Cyy Cy3 O 0 0 |] &

93| _ Ciz C3 (33 O 0 0] & (2.6)
To3 0 0 0 Cu O 0 [V23 '
T13 0 0 0 0 C55 0 Y13
NEVR | 0 0 0 0 0 C66- Y12

The above equation represents the constitutive relations between stresses and strains in linear
— elastic orthotropic materials — Hooke's law for an orthotropic body. An example of such
material is the unidirectional carbon fiber reinforced composite lamina shown in Figure 2.4.

By inverting the stiffness matrix, the strain-stress relation is obtained in the inverse form:

[ €17 S11 S12 S1i3 0 0 0 p9r
€2 S12 S22 S23 0 0 0 |fo
€ _[S13 S23 Sz O 0 0 |fos 2.7
Y23 0 0 0 544, 0 0 ||723
Y13 0 0 0 0 Ss5 0 |73
LY12- L0 0 0 0 0 Sgelltyad

Here, engineering constants need to be defined. The engineering constants are costants that
engineers use to describe the mechanical behaviour of a material. Thus, in Mechanics of
materials, engineering constants (sometimes known as elastic constants) are known as:
Modulus of elasticity (E"), Poisson’s ratio (v) and Shear modulus (G). Usually, these constants
are evaluated experimentally by conducting simple tests such as tension or pure shear tests.
Therefore, it is logical, as well as practical, to express stiffness and compliance coefficients in
Equations (2.6) and (2.7) in terms of appropriate engineering constants.

12



—_—
Pa—

Figure 2.2 An orthotropic material - the material which has 3 mutually orthogonal planes of material symmetry

|

V \2

Figure 2.3 A three-dimensional stress state, at a point in 1-2—-3 orthogonal coordinate system

Figure 2.4 The unidirectional composite lamina

It is the fact that compliance matrix coefficients appearing in equation (2.7) are much easier to
determine in terms of appropriate engineering constants. For the purpose of defining
compliance matrix coefficients in terms of appropriate engineering constants a series of tests
presented in Figure 2.5 should be performed.
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(e) (f)

Figure 2.5 Experiments for determining the compliance matrix coefficients

Thus, after conducted experiments, presented in Figure 2.5, the following engineering
constants of orthotropic body should be known: values of modulus of elasticity for the principal
material directions (E;, E,, E3), values of shear moduli in the pricipal material planes
(G12,Gq3,G,3) as well as values of Poisson coefficients in principal material planes
(v12, V13, V23, V21, V31, V32). Consequently, it can be easily shown that the compliance matrix
for the orthotropic material, equation (2.7), may be presented in the following form:

—_— - 0
L E, E, 0 0
V21 1 V23
L L, L, 0 0 0
v 1% 1
% m B 0 00
sj=| B B s (2.8)
0 0 0 —_— 0 0
Go3
0 0 0 0 ! 0
G13
0 0 0 0 0 !
Giz

Now, Hooke's law for an orthotropic material, for principal material axes 1, 2 and 3, can be
written in the following form, where the strain components are expressed in terms of stresses:
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E_1 _E_l _E_l 0 0 0
a1 Vs
& E; B E, o,
82 _E _vﬁ i 0 0 0 ()
&3 _ E3 E3 E3 03 (2 9)
125108 1 T23 '
[V13J 0 0 0 G_ 0 0 T13
Y12 2 1 l‘512J
0 0 0 0 P 0
13
1
0 0 0 0 0 —
Giz

Important to remember that the values of coefficients of the stiffness matrix as well as the
compliance matrix in anisotropic material depend on the reference coordinate system, in other

words, they change if the coordinate system is changed and therefore: C;;” # Ci;*? (S #

2.2 Stress-Strain Relationships for thin plate - Plane Stress State

A thin plate is a prismatic member having a small thickness. A plate shown in Figure 2.6 is
primarily loaded in its own plane x—y (there are no out-of-plane loads). If the upper and lower
surfaces of the plate are free from external loads, then o, = 7,, = 7, = 0.

N

Figure 2.6 A thin plate loaded in its own plane x—y

If the plate is assumed to be thin, these three stresses within the plate are assumed to vary little
from the magnitude of stresses at the top and the bottom surfaces. Thus, stresses g, , 7,, and
T,y can be assumed to be zero within the plate also, while the non-zero stresses gy, g, and 7,
have uniform distribution through plate thickness (see Figure 2.7).
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Figure 2.7 Plane stress state in a thin plate (o, = 7, = 7, = 0)

If previous conditions are fulfilled, we can assume that plate, shown in Figure 2.7, is under
plane stress state. In this case, since: 0, = 7,, = 7,, = 0, stress tensor has the form:

Ox Txy O
{o} = [ryx oy 0] : (2.10)
0 0 O
While the Hooke’s law is given by:
r Ex xy xyq I Ox
S e S
g, [S11 16 I
& | _| 1o
Yyz| = i : | 0 (2.11)
Yz 0
vl Ls8  s21 e,

2.2.1 Stress-Strain Relations in a Local Coordinate System

In Figure 2.8 a thin plate made of an orthotropic material is shown where orthogonal axes 1, 2,
3 are principal material axes. These three axes, define three planes of material symmetry: 1—
2, 1-3 and 2-3 (see Figure 2.2). Since in such case according to equation (2.7) some compliance
constants are equal to zero previous equation (2.11), for orthogonal coordinate system 1-2-3,
becomes:

& Sy Sp S 0 0 0 o
& S, Sp S 0 0 0o
& | _ S Sy Si; 0 0 040 2.12)
V3 o o o0 s, 0 O0¢|O0
13 0O 0 0 0 S, 0¢|O0
) [0 0 0 0 0 Sg](z
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Based on this relationship, it is evident that
723 =0 713 =0 (2.13)

According to the plane-stress assumption, the occurrence of shear strains is completely absent
in planes 2-3 and 1-3. It should be noted that normal strain &5 is not independent component
of strain since it can be expressed as a function of the other two normal strain &; and &,:

&, =S50, + 5,30, (2.14)

‘
e

Figure 2.8 A thin orthotropic plate. Axes 1, 2 and 3 are principal material axes

The equation (2.14) explicitly demonstrates that in a state of plane stress, an extensional strain
in the third direction exists, on the other words, it is incorrect to make the assumption that strain
&3 is equal to zero. The non-zero nature of the quantity can be attributed to the influence of
Poisson's ratios vi3 and v23 on Si3 and S»3, respectively, in conjunction with the presence of
non-zero stress components o1 and o».

Now, Hooke’s law for an orthotropic thin plate, for plane stress state, defined in orthogonal
coordinate system 1-2-3 (where axes 1, 2, 3 are principal material axes defining three planes
of material symmetry) can be expressed as:

& Sy S, 0o O,
&1=|S, Sp 0 |10,r=[S]y0, (2.15)
V12 0 0 Sg |72 T

As shown in Chapter 2.1.4, compliance matrix coefficients can be defined in terms of
appropriate engineering constants as follows:

(2.16)

Sy =—, =T Sy=—% S == Sge =

E

If the plate is made of isotropic material, the previous equation (2.16), simplifies to well known
relationships:

:M (2.17)
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By the inverse form of the stress-strain relation, equation (2.12), using the plane-stress
assumption, becomes:

0y Ch, C, C3 O 0 0 &
! Co Cp C 0 0 0 |lg
0 _ C; Cy Cy 0 0 0 ||g (2.18)
0 0 0 0 C, 0 0 ||rs
0 0 0 0 0 Ci O [|r;
) [0 0 0 0 0 Cgllr
With the above, it can be concluded that
723 =0 713 =0 (2.19)
In analogy to equation (2.14), the third equation of equation (2.18) yields
0=C¢ +Ce, +Cyie, (2.20)
with rearranged, it becomes
C C
g=—"2¢g =g, (2.21)
C33 C33

Equation (2.21) again confirms that &3 is not an independent component of strain since it can
be expressed as a function of the remaining two linear deformations: i.e. &, = f (¢,,¢,).

