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ABSTRACT  

 

In additive manufacturing (AM), raster angle is recognized as one of the key printing parameters which 

strongly influences the strength and stiffness of the final part. In this thesis the effect of raster angle on 

tensile properties and anisotropic behaviour of additively manufactured composite plates made from 

PET-G polymer reinforced with short carbon fibers are studied. The functional relations between the 

corresponding raster angle and obtained values of tensile strength and the tensile elastic constants which 

define the anisotropic behaviour of studied material (modulus of elasticity - 𝐸𝑥, Poisson’s coefficient - 

𝜈𝑥𝑦 and coefficient of mutual influence of the second kind - 𝑛𝑥𝑦,𝑥) are established. Aforementioned 

functional relations are compared with theoretical results based on the Classical Lamination Theory 

(CLT). The ultimate tensile strength average value of 52.2 MPa obtained for specimens printed with 

the raster angle of 0° is noticeably higher than the average value obtained for specimens printed with 

the raster angle of 90° - 25.4 MPa. Correspondingly, the maximum average value of 4752 MPa for 

modulus of elasticity is obtained for specimens printed with the raster angle of 0°, substantially higher 

compared to the value of 1569 MPa obtained for specimens printed with the raster angle of 90°. The 

fracture surfaces of the tested specimens are inspected under SEM -  images of the specimens printed 

with the 0° raster angle revealed dominant alignment of short carbon fibers with the printing direction 

applied, but also moderate to high level of inhomogeneity and voids. While analysing the SEM images, 

considerable volume fraction of captured air is noticed, together with porosity presence in polymer 

phase, which are recognised as probable major contributors in relatively low improvement of tensile 

strength (from what was expected) obtained for carbon reinforced samples made with the 0° printing 

direction, when compared to neat polymer samples. Similarly, voids together with weak bonding 

between two adjacent rasters undoubtedly served as influential factors for poor tensile properties of 

carbon reinforced samples made with the raster angle of 90°. Comparison of the estimated values 

calculated by the CLT expression for modulus of elasticity - 𝐸𝑥, with experimentally obtained values, 

showed almost perfect matching (mismatching was less than 10% for the whole raster angle range). In 

case of Poisson’s coefficient - 𝜈𝑥𝑦 and coefficient of mutual influence of the second kind - 𝑛𝑥𝑦,𝑥 

mismatching was higher than 10% for the whole raster angle range. Thus, comparison of the estimated 

values calculated by the CLT expression for Poisson’s coefficient - 𝜈𝑥𝑦, with experimentally obtained 

values, showed significant mismatching particularly in 45°- 75° raster angle range. Similarly, 

comparison of the estimated values calculated by the CLT expression for coefficient of mutual influence 

of the second kind - 𝑛𝑥𝑦,𝑥 with experimentally obtained values, showed significant mismatching 

particularly in 15°- 60° raster angle range. 

 

Keywords: composite plates; additive manufacturing; raster angle; tensile mechanical properties; 

short carbon fibers 

 

 

 

 

 

 

 

 



 
 

САЖЕТАК 

 

У адитивној производњи угао депоновања материјала је препознат као један од кључних 

параметара процеса добијања (штампе) делова који у великој мери утиче на чврстоћу и крутост 

завршног дела. У овој тези се проучава утицај угла депоновања материјала на затезна механичка 

својства и анизотропно понашање адитивно произведених композитних плоча од ПЕТ-Г 

полимера ојачаног кратким угљеничним влакнима. Функционалне релације између 

одговарајућег угла депоновања и добијених вредности затезне чврстоће и затезних константи 

еластичности које дефинишу анизотропно понашање проучаваног материјала (модул 

еластичности - 𝐸𝑥, Поасонов коефицијент - 𝜈𝑥𝑦 и коефицијент узајамног утицаја друге врсте - 

𝑛𝑥𝑦,𝑥). Поменуте функционалне зависности су упоређене са теоријским резултатима заснованим 

на Класичној теорији ламинације (CLT). Просечна вредност затезне чврстоће од 52,2 MPa 

добијена за узорке штампане са углом депоновања од 0° је приметно виша од просечне 

вредности добијене за узорке штампане са  углом депоновања од 90° - 25,4 MPa. У складу са 

тим, максимална просечна вредност модула еластичности од 4752 MPa добијена је за узорке 

штампане са углом депоновања од 0°, што је знатно више у поређењу са вредношћу од 1569 MPa 

добијеном за узорке штампане са углом депоновања од 90°. Преломне површине испитаних 

узорака су анализиране помоћу СЕМ снимака – слике узорака штампаних са углом депоновања 

од 0° откривају доминантно поравнање кратких угљеничних влакана са примењеним смером 

штампе (углом депоновања), али и умерен до висок ниво нехомогености и присуства 

„заробљеног“ ваздуха. Анализом СЕМ снимака примећује се значајан запремински удео 

„заробљеног“ ваздуха, заједно са порозношћу у полимерној фази, који су препознати као 

вероватни главни фактори који доприносе релативно ниском побољшању затезне чврстоће (од 

онога што се очекивало) добијеном за узорке ојачане угљеничним влакнима направљеним са 

углом депоновања од 0°, у поређењу са узорцима од „чистог“ полимера. Слично томе, 

нехомогености заједно са слабом везом између две суседне линије штампе несумњиво су 

послужиле као утицајни фактори за ниска затезна својства угљеником ојачаних узорака 

направљених са углом депоновања од 90°. Поређење процењених вредности израчунатих CLT 

изразом за модул еластичности - 𝐸𝑥 са експериментално добијеним вредностима, показало је 

скоро савршено поклапање (неусклађеност је мања од 10% за цео опсег углова депоновања). У 

случају Поасоновог коефицијента - 𝜈𝑥𝑦 и коефицијента узајамног утицаја друге врсте - 𝑛𝑥𝑦,𝑥, 

неусклађеност је била већа од 10% за цео распон углова депоновања. Дакле, поређење 

процењених вредности израчунатих CLT изразом за Поасонов коефицијент - 𝜈𝑥𝑦 са 

експериментално добијеним вредностима, показало је значајно неслагање посебно у опсегу угла 

депоновања од 45° до 75°. Слично, поређење процењених вредности израчунатих CLT изразом 

за коефицијент међусобног утицаја друге врсте - 𝑛𝑥𝑦,𝑥 са експериментално добијеним 

вредностима показало је значајно неслагање посебно у опсегу угла депоновања од 15° до 60°. 

 

Кључне речи: композитне плоче; адитивна производња; угао депоновања; затезна механичка 

својства; кратка угљенична влакна 
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1 Introduction, literature survey and objectives of the research  
 

1.1 Introduction 

1.1.1 Background 

When establishing research into composite materials, the term composite is first introduced and 

therefore should be explained in its broadest sense. The term composite refers to a system 

consisting of two or more ingredients with different material properties, designed to obtain 

enhanced final product’s properties compared to those characterising the individual 

constituents. Typically, mechanical properties of the constituents largely differ. One of them is 

usually discontinuous, stiffer and stronger and is called the reinforcement, whereas the less stiff 

and weaker one is continuous and is called the matrix [1]. 

Fibers are the most common reinforcing and load-bearing element of the composites, while the 

matrix has the function of transferring the load to the fibers in addition to holding the fibers 

together. Therefore, the matrix gives the composite a geometric shape. 