Similar to how equation (2.12) was reduced to equation (2.15) by eliminating variables, the
three-dimensional form of equation (2.18) cannot be reduced directly to a relation involving

only 61, 62, and 712, and €1, €, Y12. The expressions for 61 and 62 can be established using the
first two equations in equation (2.18):

0, =C,6 +Cphe, +Cpé,

(2.22)
0, =Cpé +Cphe, +Chpé;
When &3 1s substituted into equation (2.21), the outcome is:
C C
0,=Cp6 +ChLe, +Cy (_C_ls & = = ‘92]
% % (2.23)
C C
0, =Cp,e +Cye, +Cy (_C_Bgl _igzj
33 3
or
C2 C,.C
O, =(C11_£J81+(C12 -2 23J 2
Cas Cas
(2.24)
C
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Considering the plane stress state, the relation between stresses and strains can be expressed
as follows, which includes the shear stress-shear strain relation:

0 Q, Q, O &
0,=1Qy, Q 0 |1¢ (2.25)
2P) 0 0 Qe 722

where Q;; are known as the reduced stiffness matrix coefficients. According to equations (2.18)
and (2.24) it is clear that there is a difference between the following stiffness matrix coefficients
C;j and the following reduced stiffness matrix coefficients Q;; because they are not the same:
Q11 # C11,0Q12 # C12, Q2 # Cy,, But, on the other hand Qg6 = Cg¢ . Based on equations
(2.24) reduced stiffness matrix coefficients @;; can be expressed in terms of appropriate
stiffness matrix coefficients C;; as follows:

C2
Q — _ 13
11 11 C..
C.C
Q12 = C12 R
Css (2.26)
CZ
Qu=Cp- 2
22 22 C33
Qse = Cse

Reduced stiffness matrix coefficients Q;; are called “reduced” because they are the end
outcome of reducing the problem from a completely three-dimensional to a two-dimensional,
or plane-stress, problem. It is obvious that equation (2.25) can be obtained by the inverting
equation (2.15). By using matrix algebra, it can be proved that reduced stiffness matrix
coefficients are related to compliance matrix coefficients in the following form:

_ Szz
Qll - S118’22 - S122
S
11922 12
(2.27)
Q= %u
S11822 - S122
1
Q -
66 See

Based on equation (2.16), after substituting in equation (2.27), reduced stiffness matrix
coefficients can be also defined in terms of appropriate engineering constants as follows:
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Q11 =
1-vyvy
Q, = VB, _ vuE
12
1-v,v, 1-vpv, (2.28)
E
Q22 - 2
1-v,vy
Q66 = G12

It should be noted that in case when the plate is made of isotropic material the previous equation
(2.28) simplifies to well known form:

E vE
Qu=0Qp= 12 Qe = 1—12
E (2.29)
:G p—
Qs 2(1+v)

2.2.2 Stress-Strain Relations in a Global Coordinate System

Figure 2.9 shows a thin orthotropic plate where axes 1 and 2 are principal material axes or so-
called local axes while the axes x and y are called the global axes or the off-axes. The angle
between the local and global axes is denoted by an angle 6. In Figure 2.9 the orientation of
angle 6 is adopted to be positive. Usually, the stress-strain relations in a global coordinate
system can be derived based on static equilibrium of prismatic differential elements ABC and
BED which are cut off from thin orthotropic plate as shown in Figure 2.10. Loads shown in
Figure 2.10 are the following stresses: a; and o, are local normal stresses in directions 1 and
2, T4 is shear stress in plane 1-2, while o,, and o, are global normal stresses in directions x
and y while t,,, is shear stress in plane x-y. It can be easily shown that static equilibrium of
prismatic differential elements ABC and BED gives that the global stresses (o, , gy, T,) and
local stresses (a; ,0,,7;,) are related to each other through the transformation matrix [T]:

(o2} Oy
oz | = [T] Iay‘ , (2.30)
T12 Txy

or in inverted form:

Oy 0,
lay] =[T]"t|0o2]. (2.31)
Txy T12

where transformation matrix [T] and inverted transformation matrix [T]~? are defined as:
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2 g2 2sc c s —2sc

c
[T]=1| s2 ¢ —2sc|, [T]7'=|s2 (2 2sc |, (2.32)
—sc sc c?—5s? sc —sc c%?—s?

where: ¢ = cos(0),s = sin(0) while angle 6 is the angle degree between the local and global
axis as shown in Figures 2.9 and 2.10.

Figure 2.9 The global (x—y) and local (1-2) coordinate systems of a thin composite plate reinforced with
continuous fibers

Figure 2.10 Loads on prismatic differential elements ABC and BED which are cut off from thin orthotropic
plate shown in Figure 2.9

In the same manner, due to the fact that stress and strain are tensors of the same order, the
global strains (e, , €, ,¥x,) and local strains (; , £;,¥12) in an angle lamina are related to each

other through the transformation matrix [T]:

Ex

&

N
l1£2 ]=[T]|1€y |, (2.33)
§V12 li J

Vxy

or in inverted form:
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=] [ ]

& _ —1| & |

CEI (2.34)
nyy lEVlZJ

where: &; and &, are local normal strains in directions 1 and 2, y;, is the shear strain in plane
1-2, while &, and ¢, are global normal strains in directions x and y while y,,, is the shear strain
in plane x-y. Note that in equations (2.33) and (2.34) the shear strain is multiplied with factor
1/2. To eliminate factor 1/2 in equation (2.33), so-called Reuter matrix [R] is introduced:

1 0 O
[R]=[0 1 0] . (2.35)
0o 0 2
After substitution of Reuter matrix [R] in the equation (2.33) it can be re-written as:
€ Ex
l&\ = [R][T][R]™*| & | . (2.36)
Y12 yxy

Now, by using equations (2.31), (2.25) and (2.36) it can be shown that the global stresses
(0x , 0y, Txy) and the global strains (e, , &y, ¥x,,) are related as follows:

Oy 04 & Ex
lay\ = 11| o2 | = (111 0] lez\ = [T]-*[QI[RIIT][R]"* ley]. (2.37)
Txy T12 V12 Vxy

If product of matrix multiplication in equation (2.37) is denoted by matrix [Q]:

[Q] = [T [QI[RIITI[R]Y, (2.38)
then equation (2.37) becomes:

Ox €x 611 612 616 x
Oy | = [Q] & | = @21 @22 @26 & |. (2-39)
Txy Yxy Q61 Qo2 Qgel LVxy

Matrix [Q] in equation (2.39) is called transformed reduced stiffness matrix while coefficients
Qy; are called transformed reduced stiffness matrix coefficients. These coefficients can be
calculated from matrix equation (2.38) as follows:

Q11 = Q11¢* + 2(Q12 + 2Q66)s%c? + Q228*

Q12 = Q21 = (Q11 + Q22 — 4Qe6)s%c? + Q12(s* + ¢c*)

Q22 = Q115* + 2(Q12 + 2Q66)5%c? + Qop¢*

Q16 = Q61 = (Q11 — Q12 — 2Qg6)5¢® — (Q22 — Q12 — 2Q66)s°¢C (2.40)
Q26 = Q62 = (Q11 — Q12 — 2Q66)s°¢c — (Q22 — Q12 — 2Qg6)5C>

Qs6 = (Q11 + Q22 — 2Q12 — 2Qg6)s%c* + Qe (s* +¢*)
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After inverting, equation (2.39) becomes:

511 512 516 Ox
Q O | = 521 522 526 9y |. (2-41)
561 562 566 Ty

Matrix [S] in equation (2 41) is called transformed compliance matrix while coefficients Sy,
are called transformed compliance matrix coefficients. Matrices [S] and [Q] are mutually
inverted matrices: [S] = [Q]~*. By using matrix algebra, from equation (2.36), it can be proved
that transformed compliance matrix [S] can be calculated from:

[S] = [RI[T]"*[R]~*[S][T] . (2.42)

After substituting expressions for matrices [R], [T] and [S] we obtain transformed compliance
matrix coefficients S;:

S11 = S11¢* + (2815 + See)s2c? + Spps*

S12 = S31 = (S11 + S22 — Se6)s?c?+S15(s* + ¢*)