Carbon fibers used as reinforcements in composite materials, are without a doubt the most 

widespread today, especially in the heavily loaded parts of structures where high stiffness and 

strength together with low mass are required. Usual properties of carbon fibers are the 

following: diameter of 5-10 μm, density of 1.75-1.9 g/cm3, strength of 2.5-5.5 GPa, modulus 

of elasticity of 240-400 GPa and breaking strain at 1-2 % [2]. As such, they represent an 

excellent choice for the reinforcement, most often in combination with an epoxy matrix, for 

high-performance structural composites, which are used in the aerospace and automotive 

industries.   

The basic functions of the matrix in the composite material are: 

- transferring the load to the reinforcements, 

- separating the reinforcements from each other, 

- forming an external shape of the composite structure, 

- potentially protecting from environmental influences. 

That being the case, properties of the matrix often determine the properties of the whole 

composite, as well as its application limitations in terms of external influential agents 

(moisture, temperature, etc.). Also, properties of the matrix are important for determining the 

longitudinal tensile strength, transverse strength and interlayer shear strength of the composite 

[3]. 

When talking about polymers used as matrices in composites, they can be divided into two 

groups: thermosets and thermoplastics. When heated, thermosets (thermostable polymers) 

create irreversible chemical bonds between polymer chains that are strongly cross-linked. 

When reheated, they do not change their state, but remain rigid. This points to a big problem 

in their application, which is increasingly important nowadays – it is not possible to recycle 

them by softening the matrix, but only to grind them mechanically, which results in small 

granules that contain both fibers and matrix. Unlike them, thermoplastics have the property 

that they harden when cooled, but soften when reheated, so they can be shaped again. This 

enables the repair of parts made from these composites, as well as their partial recycling. 
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Moreover, thermoplastics are used in processes including extrusion, thermoforming and 

injection moulding. Common thermoplastics include polyethylene (PE), polycarbonate (PC), 

polyvinylchloride (PVC), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate 

(PET), the last with added glycol (PET-G) being the choice for further examining throughout 

this thesis as a matrix material for obtaining the studied composite plate specimens. 

The characteristic temperature called the glass transition temperature - (GTT) is a very 

important property of the matrix and defines the transition between the soft rubbery state of a 

polymeric matrix and its more stiff, or glassy, state [4]. This temperature defines the final 

properties of the matrix in terms of the usability of the composite at elevated temperatures. 

Namely, when used above the glass transition temperature, the properties of the matrix are 

significantly degraded. It should be noted that moisture in the composite can significantly lower 

the glass transition temperature.  

The technology of making the composite significantly affects its final properties, because it 

must ensure a good bond between the fiber and the matrix, as well as a minimal fraction of 

porosity or micro-cracks in the composite. Additive manufacturing (AM), more commonly 

known as 3D printing, is the process of additively building up a part one layer at a time (see 

Figure 1). There are a range of 3D printing technologies with each having their own benefits 

and limitations and each being able to print parts from different materials [6]. Extrusion based 

AM, known as Fused Deposition Modelling (FDM) or Fused Filament Fabrication (FFF), has 

become a widespread AM technique. As a result, the development and production of polymer-

based parts via AM is a continuously emerging research trend [7]. 

 

Figure 1.1 A schematic of how additive manufacturing technologies produce parts [6] 

Carbon Fiber Reinforced Polymers (CFRP) in additive manufacturing gained much 

engineering attention in recent decade because of the potential for superior structural 

performance compared to base polymeric feedstock materials. In general, an anisotropic and 

heterogeneous character of the obtained composite material provides the composite with many 

degrees of freedom for optimum configuration of the material system [1]. Therefore, carbon 

reinforcements put in filaments used for additive manufacturing receive researchers’ attention 

as well – demands for material characterization, design and optimisation. That being the case, 

despite AM offers considerable freedom in design and production of 3D printed parts, 

anisotropy and inhomogeneity of final product still remain uncertain [8, 9], so there is current 

need for contribution in analysing and predicting the mechanical properties of such parts made 

from reinforced polymeric materials (actually composite materials). 
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1.1.2 Classification of composite materials based on the geometry of reinforcement 

 

Figure 1.2 Composites classification [5] 

The term laminated composites is used to define layers of material usually reinforced with long 

continuous fibers. These layers can contain fibers laying within differently oriented directions 

and are called laminas. Laminas that are interconnected (glued) into one unbreakable unit form 

a multi-layer composite, so-called laminate. 

Since polymers have limited mechanical properties, aiming to make FDM suitable for 

producing functional load-bearing parts, Short Carbon Fibers (SCF) have been introduced into 

polymeric feedstock materials as reinforcements [10]. Although continuous fiber reinforced 

composites offer higher mechanical performance, their processing through FDM is not 

commonplace due to printing complexity [11]. On the other hand, short fiber reinforced 

polymers (SFRPs) are used more often due to availability of feedstock materials and low-cost 

fabrication, but with moderately improved mechanical properties [12, 13, 14]. Composites 

reinforced with fibers generally differ in their properties from conventional engineering 

materials. Conventional engineering materials (like steel) are almost always considered to be 

isotropic and homogeneous. In the case of an isotropic material, the physical and mechanical 

characteristics are the same in all directions, and a homogeneous material is a material that has 

a uniform composition or the same composition in every point or particle of the body. In this 

thesis, polymeric thin plates reinforced with milled SCF of around 200 μm in length, suitable 

for FDM processing on desktop 3D printers, will be considered. 

 

1.1.3 Fused Deposition Modelling (FDM) and process parameters 

Aforementioned fused deposition modelling as an additive manufacturing (3D printing) 

technique implies material extrusion through a heated nozzle, melting it in the process and 

depositing on a build platform in a predetermined path, where the material cools and solidifies 

to form a solid part [6]. In extrusion-based additive manufacturing final printed part has 
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(unidirectional)
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oriented fibers
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Multi-layer 
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material properties which differ from those of the filament material used for its fabrication. 

This difference arises from the FDM process parameters, mainly the following ones [15, 16, 

17]:  

 build orientation (flat, on-edge, upright – see Figure 1.3),  

 printing direction (raster angle),  

 layer thickness,  

 infill density, 

 infill print speed, 

 extrusion width,  

 nozzle temperature and  

 printing bed temperature.  

 

Figure 1.3 Build orientation in FDM 

The layer-by-layer FDM nature leads to final parts that are generally characterised by discrete 

mechanical properties in different directions. The FDM process parameters altogether and their 

different combinations can actually intensify the anisotropic nature of AM parts. Therefore, it 

is of great importance to correctly understand how the process parameters influence 

performance of the final part and optimise them to match the intended application. 

The printing direction commonly referred to as the raster angle appear to be one of the main 

influential parameters, especially for those parts printed with flat build orientation [8, 18]. 