Syp = S118* + (2815 + See)s?c? + Syt

Si6 = Se1 = (2811 — 2812 — Se6)5¢> — (2S5 — 2812 — Seg)s>c (2.43)
S26 = Se2 = (2811 — 2815 — Se6)s’c — (2855 — 2515 — Sg6)sc®

See = 2(2811 + 2855 — 4815 — See)s?c? + Sge(s* + ¢*)

Compliance matrix coefficients S;; were earlier defined in terms of appropriate engineering
constants — see equation (2.16). Therefore, equation (2.43) becomes:

_ 1 2V, 17 1
S., = —C4’ + | -—=4 — 2.2 + — 4

YR TR G Slc 11525

— Vlz
S =——(S4+C4)+[—+———]52c2

; 1 B 2 ]311 % 6112

— [ v12 T

Spp=—s*+|-——+— +—c*

N Elz 2v. E11 Gz gy Cz gzc 1

= V12 Vi2

3 =[_+ ]sc _[—+___] 3

16 BB Gy BB Gy se (2.44)
= V12 V12

S, =+ ——-— 3 _[_+___] 3

26 [E1 E, Gol g B G 5

5 2[2_1_2 41/12 1] 2 4 ( +4)

=2|+= - — (s c
" °lE "B, B Gy 612

The strains of an orthotropic thin plate material element, as measured in the x-y-z global
coordinate system, are related to the applied stresses, according to equations (2.39) and (2.41).
From a purely linear algebraic perspective, we can see that these equations are the end result
of basic operations like transformations and inversions. Equation (2.41) states that a normal
stress ox will produce shearing deformation y,, via the S16 term, and a normal stress o, will do
the same through the S, term. Shear stress Ty, will cause strains &, and ,, due to the presence
of these same terms, S;¢ and S,¢. Therefore, it is obvious that shear-extension coupling effect
exists. The term shear-extension coupling refers to the coupling found in anisotropic materials
(e.g. fiber reinforced composites). This material behaviour is utterly dissimilar to the ones
found in isotropic materials (e.g. metals).
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It should be noted that S;, and all terms on the diagonal are symmetrical functions of 8
(mirrored at 8 = 0° and repeated every 90°), whereas the off-diagonal terms S;¢ and S, are
asymmetrical functions of 6. Thus, when 6 = 0° equation (2.44) simplifies to:

$11(0°) = Sy, S2(0°) = S,,
$12(0°) =S, S2(0°) =0 (2.45)
Sis (0°)=0 Ses (0°) =S,

The result of equation (2.45), is logical since case when 6 = 0° refers to the principal material

coordinate system. None of the Sis0r Sy exist in the principal material system. The off-axis
compliances are a common name for the barred quantities in equation (2.44).

It should be noted that in case when the plate is made of isotropic material the previous equation
(2.44) simplifies to:

= 1
Suu=—
E
= 1
Sa=—
E
= 14
Sw Z—E (2.46)
Si=0
Sz =0
= 1 2(1+v)
SGG = — =
G E

2.3 Elastic Constants in a Global Coordinate System

The elastic constants related to the 1-2—3 principal material coordinate system (E;, E,, etc.)
were introduced in Chapter 2.1.4. Based on that discussion the elastic constants of the thin
orthotropic plate for global coordinate system x—y can be directly derived from their
definitions.

(b) (©)

Figure 2.11 Off-axis element with simple stress states for definition of elastic constants
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Take into consideration, as shown in Figure 2.11 (a), an off-axis element of the orthotropic thin
plate in the x—y coordinate system with its fiber oriented at some angle 6 with respect to the x
axis. The element is subjected to a normal tensile stress ox while all other stresses are set to
zero while the magnitude of the tensile stress is up to elastic limit. Now, equation (2.41)
becomes:

€x Si1 S12 Si6][0x
€y | =|S12 S22 Sz lo ’ (2.47)
Yxy 5_16 526 §66 0
or,
gx = .S_;]_lo'x ) (248)
Ey = S}zo-x B (2.49)
Yy = S160x » (250)

resulting in existence of all components of strain. In response to this applied stress, the element
stretches in the x direction, expected to contracts in the y direction, and because the x—axis is
not aligned with principal material direction 1, the shear strain yy,, arise. By definition of the
Hooke's law, extensional strain in the x direction (&,) is related to the stress in the x direction
(o,) by the elasticity modulus in the x direction (E,):

& == (2.51)

However, from the strain-stress relations of equation (2.48) extensional strain in the x direction
(&) 1s:

&, =540, (2.52)

since previous two equations are identic, the elasticity modulus in the x direction (E,) is
obtained to be:

E =

X.i (2.53)
Sll

Due to Poisson's effect when the orthotropic thin plate element shown in Figure 2.11 (a)
is subjected to a tensile stress in the x direction, it not only stretches in that direction, but
it also contracts in the y direction. By the definition Poisson's ratio vy, is the following
quotient:

Ve =—— (2.54)

where the first subscript indicates the direction of the applied stress, while the second subscript
indicates the direction of contraction. From the strain-stress relations of equation (2.49)
extensional strain in the y direction (&,) is:

g, = 5,0, (2.55)
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By substituting equations (2.52) and (2.55) into equation (2.54) Poisson's ratio vy, is:

2]

v, =——=2 2.56

v S11 ( :
According to Lekhnitskii, the coefficients of the mutual influence of the first kind: m, ,,, and
m,y, ., represent the effect of anisotropy in the x—y plane in terms of the appearance of strains
in the directions of the x and y axes (&, &,) due to the shear stress 7., (where: o, = g, = 0),
while the coefficients of mutual influence of the second kind: n,,, , and n,,, , represent the
occurrence of shear strain in the x—y plane (y,,) due to the action of normal stresses o, (where:
0y = Ty, = 0)and o), (where g, = 7,, = 0). Inasimilar way as Poisson’s coefficient couples
linear strains, coefficients of mutual influence couple linear and shear strains. By the definition
coefficient of mutual influence of the second kind: n,, , is:

Yy
n =—— (0,%0)
ET gy T (2.57)
From equation (2-48) shear strain is:
Yy = '5:160-36 ’ (2'58)

By substituting equations (2.48) and (2.58) into equation (2.57) the coefficient of mutual
influence of the second kind: n,,, , is:
h St
> S11 (2.59)
The conditions shown in Figure 2.11 (b), correspond to what happens when a normal stress in
the y direction (o,,) is applied to the orthotropic thin plate element instead of a stress gy. In
case when only normal stress o, is applied, equation (2.41) becomes:

€x 511 512 516 0
gy = §12 522 §26 O'y ) (260)
Yxy §16 '§26 §66 0
or,
gx = 5;120'3, ) (261)
Ey = 5_220-:)/ ) (2.62)
Yxy = 5260y (2.63)

resulting again in existence of all components of strain. By definition of The Hooke's law
extensional strain in the y direction (&,) is related to the normal stress in the y direction (o)
by the elasticity modulus in the y direction (E,):

y

(o}
g, =L (2.64)
EY

Since equations (2.62) and (2.64) are identic, the elasticity modulus in the y direction (E),)
is:
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1
E, == (2.65)
S22
By the definition Poisson's ratio vy, is the following quotient:
v, =—2x (2.66)
g

y

By substituting equations (2.61) and (2.62) into equation (2.66) Poisson's ratio vy, is:

y, =-—22 (2.67)

Based on previous discussion, it can be easily proved that in case of the orthotropic thin
plate element the following dependencies must be fulfilled:

Vay _ Vyx
E, E,
By the definition coefficient of mutual influence of the second kind: n,,, ,, is:

_  Yxy
Mayx = =7 () #0) (2.69)

By substituting equations (2.62) and (2.63) into equation (2.68) the coefficient of mutual
influence of the second kind: n,,, , is:
I 1T
Y5y, (2.69)
Finally, the conditions shown in Figure 2.11 (c), correspond to what happens when a shear
stress in the x—y plane () is applied to the orthotropic thin plate element. In case when only
shear stress Ty, is applied, equation (2.41) becomes:

€x 511 512 516 0
&y | =5, Sy Syll O |, (2.70)
Yxy §16 '§26 §66 Txy
or,
& = Si6Tay » (2.71)
gy = S_ZéTxy ) (272)
}/xy = 566Txy ’ (273)

resulting again in existence of all components of strain. By definition of extended Hooke's law

shear strain in the x—y plane (yy,) is related to the shear stress 7, by the shear modulus in

the x—y plane (G, ):
_ oy

)/x y = ny

(2.74)

Since equations (2.73) and (2.74) are identic, the shear modulus in the x—y plane (ny) is:
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Based on previous discussion, having in mind the definition of the coefficients of the mutual
influence of the first kind m, ., and m,, . :

(2.75)

£ £
Myxy = _é (txy £0) , My xy = _% (tay #0),

it can be easily proved that in case of the orthotropic thin plate element the
following dependencies must be fulfilled:

Nyy x _ My xy

Ey ny ’

Mxyy _ Myxy

Ey ny
Based on equations (2.53), (2.56), (2.59), (2.65), (2.69) and (2.75) transformed compliance
matrix coefficients S,; can be expressed in terms of elastic constants related to global

coordinate system x—y as follows:

IS 1 g Vyy g 1 5 1
11 = 5 ) P12 = T ) 022 = 5 1 Q66— ~

E, E, Ey ny (2 76)
§ = _Twx & Moy '

In previous Chapter 2.2.2 we obtained transformed compliance matrix coefficients Sy, in terms
of appropriate engineering constants - see equation (2.44). By combining equations (2.44) and
(2.76) we obtain:

1 1, 2vi, 1 1

et _E_1+Glz]s ¢4 st, (2.77)
?—j = 1;%12(54 +ch) - [Ei1+ Eiz - GLH]SZCZ, (2.78)

Eiy=EilS4 [—22—T+GL12]SZCZ+E%C4, (2.79)
A R S e o L2 (250
ngy [El 2;2 Glz]s et [1;2 +2;_i2_6i12] st (28D

The above equations actually define the off-axis engineering properties of the orthotropic thin
plate element.
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3 FDM fabricated plate-like parts from PET-G polymer
reinforced with short carbon fibers

As earlier mentioned, the resulting properties of a composite material in general depend on the
properties of the individual constituents, but also their geometry and the dispersion of phases.
Details on possible geometries of the reinforcements used in composites are already outlined
in the Introduction of this thesis (see Figure 1.2). From this Chapter and further on throughout
the thesis, Short Carbon Fibers (SCF) are particularly interesting as these were used as
reinforcements of the here-studied polymeric plate-parts. PET-G filament from Black Element
with claimed 30% weight fraction of SCF was used for preparing the plate-like parts for the
study. Therefore, studied polymeric samples are actually reinforced with the discontinuous
fibers and CLT principles cannot be directly applied to predict their behaviour without previous
research into their behaviour under relevant loadings — in this thesis the in-plane ones are in
focus. It is also noteworthy that additive manufacturing as a production technique selected to
fabricate the studied samples influences the distribution of the discontinuous fibers used as
reinforcements which determines the homogeneity (uniformity) of the material system. The
more non-uniform the reinforcement distribution, the more heterogeneous the material, and the
higher the scatter in properties and the probability of failure in the weakest areas [1]. On top of
that, the orientation of the reinforcement is known to affect the mechanical behaviour and
occurrence of the anisotropy of the material system and therefore the raster angle potentially
defining the in-plane angle of reinforcement orientation within the additively manufactured
plates is chosen to be further examined.

3.1 Short carbon fibers as reinforcements in additively manufactured
parts

Composite filaments with a polymer matrix and microscale additives were developed to
enhance the strength and stiffness properties of additively manufactured parts — i.e. to bridge
the gap in terms of mechanical properties between continuous fiber reinforced composites and
unreinforced polymers used in everyday applications [30]. Short carbon fibers (SCF) are
primarily used as the advantageous reinforcing agents. Particularly, the milled carbon fibers
(around 200 pum long) are added to polymer matrix to form a sort of composite filament
material utilised for 3D printing and fabricating the composite parts as well. The selection of
the reinforcing additive and a proper polymer matrix is an issue directly dependant on the type
of application the produced part is intended for. Hence, there should be noted that the PET-G
polymer reinforced with SCF selected for this study might be used for parts intended for
moderate loadings, but bearing in mind that this material is a low cost one and at the same time
available and easy to process on an affordable desktop 3D printer.

Additive composites infused with SCF have been successfully produced and are readily
available on the market. Yet, a complete understanding of their behaviour under load remains
a respectable area of research, given the morphological inhomogeneities present in the final
additively manufactured part which influence the desired and pre-tailored mechanical
properties. In order to obtain the stereological reconstructions and visualization of 3D models
of the two-phase composite structure, micro-CT X-ray images may be used. For example,
Lobov et al. [26] reconstructed a model of a monofilament sample 3D-printed from
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acrylonitrile butadiene styrene (ABS) filled with SCF shown in Figure 3.1. There can be seen
that SCF within ABS polymer are mainly oriented along with the printing direction (along
vertical in the depicted model).

Figure 3.1 Model of the SCF reinforcement structure of a single-layer monofilament sample (general view and
enlarged fragment) obtained from micro-CT data [26]

3.2 Raster angle as the influential parameter in FDM

Alongside other FDM process parameters such as build orientation, layer thickness, infill
density, extrusion width or nozzle temperature, the printing direction commonly referred to as
“raster angle” appear to be one of the main parameters when influence on final mechanical
properties is considered, especially for parts printed with flat orientation [8, 18]. Raster angle
6 is the angle between the direction of the deposited beads and the x-axis (axis of load
application), as shown in Figure 3. 2.

t
-
Figure 3.2 Schematic of raster angle (6) in a 3D printed part [32]

The importance of the applied raster angle while printing the short fiber reinforced parts
becomes obvious if this angle at the same time determines the angle of spreading the introduced
reinforcements. This cannot be undoubtedly said to be true in advance as it is the case with the
continuous fibers used as reinforcements. Again, there should be stated that in order to reach
the full potential of FDM as an effective and versatile fabrication method to get the load-
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bearing structural components, imbedding reinforcements such as continuous or short fibers,
particles and nanomaterials into the polymer matrix is required. Only for the first ones, namely
continuous fiber reinforced composites, there are available relations that might be applied to
the fabricated parts with more or less adjustment — relations already known from CLT.
Recently, numerous researchers opted for short carbon fibers as reinforcements to improve the
mechanical properties of the FDM based additive parts because of commercial availability of
the feedstock materials and ease of fabrication. For instance, it is noted that short carbon fibers
used as fillers within the epoxy-based matrix tend to orient along the printing direction due to
the shear stress induced in the extrusion process around the print nozzle [7] — see Figure 3.3.
As for more common polymers in 3D printing like ABS, the effects of raster angle on
mechanical behaviour of parts fabricated from commercially available composite filaments
seem to still be unknown and in that context lyer et al. [29] report the effects of raster angle on
the tensile strength, elastic modulus, flexural strength, flexural modulus, and fracture toughness
of FDM SCF-reinforced ABS. A decreasing trend in tensile and flexural mechanical properties
with increasing raster angle was observed.

Figure 3.3 (a) FDM process; (b) Schematic of fiber orientation within epoxy-based resin [7, 33]
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4 Experimental procedure and results

The test specimens fabricated from PET-G material reinforced with short carbon fibers (SCF)
are investigated for their tensile properties. For the fabrication process, a flat build orientation
was used. Experimental assessments of ultimate tensile strength and stiffness are conducted for
specimens manufactured with raster angles varying from 0° to 90°, with a 15° increment.

4.1 Sample specifications and printing parameters

The printing of tensile test specimens adheres to ASTM D638-03 standard [35] - the Type |
specimens.

(o] =2
— —

I B

165

Figure 4.1 TYPE | Specimen Dimensions: Length overall 165mm, Width of narrow section 13mm, Width overall
19mm, Radius of fillet 76mm

A steel nozzle was utilized to guarantee wear resistance due to the extremely abrasive nature
of carbon fiber reinforced filaments. The nozzle had a diameter of 0.4 mm. Prusa MINI+ 3D
printer settings used to create the test specimens included a heated bed temperature of 90°C, a
speed of 80 mm/s, an extrusion width of 0.45 mm, a layer thickness of 0.2 mm and an infill
density of 100% with 25% overlapping (to keep the air gap to a minimum). It is common for
two neighbouring rasters (beads) to have an air gap, i.e. captured air. Although overlapping can
lead to uneven surfaces, longer printing times and dimensional inequality, it can also reduce
the air gap, enhance the part's integrity and make diffusions between neighbouring layers easier
[27, 28]. For the purpose of avoiding any additional impact on the mechanical properties of the
final product, all of the specimens were printed without contour lines.

Dimensions: {(mm)

40

O
L L

40

40

140

-

Figure 4.2 Procedure B, Three-Rail Shear Specimen, SI Units
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Dimensions of specimens printed for shear testing (Figure 4.2) are in accordance with ASTM
D4255 standard [36]. This test method determines the in-plane shear properties of fiber
reinforced composite materials in general, by either of two procedures. The Three-Rail Shear
Test procedure is utilised here (see also Figures 4.12 and 4.13). All printing parameters were
set to be the same as for the specimens printed for tensile testing. Thickness of the specimens
was 3 mm and all the specimens were printed in a way that extruded material lines are deposited
transversely (along the shorter side of the specimen shown in Figure 4.2) which corresponds to
the 90° raster angle if using the previously defined terminology for the tensile test specimens.

4.2 Tensile testing and obtained results

For each of the raster angles that were considered (0°, 15°, 30°, 45°, 60°, 75° and 90°) series
of five test specimens were printed — see Figure 4.3. PET-G filament with manufacturer
claimed 30% weight fraction of SCF used for printing the specimens was produced by Black
Element, China.

Tensile tests were conducted on the Shimadzu AG-Xplus universal testing machine (Figure
4.4). The results encompassing applied force and current elongation were continuously
recorded and monitored through the built-in software -Trapezium X. A testing speed of 2.5
mm/min was used. Digital Image Correlation (DIC) was used to record the extensional strain
rates of samples during the actual test on the universal testing machine. The fracture surfaces
of the tested specimens were then analyzed using scanning electron microscopy (SEM).

Figure 4.3 Set of printed samples prepared for tensile
testing

Figure 4.4 Experimental setup used for the tensile
test
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4.2.1 Universal testing machine results

Sample Series 0 Sample Series 15
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. __ 40 /—
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Figure 4.5 Stress-strain curves obtained for different sample series defined by raster angle
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Figure 4.6 shows the series-averaged stress-strain diagrams altogether, generated from the data
collected by the tensile testing conducted on the universal testing machine (previously depicted
through Figure 4.5 for particular sample series). The stress-strain curves clearly show that the
tested samples initially exhibited linear-elastic behaviour. The transition between the elastic
and inelastic regions on the stress-strain curves is not so clearly defined for all the sample series
tested. The fracture of all samples occurred shortly after reaching their ultimate tensile strength.
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45°
£
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0 0.005 0.01 0.015 0.02 0.025 0.03

€ [mm/mm]

Figure 4.6 Stress-strain curves for different raster angles [32]

The process which ensures the corrected zero point on the strain axis (namely toe
compensation) was performed on the original stress-strain curves derived from universal
testing machine results. This process ensures that the recorded strain values are accurately
displayed.

Figure 4.7a shows a bar graph that highlights the variation in the modulus of elasticity values
computed for various raster angles. As compared to specimens printed applying the 60°, 75°
and 90° raster angles, the 0° raster angle specimen obviously ensures considerably higher
stiffness property. For that reason, it's clear that raster angle changes cause mechanical
anisotropy occurrence. Figure 4.7b outlines the average values of the ultimate tensile strength
obtained for different raster angles. The strength values were found to be highest for samples
printed with 0° raster angle and lowest for samples printed with 75° raster angle. The
anisotropic property of the tested material explains why samples printed with 75° raster angle
delivered a minimum ultimate tensile strength value, even though a minimum value for samples
printed with a 90° raster angle was initially anticipated.
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Figure 4.7 Variation of modulus of elasticity (a) and ultimate tensile strength (b) with change in raster angle
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4.2.2 DIC results

The Digital Image Correlation (DIC) is a non-contact measuring method which enables the
assessment of the deformation characteristics of the object observed. Actually, it is a
displacement measurement technique. Displacement is measured by defining and tracking
markers or patterns on the object’s surface. This is achieved by comparing digital images of
the object taken before, during and after the deformation. By comparing the positions of these
markers in images captured before, during and after the deformation, the software gathers
information about the displacements at various points on the object. These data are used
afterwards to calculate corresponding strain values.

In this experimental testing, the specimens’ deformations were monitored by DIC measuring
system ARAMIS from GOM Metrology. Before the actual test, specimens were prepared by
applying a stochastic white/black spray pattern onto the surfaces to be recorded. During the
test, ARAMIS recognizes the surface structure of the measured object in digital camera images
and allocates coordinates to the image pixels. Then, in the measuring project, the image taken
initially as the reference one (e.g. see Figure 4.8a) represents the undeformed state of the object.
During the deformation of the observed specimen, further images are recorded (e.g. see Figure
4.8b) and then are compared to calculate the necessary displacements.

1561 1%]
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Figure 4.8 An example of recorded a) initial reference condition (no deformation) and b) during the
deformation (stage within the linear elastic region took as a second reference) of the 0° raster angle specimen
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In order to accurately calculate normal strains (&, €,) and in-plane shear strain (y,, ), linear
and angular displacements of certain reference points within the gauge section of the specimens
were tracked throughout the recorded stages (like using virtual strain gauges — see Figure 4.8).
The same time stages were taken for all the specimens so the results could be comparable — the
no deformation stage as the first one and the stage where all the examined specimens are still
in the linear elastic region as the second one. These displacement data (linear ones in the
longitudinal and transverse direction, as well as the angular ones) are then compared for the
two chosen stages and corresponding strains are calculated. Obtained values for specimens
printed with different raster angles are given in Table 4.1.

Table 4.1 Summary of values calculated for normal and shear strains for different raster angles

Raster angle [ °] & [mm/mm] &, [mm/mm] Yay [°]
0 -0.00117 0.00310 -0.008

30 -0.00125 0.00387 -0.191

45 -0.00134 0.00386 -0.106

60 -0.00025 0.00309 -0.062

90 -0.00025 0.00387 -0.008
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4.2.3 SEM results

The Scanning Electron Microscope (SEM) is an instrument that can produce a largely
magnified image of the observed specimen’s surface by using electrons instead of light to form
an image. It is a type of electron microscope that uses a focused beam of electrons. Therefore,
it implies a technique used to obtain high-resolution images and detailed information about the
specimen surface. Because of that, it is suitable for materials characterization and research at
the sub-micron scale.

For the conducted experiment, Tescan Mira 3 SEM was used to obtain the magnified images
of the specimens’ fracture surfaces for a closer observation. After tensile testing, specimens
were cut to fit the SEM chamber and placed in a way that the fracture surface faces the electron
source in order to closely inspect the fracture surfaces under SEM.

Fracture surfaces of the specimens printed with the 0° and 90° raster angles were recorded
using SEM, as shown in Figures 4.9 and 4.10. Recorded SEM images allowed for examination
of the specimens’ inhomogeneity in the fracture zone region, together with orientation of the
introduced short carbon fibers in relation to the applied printing direction.

Figure 4.9a presents the fracture surface of the specimen printed with the 0° raster angle
revealing the cross section of one raster and air gap formed around it. The yellow circles
emphasise some of the carbon fibers that were captured. The dimension of 425 pum highlighted
in Figure 4.9a which is a measure of the raster width, corresponds to the preassigned printing
parameter (extrusion width). There can also be noticed that the fibers are mostly aligned with
the direction of the printing (direction of depositing the beads). In case depicted in Figure 4.9a
fibers are pointing out of the image (direction normal to image plane). The orientation of short
carbon fibers and the fibers themselves are more clearly visible in Figure 4.9b. Therefore, it is
proved that short carbon fibers used as reinforcements generally align within the flow of
printing direction and this could be the main reason why specimens fabricated with the 0° raster
angle exibited the highest value of ultimate strength.