Therefore, the raster angle has been selected for further observation throughout the thesis as 

determination of its influence on tensile properties of specific AM parts may be a valuable 

research activity. Additionally, the presence of porosity within the extruded material, especially 

the reinforced one, could also be research appealing, since various kinds of potential polymer-

reinforcement mixing originated inhomogeneities may substantially degrade final part’s 

mechanical properties such as strength and stiffness [19, 20]. This is particularly important 

when material is used for producing parts as structural members intended for carrying load. 
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1.2 Literature survey 

Apart from six textbooks on Mechanics of Composite Materials (Refs. [1-5, 34]) and one 

handbook on 3D Printing Technologies (Ref. [6]), number of scientific papers (Refs. [7-33]) 

covering various issues related to the thesis topic have served as the basis for the candidate’s 

research and guided further work on the thesis. 

The review papers [21, 22] contain a comprehensive overview of additive manufacturing 

techniques, as well as a review of the base materials used in additive manufacturing and their 

mechanical properties. Since polymer-based structures reinforced with fibers provide improved 

properties of functional parts in use, such as lower density compared to conventional materials, 

but also increased mechanical performances compared to base materials ("neat" polymers), the 

review paper [21] additionally emphasizes the importance and potential of developing such 

parts through additive manufacturing technologies and their application as structural elements. 

Noticeable progress in newly developed polymer and composite materials and the recentness 

of their production by additive manufacturing are also addressed. In the review paper [23], a 

detailed description of the previous experimental approaches to these materials’ 

characterization and attempts for constitutive models definition was given, aiming to 

summarize the applicability and limitations of these approaches. Additionally, paper [22] lists 

the common ASTM and ISO standards used by different research groups for testing the 

mechanical properties of parts obtained by additive manufacturing. 

As one of the conclusions based on the technological state-of-the-art review, the paper [9] 

highlights the possibility of improving the characteristics of new materials by using carbon 

fibers as reinforcements of polymeric base materials exploited in additive manufacturing. The 

analyses of final mechanical characteristics carried out on additively manufactured polymer 

parts reinforced with short carbon fibers are discussed in papers [10, 11, 18, 24, 25, 26]. In the 

paper [24] polypropylene (PP) is considered as the base material, while papers [11, 26] 

encompass ABS polymer and paper [10] additionally observes PLA and PET-G polymers. 

Papers [18, 27, 28] examine the relevance of the mechanics of conventional composite 

laminates for characterizing the mechanical behaviour of additively manufactured parts, i.e. 

possibilities and limitations of the application of classical lamination theory. 

The occurrence of anisotropy in additively manufactured polymeric parts is analysed in the 

paper [16], with a detailed review of previous research aimed at understanding the nature of 

this phenomenon as well as the main factors and parameters that affect the intensity of this 

phenomenon. When depositing melted filament in FDM as the most common technique of 

additive manufacturing, inhomogeneities in various forms of "trapped" air between the 

deposited material lines as well as between adjacent layers appear, resulting in the weakening 

of mechanical properties. The pores between the deposited lines that follow the applied raster 

angle, together with the causes of the anisotropic behaviour occurrence and the consequent 

effects on the mechanical characteristics are investigated in the paper [29] for ABS polymer 

reinforced with short carbon fibers. 

The influence of different FDM parameters is evaluated in papers [15, 17, 30, 31] dedicated to 

the study of production parameters’ effects on the tensile strength and stiffness of the obtained 

parts. The paper [30] emphasized the influence of raster angle on the mechanical properties 

and thermal conductivity of additively manufactured composites of PP polymer reinforced with 
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short carbon fibers. The building orientation throughout the deposition process, layer thickness 

and printing speed as influential parameters are observed in the paper [15], nozzle temperature 

and again printing speed in the paper [17], while paper [31] examines nozzle diameter and the 

gap between the two deposited lines (rasters) as influential parameters in the FDM process. 

In the available literature, a lack of analysis comprehending the raster angle influence on the 

mechanical properties of composites additively manufactured from PET-G polymer reinforced 

with different percentages of short carbon fibers is noticed, as well as a lack of the raster angle 

impact assessment on the anisotropy occurrence and its intensity in this type of material. Also, 

there is a lack of model proposals that would establish the functional relation between the 

elastic constants and strength properties on one hand and the raster angle on the other, 

concerning thin-plate parts obtained by additive manufacturing using the here considered 

composite material (PET-G polymer reinforced with short carbon fibers). 

 

1.3 Objectives of the research 

Within this doctoral thesis, the following objectives of the research are acknowledged: 

- Analysis of the raster angle influence on the tensile mechanical properties (stiffness and 

strength) of additively manufactured plates made of PET-G polymer reinforced with SCF 

suitable for FDM; 

- Establishment of a functional relation between the measured values of tensile strength and 

stiffness and the corresponding raster angle; 

- Determination of the tensile elastic constants for different raster angles that define the 

anisotropic behaviour of the observed type of material composition, primarily the coefficient 

of mutual influence of the second kind which represents the coupling between the occurrence 

of sliding in the plane of the sample and the effect of normal stress during uniaxial tension; 

- Establishment of a functional relation between the values of elastic constants and the value 

of raster angle, as well as comparison of these functional relations with the results given by the 

Classical Lamination Theory (CLT). 

It is expected that after the realization of the research objectives, the thesis will contribute to 

the definition of future constitutive model that will enable the application of numerical 

structural analysis on thin plate-like parts made from observed material composition and 

produced by additive manufacturing. Accordingly, it is also expected that the dissertation will 

contribute to a better understanding and further enhancements in possible applications of this 

type of composite materials for quick and efficient production of parts intended for moderate 

loadings. 

- Initial hypotheses of the thesis 

The initial hypotheses based on the literature review are the following: 

1. The use of composite parts made of PET-G polymer reinforced with short carbon fibers is 

possible for load-bearing members that are intended for moderate intensity loadings. 
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2. It is possible to establish a linear relationship between the stress tensor and the strain tensor 

for this type of material in the elastic deformation region. 

3. It is possible to determine all the elastic constants that define the anisotropic behaviour of 

this type of composite material by conducting appropriate experimental testing. 

4. The change of elastic constants with the value of raster angle can be presented by applying 

the principles of the Classical Lamination Theory (CLT). 

- Research methods 

The following research methods and approaches are proposed: 

1. Analysis of the existing approaches as well as previous engineering knowledge base of the 

subject thesis area. This involves a review of the available literature relevant to the topic of the 

doctoral thesis. 

2. Statement of the considered problem (description method). 

3. Combined analytical-experimental methods for determining all elastic constants that define 

the anisotropic behaviour of the observed type of composite material. 

4. Experimental methods for the purpose of contemplating and verifying the previously 

mentioned calculations (comparison method).  

 

1.4 The structure of the thesis 

The thesis is structured into six main Chapters, as summarised within the following: 

Chapter 1 comprises basic information on the composite material and its constituents in 

general (matrix and reinforcement), classification of composite materials based on the 

geometry of reinforcement and introductory notes about the Additive Manufacturing, 

particularly its extrusion based technique called Fused Deposition Modelling. The material 

which will be further analysed throughout the thesis is defined in this Chapter, together with 

the manufacturing technique which will be utilised, as well as objectives of the research, initial 

hypotheses and research methods. Literature survey for the previously defined area of research 

is given briefly at the end of this Chapter. 