SEM HV: 10.0 kV WD: 6.63 mm | MIRA3 TESCAN SEM HV: 10.0 kV ‘ WD: 6.81 mm
View field: 632 pm Det: In-Beam SE 100 pm View field: 189 pym \ Det: In-Beam SE |
SEM MAG: 300 x |Date(m/d/y): 01/31/23 SEM MAG: 1.00 kx iDate(mldIy): 01/31/23

Figure 4.9 SEM images of fracture surface of the specimen printed with 0° raster angle: (a) raster cross-section
together with air gap around it — 300 x magnification; (b) closer look at the captured short carbon fibers — 1000
x magnification
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Figure 4.10a shows the fracture surface of the specimen printed with the 90° raster angle, with
a distinct boundary between the subsequent layers. This is because the major voids are
positioned between the deposited layers in form of captured air, as anticipated. The highlighted
measures of 213 um and 221 pum in Figure 4.10a comply with the preassigned printing
parameter of a layer thickness of 0.2 mm. In Figure 4.10b, the final orientation of carbon fibers
is clearly visible. The fibers are generally aligned with the direction of the deposited beads, as
concluded from traces where the fibers were placed before being pulled out during the fracture.
This conclusion is further supported by the orientation of fibers that remained on the fracture
surface of the observed specimen, which can be seen in yellow circles in Figure 4.10b. The
poor tensile properties of the 90° raster angle specimens could be attributed to the carbon fibers'
alignment, which is in this case perpendicular to the direction of load application, and the weak
bonding between two adjacent layers and the presence of voids.
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[ sEmHV: 100KV WD: 6.31 mm | |
View field: 948 ym | Det: In-Beam SE | 200 pm
SEM MAG: 200 x | Date(m/dly): 01/31/23

| wosedtmm | 00000
View field: 379 ym | Det: In-Beam SE ‘ 100 pm
SEM MAG: 500 x fDate(mldIy): 01/31/23

Figure 4.10 SEM images of fracture surface of the specimen printed with 90° raster angle: (a) layers clearly
visible with border between them in form of captured air — 200 x magnification; (b) closer look at the
orientation of captured short carbon fibers — 500 x magnification

It was noticed that a particular number of carbon fibers are not aligned to the printing direction
after analysing the recorded SEM images. The filament manufacturing process itself likely
resulted in these fibers failing to bond adequately with the polymer matrix. The red circle in
Figure 4.10b highlights one of these fibers. Despite that, it is noteworthy that there is actually
few such fibers when contrasted to those which are properly “wetted” and adhere to the printing
direction. A representative of interface bonding between fiber and polymer is shown in Fig.
4.11a, with measured diameter of the fiber highlighted (9 um). Figure 4.11b shows a closer
view of the fiber with poor bonding that was circled in red in Figure 4.10b.

Despite setting the overlapping to 25% in order to reduce the air gap, SEM images revealed
that the raster geometry inherently created noticeable pockets of air that were captured between
rasters. According to the SEM images, it is evident that there are also voids within the polymer
phase and at the interface between the short carbon fibers and the PET-G polymer. In addition
to lowering the effective elastic moduli due to a decrease in the physical cross-sectional area,
the existence of these voids may result in high stress concentration factors, which lower the
final part’s strength properties.
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SEM HV: 10.0 kV WD: 6.79 mm MIRA3 TESCAN SEM HV: 10.0 kV ‘ WD: 6.29 mm

View field: 19.0ym | Det: In-Beam SE View field: 37.9 ym | Det: In-Beam SE
SEM MAG: 9.99 kx | Date(m/dly): 01/31/23 SEM MAG: 5.01 kx | Date(m/dly): 01/31/23

Figure 4.11 SEM images of (a) an example of good interface bonding between fiber and polymer, with
measured diameter of the fiber highlighted — 10000 x magnification and (b) an example of poor bonding — 5000
x magnification

Results showing a relatively low value (in terms of what was expected) of ultimate tensile
strength (52.2 MPa) for samples printed with the 0° raster angle compared to neat PET-G
(maximum 46.1 MPa [8]) may be due to the large number of inhomogeneities in the printed
material, even though scanning electron microscopy (SEM) images showed that short carbon
fibers mainly align with the printing direction and therefore reinforce that particular direction.

4.3 Shear testing and obtained results

In-plane shear properties of SCF-reinforced PET-G specimen (see Figure 4.2) are determined
according to a standardised procedure. Three-rail shear test procedure was applied. In this
procedure, the test fixture consists of three pairs of parallel rails usually bolted to the test
specimen by through bolts (see Figure 4.12). The two outside pairs of rails are joint to the base
of fixture which is placed on the universal testing machine (see Figure 4.13). The third pair
(center rails) is guided through a slot in the top of the base fixture. A load is introduced onto
the center rails and produces a shear load in the specimen. The load may be introduced as either
tension or compression, but compression loading is more usual because it does not require
attaching the base fixture to the test machine, as presented by the setup in Figure 4.13 which
was used for conducting the shear test.
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Figure 4.12 Specimen for shear testing inserted into  Figure 4.13 Three-Rail Shear fixture with specimen
Three-Rail Shear fixture inserted positioned within the Universal Testing
Machine

Since load-strain data is required, the specimens were instrumented with strain gauges. Load
was recorded through the universal testing machine load-sensing device, while strain was
measured by strain gauges bonded to the specimen at the pre-assigned locations at the center
of the gauge section (in-between the holes for bolts). Linear strain gauges bonded to the
specimen at the 45° direction were used to capture extensional strains in that direction. Then,
these strain data were used to calculate the corresponding shear strains. After load and strain
data are gathered, the required shear stress — shear strain diagram was formulated (see Figure
4.14).
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Figure 4.14 An example of shear stress — shear strain curve obtained for the tested material
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4.4 Applied methodology for obtaining the elastic constants

Methodology applied for obtaining the values for modulus of elasticity, Poisson’s ratio,
coefficient of mutual influence of the second kind as well as the ultimate tensile strength is
presented throughout this Chapter. Values obtained for the aforementioned quantities are
summarized for specimens printed with different raster angle patterns ranging from 0° to 90°.
These values served afterwards to formulate functional relations presented in Chapter 5.

4.4.1 Modulus of elasticity evaluation

As mentioned earlier in Chapter 4.1, tensile properties of the tested specimens were determined
according to the ASTM D638-03 standard [35], under defined conditions of pretreatment,
temperature and testing machine speed. Dividing the force data recorded on the tensile testing
machine by the pre-measured original cross-sectional area in the gage length segment of the
specimen led to gathering the stress data. These data together with the stain data obtained by
DIC served for drawing the stress-strain diagrams. As shown in Fig. 4.15, the tangents to the
linear-elastic sections of the stress-strain curves were constructed, and the corresponding
slopes, which represent the moduli of elasticity, were evaluated. Since there were initial regions
on the raw stress-strain curves that does not represent a property of the material (an artifact
caused by a takeup of slack and alignment or seating of the specimen), this artifacts were
compensated for to give the corrected zero point on the strain axis (so called toe compensation)
and diagrams previously shown in Figure 4.5 were obtained.

Table 4.2 displays the mean and standard deviation values of the modulus of elasticity obtained
for different raster angle specimen series. All of the measurements have small standard
deviations, which indicates good repeatability in the experimental data.
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Figure 4.15 The modulus of elasticity calculation by graphical method (slope of the curve)

Table 4.2 Summary of values for modulus of elasticity acquired for different raster angles

Raster angle [ °] E [MPa]
Average St. Dev.
0 4752 106
15 3709 112
30 2664 64
45 2089 61
60 1573 15
75 1393 33
90 1569 26
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4.4.2 Shear modulus evaluation

Fist, the shear stress is calculated based on the load data recorded on the universal testing
machine. For the three-rail shear procedure, the shear stress is calculated as follows:
T=P/2A,

where P is load applied to the specimen and A is the cross-sectional area at test section
calculated as the product of the average length and average thickness. The normal strain data
at 45° (&45) is determined from strain gauges’ readings and the required shear strain is then
calculated as follows:

Y = 2¢&45,
by using equations (2.32) and (2.33). Then, the diagram shown in Figure 4.14 is obtained,
relating the shear stress to the shear strain.