In Chapter 2, the fundamentals of elasticity of anisotropic body are outlined in short, referring 

to general state of stress and strain, leading to their relations represented through matrix layout 

of generalised Hook’s law. A simplified form of the general Hook’s law for the orthotropic 

body is then given in this Chapter, as a step towards lamina-related equations known from 

Classical Lamination Theory, to later check if applicable to the results containing mechanical 

performances of thin-plate samples examined in the thesis. Fundamentals of mechanics of 

composite materials are continued with thin plates reinforced with continuous fibers. Hooke’s 

law for an orthotropic plate for the case of plane stress is presented, together with the remaining 

non-zero coefficients of the compliance matrix. Here it was essential to provide relations 

between elastic constants and compliance matrix coefficients known from Classical 

Lamination Theory (CLT) for composite plates reinforced with continuous fibers. This gives 

basic understanding critical for the subsequent study aimed to inspect if experimental results 
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obtained for additively manufactured thin-plate samples made derived from PET-G polymer 

reinforced with short carbon fibers would fit those CLT curves. 

Chapter 3 is referenced to PET-G polymer based plates reinforced with short carbon fibers. 

The Short Carbon Fibers (SCF) used as reinforcements of filaments intended for extrusion 

based additive manufacturing (FDM) are observed more closely. The focus is on the percent 

fraction of SCF and their orientation within filament. On top of that, raster angle as influential 

parameter of FDM process is addressed as key factor to investigate further throughout the 

thesis, i.e. its influence on tensile mechanical properties of the surveyed thin-plate samples. 

In Chapter 4 experimental procedure and obtained results are demonstrated. Samples used for 

testing are specified along with FDM process parameters used for their fabrication. Tensile 

testing results are presented, preceded by explanation of the experimental setup used, including 

the universal testing machine and Digital Image Correlation (DIC) apparatus. Finally, 

evaluated elastic constants are delivered together with assessed strength properties of the 

samples tested. 

Chapter 5 establishes functional relations between the obtained values for tensile elastic 

constants and the applied raster angle, as well as between calculated strength properties and 

corresponding raster angle. This Chapter is the key one since it combines already known 

analytical methods and experimental measurements producing relevant data for the purpose of 

contemplating and verifying the anisotropic behaviour of the observed type of composite 

material. 

Chapter 6 brings conclusions of the thesis and provides recommendations for future research 

which would advance the findings established in the thesis. 
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2 Mechanics of fiber reinforced composite plates 

 

2.1 Generalised Hook’s law for an anisotropic body 

Formulating equations which describe material’s behaviour in terms of deformation under the 

influence of external load, i.e. defining the equations that relate stress to strain for all load-

cases, can be extremely complex. If these equations can be formulated, then they are called 

constitutive equations of the material. The set of all these equations for a material is called the 

constitutive model of material behaviour. The best way to define a constitutive model, ie. 

connections between stress and strain are appropriate experiments. 

It is clear that it is almost impossible to formulate a single equation or a set of equations that 

will fully describe the material's behaviour in all possible conditions. However, for a load 

below a certain limit, almost all structural materials that carry (transmit) loads, deform 

elastically, so for that range of deformations and loads, a set of equations is formulated that 

relate stress and strain. However, when the load exceeds a certain limit, the material begins to 

deform inelastically, so additional deformation parameters are necessary to calculate the stress 

in that range. These problems are dealt with in detail by special scientific fields such as Theory 

of plasticity and Mechanics of fracture. 

 

2.1.1 General state of stress 

If three stress vectors are known for a certain point for three mutually perpendicular 

intersecting planes passing through that point, we can say that we know the stress state in it. 

As it is necessary to know 3 data (components of the vector) to define each vector, it is clear 

that 9 data are necessary to know the stress at a certain point, namely stress components (Figure 

2.1). As a result, the stress at a point represents a higher form of abstraction than a vector and 

in continuum mechanics represents a tensor of the second order. 

A tensor can be described as a mathematical representation of a physical quantity in defined 

coordinate system. If one piece of data is sufficient for the representation of a physical quantity 

in some coordinate system, such physical quantity is a zero-order tensor - a scalar quantity (e.g. 

mass, temperature), if three pieces of data are sufficient, then it is a first-order tensor - a vector 

quantity (e.g. force, speed). In the case when nine data are required, then physical quantity 

represents a second-order tensor (e.g. stress, strain), etc. In continuum mechanics, operations 

with tensors are performed using the so-called tensor calculus. The state of stress at a point of 

a stressed body, in the general three-dimensional case, for orthogonal coordinate system 

defined by the axes 𝑥, 𝑦, 𝑧 (forming the planes 𝑥–𝑦, 𝑦–𝑧, 𝑥–𝑧), can be described by stress 

tensor which have nine stress components as shown in Figure 2.1. Usually, stress tensor is 

presented in following matrix notation: 

 {𝜎} = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

]       (2.1) 

where 𝜎𝑖 is component of normal stress, while 𝜏𝑖𝑗 is component of shear stress. The subscript 

of normal stress refers to the axis direction in which the stress component acts. The first 
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subscript of shear stress component refers to the direction of the outward normal to the face on 

which the stress component acts, while the second subscript refers to the direction in which the 

stress component itself acts. All of stress components shown in Figure 2.1 have positive sign. 

 

 

Figure 2.1 Three-dimensional stress state 

 

2.1.2 General state of strain 

In the general case of exposing the body to external loads, the body is deformed. When the 

body is deformed, there are translational and/or angular movements (rotation) of points inside 

the stressed body. The state of strain at a point is completely determined if the components of 

strain are known for 3 mutually perpendicular directions, that is, for 3 mutually perpendicular 

planes to which these directions are normal. Then we say that the strain tensor at that point is 

known. The strain tensor, as the second-order tensor, is usually written as a 3x3 matrix of the 

form: 

 {𝜀} = [

𝜀𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑦𝑥 𝜀𝑦 𝜀𝑦𝑧

𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧

] =

[
 
 
 
 𝜀𝑥

1

2
𝛾𝑥𝑦

1

2
𝛾𝑥𝑧

1

2
𝛾𝑦𝑥 𝜀𝑦

1

2
𝛾𝑦𝑧

1

2
𝛾𝑧𝑥

1

2
𝛾𝑧𝑦 𝜀𝑧 ]

 
 
 
 

    (2.2) 

where 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are normal strains which describe the extension or contraction per unit 

length along the 𝑥, 𝑦 and 𝑧 direction, respectively, while 𝛾𝑖𝑗 is shear strain (describe the 

distortional deformations associated with lines that were originally parallel to the 𝑖 and 𝑗 axes). 

It is important to make a difference between the component of “tensor” strain - 𝜀𝑖𝑗  and the 

component of “engineering” shear strain - 𝛾𝑖𝑗. Engineering  shear  strain 𝛾𝑖𝑗 describes the total 

distortional change in the angle between lines that were originally parallel to the 𝑥𝑖 and 𝑥𝑗 axes, 

but the tensor shear strain 𝜀𝑖𝑗 describes the amount of rotation of either of the lines. 
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2.1.3 Generalised Hook’s law 

As it is well known from any book related to Theory of elasticity, both stress and strain  

are symmetric tensors (i.e., 𝜏𝑖𝑗 = 𝜏𝑗𝑖  and 𝛾𝑖𝑗 = 𝛾𝑗𝑖) so that there are only six independent stress 

components and six independent strain components. Having that in mind, in general case, in 

some point of stressed anisotropic body made from the linear elastic material, components of 

stress are related to components of strain through the following relationship, usually called 

Generalised Hook’s law: 

 

[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑧

𝜏𝑦𝑧

𝜏𝑥𝑧

𝜏𝑥𝑦]
 
 
 
 
 

= [

𝐶11 ⋯ 𝐶16

⋮ ⋱ ⋮

𝐶61 ⋯ 𝐶66

]

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝛾𝑦𝑧

𝛾𝑥𝑧

𝛾𝑥𝑦]
 
 
 
 
 

      (2.3) 

or in compact form: 

  [𝜎] = [𝐶][𝜀]          

In the above equations, matrix [𝐶] is called stiffness matrix while coefficients 𝐶𝑖𝑗 are called 

stiffness matrix coefficients. Total number of stiffness matrix coefficients is 36. 

It is clear that by inverting the above equation, components of strain can be expressed via 

stresses in matrix form: 

 

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝛾𝑦𝑧

𝛾𝑥𝑧

𝛾𝑥𝑦]
 
 
 
 
 

= [

𝑆11 ⋯ 𝑆16

⋮ ⋱ ⋮

𝑆61 ⋯ 𝑆66

]

[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑧

𝜏𝑦𝑧

𝜏𝑥𝑧

𝜏𝑥𝑦]
 
 
 
 
 

                 (2.4) 

or in compact form: 

                  [𝜀] = [𝑆][𝜎]          

In the above equations, matrix [𝑆] is called compliance matrix while coefficients 𝑆𝑖𝑗 are called 

compliance matrix coefficients or elastic compliances. It is obvious that stiffness matrix and 

compliance matrix are related as inverted matrices:  

                 [𝐶] = [𝑆]−1        (2.5) 

Total number of compliance matrix coefficients is 36 (same as the number of stiffness matrix 

coefficients). As shown in any mechanics of materials book, due to the existence of the strain 

energy density, the stiffness and compliance matrices are also symmetric. Due to this fact, only 

21 of the 36 elastic compliances are independent. Similarly, the stiffness matrix has also only 

21 independent stiffness matrix coefficients. 

Sometimes, stiffness and compliance constants are referred to as elastic constants.  Once these 

constants are found for a particular point, the stress and strain relationship can be developed 

(at that point). Note that these constants can vary from point to point if the material is 
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nonhomogeneous. Even if the anisotropic material is homogeneous (or assumed to be), one 

needs to find these 21 elastic constants experimentally.  

In case of anisotropic material stiffness and compliance matrix coefficients are dependent on 

the coordinate system – in other words, they change with rotation of coordinate system. 

 

2.1.4 Stress-strain relationship for orthotropic body 

Consider the case when the body has three mutually orthogonal planes of material property 

symmetry as shown in Figure 2.2 where planes 1–2, 2–3 and 3–1 are planes of material 

symmetry. In that case the 1,2 and 3 coordinate axes are referred to as the principal material 

coordinates. The body which has three planes of elastic symmetry is-called orthotropic body 

- orthogonally isotropic material. It can be easily shown that the equations of the general 

Hooke's law can be simplified when the body possesses planes of material symmetry. 

The Hooke's law for an orthotropic material, with planes 1–2, 2–3 and 3–1, as planes of material 

symmetry, for three dimensional stress state (Figure 2.3) can be written in the following form: 

                

[
 
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏23

𝜏13

𝜏12]
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0

𝐶12 𝐶22 𝐶23 0 0 0

𝐶13 𝐶23 𝐶33 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶55 0

0 0 0 0 0 𝐶66]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝛾23

𝛾13

𝛾12]
 
 
 
 
 
 

    (2.6) 

The above equation represents the constitutive relations between stresses and strains in linear 

– elastic orthotropic materials – Hooke's law for an orthotropic body. An example of such 

material is the unidirectional carbon fiber reinforced composite lamina shown in Figure 2.4. 

By inverting the stiffness matrix, the strain-stress relation is obtained in the inverse form: 

[
 
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝛾23

𝛾13

𝛾12]
 
 
 
 
 
 

 =  

[
 
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0

𝑆12 𝑆22 𝑆23 0 0 0

𝑆13 𝑆23 𝑆33 0 0 0

0 0 0 𝑆44 0 0

0 0 0 0 𝑆55 0

0 0 0 0 0 𝑆66]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏23

𝜏13

𝜏12]
 
 
 
 
 
 

    (2.7) 

Here, engineering constants need to be defined. The engineering constants are costants that 

engineers use to describe the mechanical behaviour of a material. Thus, in Mechanics of 

materials, engineering constants (sometimes known as elastic constants) are known as: 

Modulus of elasticity (𝐸), Poisson’s ratio (𝜈) and Shear modulus (𝐺). Usually, these constants 

are evaluated experimentally by conducting simple tests such as tension or pure shear tests. 

Therefore, it is logical, as well as practical, to express stiffness and compliance coefficients in 

Equations (2.6) and (2.7) in terms of appropriate engineering constants.  
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Figure 2.2 An orthotropic material - the material which has 3 mutually orthogonal planes of material symmetry 

 

Figure 2.3 A three-dimensional stress state, at a point in 1–2–3 orthogonal coordinate system 

 

Figure 2.4 The unidirectional composite lamina 

It is the fact that compliance matrix coefficients appearing in equation (2.7) are much easier to 

determine in terms of appropriate engineering constants. For the purpose of defining 

compliance matrix coefficients in terms of appropriate engineering constants a series of tests 

presented in Figure 2.5 should be performed.  
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        (a) 

 

 
                                           (b) 

 
        (c) 

 

 
                                           (d) 

 
       (e) 

 
                                            (f) 

Figure 2.5 Experiments for determining the compliance matrix coefficients 

 

Thus, after conducted experiments, presented in Figure 2.5, the following engineering 

constants of orthotropic body should be known: values of modulus of elasticity for the principal 

material directions (𝐸1, 𝐸2, 𝐸3), values of shear moduli in the pricipal material planes 

(𝐺12, 𝐺13, 𝐺23) as well as values of Poisson coefficients in principal material planes 

(𝜈12, 𝜈13, 𝜈23, 𝜈21, 𝜈31, 𝜈32). Consequently, it can be easily shown that the compliance matrix 

for the orthotropic material, equation (2.7), may be presented in the following form: 

         [𝑆] =  

[
 
 
 
 
 
 
 
 
 
 
 
 
       

1

𝐸1

      −
𝜈12

𝐸1
   −

𝜈13

𝐸1
   0   0   0   

−
𝜈21

𝐸2
         

1

𝐸2
      −

𝜈23

𝐸2
   0   0   0   

−
𝜈31

𝐸3
      −

𝜈32

𝐸3
         

1

𝐸3
   0   0   0   

  

   0         0         0    
1

𝐺23
   0    0

   0         0         0      0    
1

𝐺13
   0

   0         0         0      0    0    
1

𝐺12 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.8) 

    

Now, Hooke's law for an orthotropic material, for principal material axes 1, 2 and 3, can be 

written in the following form, where the strain components are expressed in terms of stresses: 
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[
 
 
 
 
 
𝜀1

𝜀2
𝜀3

𝛾23
𝛾13

𝛾12]
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
 
 
 
       