Now, the shear modulus can be calculated as the ratio of difference in applied shear stress
between the two strain points within the linear elastic region and difference between the two
shear strains at the corresponding points (see Figure 4.16):
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Figure 4.16 Graphical method for calculating shear modulus (slope of the curve) [36]

The shear modulus values for the tested specimens were determined in the above described
way and are presented in Figure 4.17. The average value of those (753 MPa) is utilised further
on throughout the thesis — for establishing correlations between the theoretical (equations
(2.77), (2.78) and (2.80)) and experimentally obtained tensile elastic constants in relation to
the raster angle.
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Figure 4.17 Values obtained for shear modulus
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4.4.3 Poisson ratio evaluation

Following the definition of the Poisson's ratio given in Chapter 2 by the equation (2.54),
values for different raster angles were obtained using the data on normal strains given in
Table 4.1. Calculated values for the Poisson’s ratio are presented in Table 4.3. At first
glance, it is noticeable that values obtained for different raster angles differ quite a lot
which indicates the anisotropic behaviour of the studied SCF-reinforced PET-G polymer.

Table 4.3 Summary of values obtained for the Poisson’s ratio for different raster angles

Raster angle [ °] v [-]
0 0.3765
30 0.3244
45 0.3475
60 0.0810
90 0.0648

4.4 .4 Coefficient of mutual influence evaluation

As earlier defined within the Chapter 2, the coefficient of the mutual influence of the
second kind represents the effect of anisotropy in the specimen plane (x—y plane) in terms
of occurrence of shear strain in the x—y plane (y,,) due to the action of normal stress e.g. oy,
while at the same time the following applies: o, = 7,,, = 0. Ina similar way the Poisson’s ratio
values were calculated, values for the coefficient of the mutual influence of the second kind
were calculated following the equation (2.57) and using the corresponding normal and
shear strain data given in Table 4.1. Calculated values for the coefficient of the mutual
influence of the second kind are presented in Table 4.4. Again, it can be noticed that
values obtained for different raster angles are different and highlight the presence of the
anisotropy in the studied SCF-reinforced PET-G polymer.

Table 4.4 Summary of values obtained for the Coefficient of the mutual influence of the second kind for different
raster angles

Raster angle [ °] Nyy x [-]
0 0.04503
30 0.86229
45 0.47892
60 0.35006
90 -0.03612
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4.5 Strength properties evaluation

Values for the ultimate tensile strengths are directly calculated from the load data recorded by
the tensile testing machine as maximum stresses withstood throughout the testing. Namely,
tensile strength was obtained by dividing the maximum recorded load (force) by the average
original cross-sectional area in the gage length segment of the specimen in square metres.

Graphical representation of the ultimate tensile strength (o,,.,) can be seen in Figure 4.15.

The average and standard deviation values for the ultimate tensile strength are listed in Table
4.5. Similar to the values obtained for modulus of elasticity, standard deviations for strength

values are also small which again indicates good repeatability in the experimental data.

Table 4.5 Summary of values for ultimate tensile strength acquired for different raster angles

Raster angle [ °] Omax [MPa]
Average St. Dev.
0 52.2 2.5
15 47.8 0.8
30 37.8 0.4
45 33.1 0.5
60 24.7 0.9
75 19.0 0.6
90 25.4 0.4
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5 Establishing functional relations

In this Chapter, there will be established functional relations between the tensile elastic
constants on the one hand and the corresponding raster angle on the other, together with
variation of the ultimate tensile strength property across different raster angles — all derived for
thin-plate parts additively manufactured from PET-G polymer reinforced with short carbon
fibers. All of the here-referred tensile quantities are determined for seven different raster angles
ranging from 0° to 90° (with an increment of 15°) and obtained results are presented throughout
the Chapter 4. Here, the results are brought together in form of dependence of the
experimentally evaluated tensile mechanical properties on the applied printing direction (raster
angle) and hence the direction of most fiber spreading, in order to check for agreement with
relations given in equations (2.77), (2.78) and (2.80) widely known for classical composite plates
containing continuous fiber reinforcements [34].

5.1 Functional relations between the tensile elastic constants and the
raster angle

As for representative tensile elastic constants, modulus of elasticity, Poisson’s
coefficient and coefficient of mutual influence are considered. These tensile elastic constants
were previously defined in Chapter 2 through equations (2.77), (2.78) and (2.80) which can be re-
written as:

1
E, =
L o [_2Vi2, 122, 1 4 (5.1)
Elc +[ E, +G12]S c +E25
m(s4+c4)—[l+i—i]szcz
E, E; G
Vxy = ‘y 21, ) T, (52)
—C [__1+612]S c +E—S
i il
_ 3
Taxyx = T o[ 2V, 1202, L (5:3)
E1 +[_E_1+G1z]s c +E—25

where ¢ = cos(0),s = sin(8) while angle 6 is the angle related to the direction of
reinforcement. As confirmed by SEM images of fracture surfaces, presented in Chapter 4.2.3,
raster angle directly corresponds to direction of short carbon fiber reinforcement of PET-G
polymer.

As shown by equations (5.1), (5.2) and (5.3), to plot the presented theoretically obtained
curves for Ey, vy, and n,,, , values for E;, E;, v,, Gy, are needed as inputs. Since raster angle

directly corresponds to direction of short carbon fiber reinforcement of PET-G polymer, based
on data from Table 3, Table 4 and Figure 17, average values of these inputs appear to be:

E, = 4752 MPa, E, = 1569 MPa, v,, = 0.3765, G,, = 753 MPa (5.4)
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5.1.1 Modulus of elasticity E,

The values evaluated for the modulus of elasticity based on tensile testing conducted
on the universal testing machine outlined in Chapter 4.4.1 are considered first. By substituting
equation (5.4) into equation (5.1) “theoretical” expression for E, is obtained. To compare the
obtained values with the “theoretical” expression for E, given through equation (5.1), Matlab®
code was formulated. In order to check the matching of experimentally obtained data with
theoretical approach, values for the modulus of elasticity listed in Table 4.2. together with their
standard deviations are plotted against the theoretical curve for E, as presented in Figure 5.1.
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Figure 5.1 Modulus of Elasticity in relation to raster angle 6

Looking at the estimated values (red line) calculated by the “theoretical” expression for
modulus of elasticity - E,., together with experimentally obtained values (blue dots), there can
be seen a high level of matching between these values (differences are less than 10%). This is
true for the whole raster angle range.

5.1.2 Poisson’s coefficient v,

As mentioned in Chapter 4.4.3, calculated values for normal strains (&, €,) obtained
from DIC results served for determination of values for the Poisson’s coefficient vy, - see
Table 2. By definition, in case when loading is applied in the direction aligned with axis x,
Poisson's ratio vy, is the following quotient:

Viey = —&y /& . (5.5)

Thus, experimentally obtained values for Poisson’s coefficient v,, were presented in
Table 4.3. As shown in Figure 5.2 these values are plotted versus different values of raster
angles observed. Standard deviations of the obtained values (from Table 4.3) are also
incorporated in the plot. Similar to the aforementioned Matlab® code used for the modulus of
elasticity variation with the reinforcement direction, here the “theoretical” expression for the
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Poisson coefficient v,, was employed through equation (5.2), again utilising values for E;, Ej,
V12, G15 as inputs — see equation (5.4). The applicability of the “theoretical” expression given
through equation (5.2) to determine the Poisson’s coefficient v,, for the additively

manufactured PET-G polymeric material reinforced with SCF is considered based on contrast
between the theoretical and the experimental data as shown in Figure 5.2.
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Figure 5.2 Poisson’s coefficient in relation to raster angle 6

Comparing the estimated values calculated by the “theoretical” expression for Poisson’s
coefficient - v,,, (red line) with experimentally obtained values (blue dots) presented in Figure
5.2, mismatching of the values can be noticed, particularly in the 45°- 75° raster angle range.
This is in contrast to results presented in Figure 5.1 for modulus of elasticity, where
experimental values were aligned to the “theoretical” ones for the whole raster angle range.