1

𝐸1

      −
𝜈12

𝐸1
   −

𝜈13

𝐸1
   0   0   0   

−
𝜈21

𝐸2
         

1

𝐸2
      −

𝜈23

𝐸2
   0   0   0   

−
𝜈31

𝐸3
      −

𝜈32

𝐸3
         

1

𝐸3
   0   0   0   

  

   0         0         0    
1

𝐺23
   0    0

   0         0         0      0    
1

𝐺13
   0

   0         0         0      0    0    
1

𝐺12 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
𝜎1

𝜎2
𝜎3

𝜏23
𝜏13

𝜏12]
 
 
 
 
 

 (2.9) 

Important to remember that the values of coefficients of the stiffness matrix as well as the 

compliance matrix in anisotropic material depend on the reference coordinate system, in other 

words, they change if the coordinate system is changed and therefore: 𝐶𝑖𝑗
𝑥𝑦

≠ 𝐶𝑖𝑗
12

 (𝑆𝑖𝑗
𝑥𝑦

≠

𝑆𝑖𝑗
12

) 

 

 

2.2 Stress-Strain Relationships for thin plate - Plane Stress State 

A thin plate is a prismatic member having a small thickness. A plate shown in Figure 2.6 is 

primarily loaded in its own plane 𝑥–𝑦 (there are no out-of-plane loads). If the upper and lower 

surfaces of the plate are free from external loads, then 𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0.  

 

Figure 2.6  A thin plate loaded in its own plane 𝑥–𝑦 

If the plate is assumed to be thin, these three stresses within the plate are assumed to vary little 

from the magnitude of stresses at the top and the bottom surfaces. Thus, stresses 𝜎𝑧 , 𝜏𝑧𝑥 and 

𝜏𝑧𝑦 can be assumed to be zero within the plate also, while the non-zero stresses 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦  

have uniform distribution through plate thickness (see Figure 2.7).  
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Figure 2.7    Plane stress state in a thin plate (𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0) 

If previous conditions are fulfilled, we can assume that plate, shown in Figure 2.7, is under 

plane stress state. In this case, since: 𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0, stress tensor has the form: 

{𝜎} = [

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑦𝑥 𝜎𝑦 0

0 0 0

] .                                           (2.10) 

While the Hooke’s law is given by:  

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝛾𝑦𝑧

𝛾𝑥𝑧

𝛾𝑥𝑦]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11

𝑥𝑦
⋯ 𝑆16

𝑥𝑦

⋮ ⋱ ⋮

𝑆61
𝑥𝑦

⋯ 𝑆66
𝑥𝑦

]
 
 
 
 
 

.

[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

0
0
0

𝜏𝑥𝑦]
 
 
 
 
 

 .                 (2.11) 

 

2.2.1 Stress-Strain Relations in a Local Coordinate System 

In Figure 2.8 a thin plate made of an orthotropic material is shown where orthogonal axes 1, 2, 

3 are principal material axes.  These three axes, define three planes of material symmetry: 1–

2, 1–3 and 2–3 (see Figure 2.2). Since in such case according to equation (2.7) some compliance 

constants are equal to zero previous equation (2.11), for orthogonal coordinate system 1–2–3, 

becomes:  

11 12 131 1

12 22 232 2

13 23 333
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5513
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0 0 0 0 0 0
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
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 
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    
       

     
    
    
    
        

           (2.12) 
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Based on this relationship, it is evident that  

23 130 0       (2.13) 

According to the plane-stress assumption, the occurrence of shear strains is completely absent 

in planes 2–3 and 1–3. It should be noted that normal strain 𝜀3 is not independent component 

of strain since it can be expressed as a function of the other two normal strain 𝜀1 and 𝜀2:  

3 13 1 23 2S S         (2.14) 

 

 

Figure 2.8   A thin orthotropic plate. Axes 1, 2 and 3 are principal material axes 

The equation (2.14) explicitly demonstrates that in a state of plane stress, an extensional strain 

in the third direction exists, on the other words, it is incorrect to make the assumption that strain 

𝜀3 is equal to zero. The non-zero nature of the quantity can be attributed to the influence of 

Poisson's ratios ν13 and ν23 on S13 and S23, respectively, in conjunction with the presence of 

non-zero stress components σ1 and σ2.  

Now, Hooke’s law for an orthotropic thin plate, for plane stress state, defined in orthogonal 

coordinate system 1–2–3 (where axes 1, 2, 3 are principal material axes defining three planes 

of material symmetry) can be expressed as: 

 
1 11 12 1 1

2 12 22 2 2

12 66 12 12

0

0

0 0

S S

S S S

S

  
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  

       
      

       
             

    (2.15) 

As shown in Chapter 2.1.4, compliance matrix coefficients can be defined in terms of 

appropriate engineering constants as follows: 

12 21
11 12 21 22 66

1 1 2 2 12

1 1 1
, , , ,S S S S S

E E E E G

 
         (2.16)  

If the plate is made of isotropic material, the previous equation (2.16), simplifies to well known 

relationships: 

 
11 22 12 66

2 11 1
S S S S

E E G E

 
        (2.17) 
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By the inverse form of the stress-strain relation, equation (2.12), using the plane-stress 

assumption, becomes: 

11 12 131 1

12 22 232 2

13 23 33 3

44 23

55 13

6612 12

0 0 0

0 0 0

0 0 00

0 0 0 0 00

0 0 0 0 00

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 

 







 

    
    
    
       

     
    
    
    
        

   (2.18) 

With the above, it can be concluded that 

23 130 0        (2.19) 

In analogy to equation (2.14), the third equation of equation (2.18) yields 

13 1 23 2 33 30 C C C          (2.20) 

with rearranged, it becomes 

13 23
3 1 2

33 33

C C

C C
           (2.21) 

Equation (2.21) again confirms that ε3 is not an independent component of strain since it can 

be expressed as a function of the remaining two linear deformations: i.e.  3 1 2,f   . 

Similar to how equation (2.12) was reduced to equation (2.15) by eliminating variables, the 

three-dimensional form of equation (2.18) cannot be reduced directly to a relation involving 

only σ1, σ2, and τ12, and ε1, ε2, γ12.  The expressions for σ1 and σ2 can be established using the 

first two equations in equation (2.18): 

1 11 1 12 2 13 3

2 12 1 22 2 23 3

C C C

C C C

   

   

  

  
     (2.22) 

When ε3 is substituted into equation (2.21), the outcome is: 

13 23
1 11 1 12 2 13 1 2

33 33

13 23
2 12 1 22 2 23 1 2

33 33

C C
C C C

C C

C C
C C C

C C

    

    

 
     

 

 
     

 

   (2.23) 

or 

2

13 13 23
1 11 1 12 2

33 33

2

13 23 23
2 12 1 22 2

33 33

C C C
C C

C C

C C C
C C

C C

  

  

   
      
   

   
      
   

   (2.24) 
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Considering the plane stress state, the relation between stresses and strains can be expressed 

as follows, which includes the shear stress-shear strain relation: 

 

1 11 12 1

2 12 22 2

12 66 12

0

0

0 0

Q Q

Q Q

Q

 

 

 

     
    

    
         

    (2.25) 

where 𝑄𝑖𝑗  are known as the reduced stiffness matrix coefficients. According to equations (2.18) 

and (2.24) it is clear that there is a difference between the following stiffness matrix coefficients 

𝐶𝑖𝑗 and the following reduced stiffness matrix coefficients 𝑄𝑖𝑗 because they are not the same: 

𝑄11 ≠ 𝐶11  , 𝑄12 ≠ 𝐶12 , 𝑄22 ≠ 𝐶22 , But, on the other hand  𝑄66 = 𝐶66 . Based on equations 

(2.24) reduced stiffness matrix coefficients 𝑄𝑖𝑗 can be expressed in terms of appropriate 

stiffness matrix coefficients 𝐶𝑖𝑗 as follows: 

2

13
11 11

33

13 23
12 12

33

2

23
22 22

33

66 66

C
Q C

C

C C
Q C

C

C
Q C

C

Q C

 

 

 



      (2.26) 

Reduced stiffness matrix coefficients 𝑄𝑖𝑗 are called “reduced” because they are the end 

outcome of reducing the problem from a completely three-dimensional to a two-dimensional, 

or plane-stress, problem. It is obvious that equation (2.25) can be obtained by the inverting 

equation (2.15). By using matrix algebra, it can be proved that reduced stiffness matrix 

coefficients are related to compliance matrix coefficients in the following form: 

22
11 2

11 22 12

12
12 2

11 22 12

11
22 2

11 22 12

66

66

1

S
Q

S S S

S
Q

S S S

S
Q

S S S

Q
S




 







      (2.27) 

Based on equation (2.16), after substituting in equation (2.27), reduced stiffness matrix 

coefficients can be also defined in terms of appropriate engineering constants as follows: 
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1
11

12 21

12 2 21 1
12

12 21 12 21

2
22

12 21

66 12

1

1 1

1

E
Q

E E
Q

E
Q

Q G

 

 

   

 




 
 






     (2.28) 

It should be noted that in case when the plate is made of isotropic material the previous equation 

(2.28) simplifies to well known form: 

 

11 22 122 2

66

1 1

2 1

E E
Q Q Q

E
Q G



 



  
 

 


   (2.29) 

 

2.2.2 Stress-Strain Relations in a Global Coordinate System  

Figure 2.9 shows a thin orthotropic plate where axes 1 and 2 are principal material axes or so-

called local axes while the axes 𝑥 and 𝑦 are called the global axes or the off-axes. The angle 

between the local and global axes is denoted by an angle θ. In Figure 2.9 the orientation of 

angle θ is adopted to be positive. Usually, the stress-strain relations in a global coordinate 

system can be derived based on static equilibrium of prismatic differential elements ABC and 

BED which are cut off from thin orthotropic plate as shown in Figure 2.10. Loads shown in 

Figure 2.10 are the following stresses: 𝜎1 and 𝜎2 are local normal stresses in directions 1 and 

2, 𝜏12 is shear stress in plane 1–2, while 𝜎𝑥, and 𝜎𝑦 are global normal stresses in directions x 

and y while 𝜏𝑥𝑦 is shear stress in plane 𝑥–𝑦. It can be easily shown that static equilibrium of 

prismatic differential elements ABC and BED gives that the global stresses (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦) and 

local stresses (𝜎1 , 𝜎2 , 𝜏12) are related to each other through the transformation matrix [𝑇]: 

[

𝜎1

𝜎2

𝜏12

] = [𝑇] [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] ,        (2.30) 

or in inverted form: 

[

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [𝑇]−1  [

𝜎1

𝜎2

𝜏12

] .       (2.31) 

 

where transformation matrix [𝑇] and inverted transformation matrix [𝑇]−1 are defined as: 
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               [𝑇] =  [

    𝑐2   𝑠2    2𝑠𝑐

    𝑠2   𝑐2 −2𝑠𝑐

−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

]  ,         [𝑇]−1 = [

 𝑐2    𝑠2 −2𝑠𝑐

 𝑠2    𝑐2    2𝑠𝑐

𝑠𝑐 −𝑠𝑐 𝑐2 − 𝑠2

]  ,     (2.32)                          

where: 𝑐 = cos(θ) , 𝑠 = sin(θ)  while angle θ is the angle degree between the local and global 

axis as shown in Figures 2.9 and 2.10.  

 
Figure 2.9 The global (𝑥–𝑦) and local (1–2) coordinate systems of a thin composite plate reinforced with 

continuous fibers 

 
Figure 2.10 Loads on prismatic differential elements ABC and BED which are cut off from thin orthotropic 

plate shown in Figure 2.9 

In the same manner, due to the fact that stress and strain are tensors of the same order, the 

global strains (𝜀𝑥  , 𝜀𝑦 , 𝛾𝑥𝑦) and local strains (𝜀1 , 𝜀2 , 𝛾12) in an angle lamina are related to each 

other through the transformation matrix [𝑇]: 

[
 
 
 

𝜀1

𝜀2

1

2
𝛾12]

 
 
 

= [𝑇]

[
 
 
 
 

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦]

 
 
 
 

  , 

 

                                (2.33) 

or in inverted form: 
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[
 
 
 
 

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦]

 
 
 
 

=  [𝑇]−1

[
 
 
 

𝜀1

𝜀2

1

2
𝛾12]

 
 
 

  , 

 

                                                (2.34) 

where: 𝜀1 and 𝜀2 are local normal strains in directions 1 and 2, 𝛾12 is the shear strain in plane 

1-2, while 𝜀𝑥 and 𝜀𝑦 are global normal strains in directions x and y while 𝛾𝑥𝑦 is the shear strain 

in plane x-y. Note that in equations (2.33) and (2.34) the shear strain is multiplied with factor 

1/2. To eliminate factor 1/2 in equation (2.33), so-called Reuter matrix [𝑅] is introduced: 

    [𝑅] = [
1  0 0
0 1 0
0 0 2

]  .                  (2.35) 

After substitution of Reuter matrix [𝑅] in the equation (2.33) it can be re-written as: 

   [

𝜀1

𝜀2

𝛾12

] = [𝑅][𝑇][𝑅]−1 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

]  .                                     (2.36) 

Now, by using equations (2.31), (2.25) and (2.36) it can be shown that the global stresses 

(𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦) and the global strains (𝜀𝑥 , 𝜀𝑦 , 𝛾𝑥𝑦) are related as follows: 

 

                [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [𝑇]−1 [

𝜎1

𝜎2

𝜏12

] = [𝑇]−1[𝑄] [

𝜀1

𝜀2

𝛾12

] = [𝑇]−1[𝑄][𝑅][𝑇][𝑅]−1 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] .       (2.37) 

 

If product of matrix multiplication in equation (2.37) is denoted by matrix  [𝑄̅]: 

               [𝑄̅] = [𝑇]−1[𝑄][𝑅][𝑇][𝑅]−1 ,                   (2.38) 

then equation (2.37) becomes: 

   [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [𝑄̅] [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅21 𝑄̅22 𝑄̅26

𝑄̅61 𝑄̅62 𝑄̅66

] [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] .                  (2.39) 

Matrix [𝑄̅] in equation (2.39) is called transformed reduced stiffness matrix while coefficients 

𝑄̅𝑘𝑙 are called transformed reduced stiffness matrix coefficients. These coefficients can be 

calculated from matrix equation (2.38) as follows:  