5.1.3 Coefficient of mutual influence n,, ,

Experimentally obtained values for normal strain &, and in-plane shear strain y,,,
obtained from DIC results, as presented in Chapter 4.4.4 - Table 4.1, served for determination
of values for the coefficient of mutual influence n,,, .. By definition, in case when loading is
applied in the direction aligned with axis x, coefficient of mutual influence n,, , is the
following quotient:

Nyyx = ~Vay/&x - (5.6)

Thus, experimentally obtained values for coefficient of mutual influence n,,, , with
their standard deviations were presented in Table 4.4. Here, the “theoretical” expression for the
coefficient of mutual influence n,, ,was employed through equation (5.3), again utilising
values for E;, E,, v, Gy, as inputs — see equation (5.4). The ”theoretical” variation of the
coefficient of mutual influence with change in the reinforcement orientation is shown in Figure
5.3. Again, corresponding Matlab® code was formulated to plot experimentally obtained and
theoretically determined values for the coefficient of mutual influence (Figure 5.3).
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The applicability of the ”theoretical” expression given through equation (5.3) to
determine coefficient of mutual influence n,, , for the additively manufactured PET-G
polymeric material reinforced with SCF is considered based on contrast between the theoretical
and the experimental data as shown in Figure 5.3.

1.2 ' ' ' ' '
theoretical
1t ¢ experimental data| |
polyfit

[MPa]

0.2 ' ' ' ' '
0 15 30 45 60 75 90

0 [deg]
Figure 5.3 Coefficient of mutual influence n,,, . in relation to raster angle 6

Similar to results obtained for the Poisson’s ratio, comparison of the estimated values
calculated by the “theoretical” expression for the coefficient of mutual influence of the second
Kind - n,, , (red line) with the experimentally obtained values (blue dots) presented in Figure
5.3 does not show adequate matching, particularly in 15°- 60° raster angle range. However, the
experimental values are converging to the theoretical curve, but are not closely aligned to the
curve, as the case was with the modulus of elasticity values in Figure 5.1

5.2 Functional relations between the tensile strength and the raster angle

In the case of observing the maximum stress which additively manufactured SCF-
reinforced PET-G specimens withstood throughout the tensile testing, it is helpful to tentatively
understand or even try to predict failure in terms of final fracture as a phenomenon proved to
be directly dependant on the raster angle applied while printing. Accordingly, experimentally
obtained results for the ultimate tensile strength (see Chapter 4.5) showed various strength
characteristics for different raster angles and thus SCF reinforcement orientations. This fact
ultimately directly confirmed the anisotropic nature of the studied additively manufactured
SCF-reinforced PET-G specimens. These results are presented graphically in Figure 5.4
combined with proposed functional relation between the ultimate tensile strength on the one
hand and the raster angle on the other one. Third order polynomial fitting of the experimentally
obtained values was utilised to create the continuous UTS-raster angle relation shown in Figure
5.4.
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Figure 5.4 Proposed functional relation between the ultimate tensile strength and the raster angle which fits the
experimentally obtained values

Due to anisotropic nature of the studied parts the use of classical failure criteria used in
case of isotropic materials (e.g. von-Mises, Tresca etc.) is not applicable. Therefore, further
investigation regarding prediction of failure for additively manufactured SCF-reinforced PET-
G polymer material is needed.
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6 Conclusion and future research

In additive manufacturing (AM), raster angle is recognized as one of the key printing
parameters which strongly influences the strength and stiffness of the final part. In this thesis
the effect of raster angle on tensile properties of thin plate specimens made from carbon
reinforced PET-G material was studied. The major objectives were to establish and analyse a
functional relation between the corresponding raster angle and:

- obtained values of tensile strength and stiffness of plate specimens made from carbon
reinforced PET-G material;

- the tensile elastic constants that define the anisotropic behaviour of plate specimens made
from carbon reinforced PET-G material, primarily modulus of elasticity - E,, Poisson’s
coefficient - v,,, and coefficient of mutual influence of the second kind - n,,, .

Aforementioned functional relations were compared with theoretical results given by
the Classical Lamination Theory (CLT).

6.1 Conclusions

As a result of the research within this thesis, it is confirmed that raster angle strongly
influences the strength and stiffness of final additively manufactured thin plate parts made from
short carbon reinforced PET-G material.

The relatively high average value of ultimate tensile strength - 52.2 MPa was obtained
for specimens printed with the raster angle of 0°, compared to the value obtained for specimens
printed with the raster angle of 90° - 25.4 MPa. The minimum average value of ultimate tensile
strength was obtained for specimens printed with the raster angle of 75° - 19.0 MPa which
indicates decrease of 63.6% (compared to value for the 0° raster angle). Similarly, the
maximum obtained average value of modulus of elasticity - 4752 MPa was obtained for
specimens printed with the raster angle of 0° compared to the value of 1569 MPa, obtained for
specimens printed with the raster angle of 90°. Again, the minimum average value of modulus
of elasticity was obtained for specimens printed with the raster angle of 75° - 1393 MPa, which
indicates decrease of 70.7% (compared to value for the 0° raster angle).

SEM images of fracture surfaces of the specimens printed with the 0° raster angle
revealed dominant alignment of short carbon fibers with the printing direction applied, but also
moderate to high level of inhomogeneity and voids. Considerable volume fraction of captured
air (air gaps) with noticeable amount of porosity in polymer phase are probably major factors
which resulted in relatively low improvement of tensile strength obtained for carbon reinforced
samples made with the 0° printing direction, when compared to neat polymer samples. In the
similar manner, voids together with weak bonding between two adjacent rasters undoubtedly
contributed to poor tensile properties of carbon reinforced samples made with the raster angle
of 90°.

Comparison of the estimated values calculated by the ”theoretical” expression for
modulus of elasticity - E, given through equation (5.1), with experimentally obtained values
listed in Table 4.2 presented in Figure 5.1, showed almost perfect matching (mismatching was
less than 10% for whole raster angle range). In case of Poisson’s coefficient - v,, and
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coefficient of mutual influence of the second kind - n,,, , mismatching was higher than 10%
for whole raster angle range. Thus, comparison of the estimated values calculated by the
“theoretical” expression for Poisson’s coefficient - v,, given through equation (5.2), with
experimentally obtained values listed in Table 4.3, presented in Figure 5.2, showed significant
mismatching particularly in 45°- 75° raster angle range. Similarly, comparison of the estimated
values calculated by the ”theoretical” expression for coefficient of mutual influence of the
second kind - n,,, , given through equation (5.3), with experimentally obtained values listed in
Table 4.4, presented in Figure 5.3, showed significant mismatching particularly in 15°- 60°
raster angle range.

On the other hand, experimentally obtained results for the ultimate tensile strength,
shown in Figure 5.4, showed similar behaviour found in laminated composite plates reinforced
with continuous carbon fibers. This fact ultimately directly confirmed the anisotropic nature of
the studied additively manufactured SCF-reinforced PET-G specimens. These results are
presented graphically in Figure 5.4 combined with proposed functional relation between the
ultimate tensile strength on the one hand and the raster angle on the other one.

6.2 Future research

It is expected the thesis will contribute to the definition of future constitutive model that
will enable the application of numerical structural analysis on thin plate-like parts made from
observed material composition and produced by additive manufacturing. Accordingly, it is also
expected that the dissertation will contribute to a better understanding and further
enhancements in possible applications of this type of composite materials for quick and
efficient production of parts intended for moderate loadings.

Experimentally obtained strengths (e.g. presented in Table 4.5) are usually obtained as a
result of conducted procedures defined by standard definitions which involve that these
experiments must be carried out at standard room temperature. Possible future research might
involve low temperature conditions for experiments used for obtaining quoted strengths.
Therefore, it might be interesting to analyze how ultimate strength values, experimentally
obtained at extremely low or extremely high temperatures, contribute to potential reduction of
strength of short carbon fiber reinforced AM structures.

Due to anisotropic nature of the studied parts the use of classical failure criteria used in
case of isotropic materials (e.g. von-Mises, Tresca etc.) is not applicable. Therefore, further
investigation regarding prediction of failure for additively manufactured SCF-reinforced PET-
G polymer material is needed.
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