                 𝑄̅11 = 𝑄11𝑐
4 + 2(𝑄12 + 2𝑄66)𝑠

2𝑐2 + 𝑄22𝑠
4 

                 𝑄̅12 = 𝑄̅21 = (𝑄11 + 𝑄22 − 4𝑄66)𝑠
2𝑐2 + 𝑄12(𝑠

4 + 𝑐4) 

                 𝑄̅22 = 𝑄11𝑠
4 + 2(𝑄12 + 2𝑄66)𝑠

2𝑐2 + 𝑄22𝑐
4 

                 𝑄̅16 = 𝑄̅61 = (𝑄11 − 𝑄12 − 2𝑄66)𝑠𝑐
3 − (𝑄22 − 𝑄12 − 2𝑄66)𝑠

3𝑐     (2.40) 

                 𝑄̅26 = 𝑄̅62 = (𝑄11 − 𝑄12 − 2𝑄66)𝑠
3𝑐 − (𝑄22 − 𝑄12 − 2𝑄66)𝑠𝑐

3 

                 𝑄̅66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑠
2𝑐2 + 𝑄66(𝑠

4 + 𝑐4) 
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After inverting, equation (2.39) becomes:  

 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [𝑄̅]−1 [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [𝑆̅] [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [

𝑆1̅1 𝑆1̅2 𝑆1̅6

𝑆2̅1 𝑆2̅2 𝑆2̅6

𝑆6̅1 𝑆6̅2 𝑆6̅6

] [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] .                     (2.41) 

Matrix [𝑆̅] in equation (2.41) is called transformed compliance matrix while coefficients 𝑆𝑘̅𝑙 

are called transformed compliance matrix coefficients. Matrices [𝑆̅] and [𝑄̅] are mutually 

inverted matrices: [𝑆̅] = [𝑄̅]−1. By using matrix algebra, from equation (2.36), it can be proved 

that transformed compliance matrix [𝑆̅] can be calculated from: 

                [𝑆̅] = [R][T]−1[R]−1[S][T] .                 (2.42) 

After substituting expressions for matrices [R], [T] and [S] we obtain transformed compliance 

matrix coefficients 𝑆𝑘̅𝑙: 

  𝑆1̅1 = 𝑆11𝑐
4 + (2𝑆12 + 𝑆66)𝑠

2𝑐2 + 𝑆22𝑠
4 

  𝑆1̅2 = 𝑆2̅1 = (𝑆11 + 𝑆22 − 𝑆66)𝑠
2𝑐2+𝑆12(𝑠

4 + 𝑐4) 

  𝑆2̅2 = 𝑆11𝑠
4 + (2𝑆12 + 𝑆66)𝑠

2𝑐2 + 𝑆22𝑐
4 

               𝑆1̅6 = 𝑆6̅1 = (2𝑆11 − 2𝑆12 − 𝑆66)𝑠𝑐
3 − (2𝑆22 − 2𝑆12 − 𝑆66)𝑠

3𝑐                   (2.43) 

  𝑆2̅6 = 𝑆6̅2 = (2𝑆11 − 2𝑆12 − 𝑆66)𝑠
3𝑐 − (2𝑆22 − 2𝑆12 − 𝑆66)𝑠𝑐

3 

  𝑆6̅6 = 2(2𝑆11 + 2𝑆22 − 4𝑆12 − 𝑆66)𝑠
2𝑐2 + 𝑆66(𝑠4 + 𝑐4) 

Compliance matrix coefficients 𝑆𝑖𝑗 were earlier defined in terms of appropriate engineering 

constants – see equation (2.16). Therefore, equation (2.43) becomes: 

               𝑆1̅1 =
1

𝐸1
𝑐4 + [−

2𝜈12

𝐸1
+

1

𝐺12
] 𝑠2𝑐2 +

1

𝐸2
𝑠4 

     

               𝑆1̅2 = −
𝜈12

𝐸1

(𝑠4 + 𝑐4) + [
1

𝐸1
+

1

𝐸2
−

1

𝐺12
] 𝑠2𝑐2 

     

               𝑆2̅2 =
1

𝐸1
𝑠4 + [−

2𝜈12

𝐸1
+

1

𝐺12
] 𝑠2𝑐2 +

1

𝐸2
𝑐4                

     

               𝑆1̅6 = [
2

𝐸1
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠𝑐3 − [

2

𝐸2
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠3𝑐 

               (2.44) 

               𝑆2̅6 = [
2

𝐸1
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠3𝑐 − [

2

𝐸2
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠𝑐3 

       

               𝑆6̅6 = 2 [
2

𝐸1
+

2

𝐸2
+

4𝜈12

𝐸1
−

1

𝐺12
] 𝑠2𝑐2 +

1

𝐺12

(𝑠4 + 𝑐4) 
       

The strains of an orthotropic thin plate material element, as measured in the x-y-z global 

coordinate system, are related to the applied stresses, according to equations (2.39) and (2.41). 

From a purely linear algebraic perspective, we can see that these equations are the end result 

of basic operations like transformations and inversions. Equation (2.41) states that a normal 

stress σx will produce shearing deformation 𝛾𝑥𝑦 via the 𝑆1̅6 term, and a normal stress σy will do 

the same through the 𝑆2̅6 term. Shear stress τxy will cause strains εx and εy, due to the presence 

of these same terms, 𝑆1̅6 and 𝑆2̅6. Therefore, it is obvious that shear-extension coupling effect 

exists.  The term shear-extension coupling refers to the coupling found in anisotropic materials 

(e.g. fiber reinforced composites). This material behaviour is utterly dissimilar to the ones 

found in isotropic materials (e.g. metals).  
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It should be noted that 𝑆1̅2 and all terms on the diagonal are symmetrical functions of θ 

(mirrored at θ = 0° and repeated every 90°), whereas the off-diagonal terms 𝑆1̅6 and 𝑆2̅6 are 

asymmetrical functions of θ. Thus, when θ = 0° equation (2.44) simplifies to: 

 

11 2211 22

12 2612

16 66 66

(0 ) (0 )

(0 ) (0 ) 0

(0 ) 0 (0 )

S S S S

S S S

S S S

   

   

   

      (2.45) 

The result of equation (2.45), is logical since case when θ = 0° refers to the principal material 

coordinate system. None of the 16S or 26S  exist in the principal material system. The off-axis 

compliances are a common name for the barred quantities in equation (2.44).  

It should be noted that in case when the plate is made of isotropic material the previous equation 

(2.44) simplifies to: 

     

11

22

12

16

26

66

1

1

0

0

1 2(1 )

S
E

S
E

S
E

S

S

S
G E









 






 

       (2.46) 

2.3 Elastic Constants in a Global Coordinate System 

The elastic constants related to the 1–2–3 principal material coordinate system (𝐸1, 𝐸2, etc.) 

were introduced in Chapter 2.1.4. Based on that discussion the elastic constants of the thin 

orthotropic plate for global coordinate system 𝑥–𝑦 can be directly derived from their 

definitions.  

 

 

                            (a) (b)                     (c) 

Figure 2.11 Off-axis element with simple stress states for definition of elastic constants 
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Take into consideration, as shown in Figure 2.11 (a), an off-axis element of the orthotropic thin 

plate in the 𝑥–𝑦 coordinate system with its fiber oriented at some angle θ with respect to the 𝑥 

axis. The element is subjected to a normal tensile stress σx while all other stresses are set to 

zero while the magnitude of the tensile stress is up to elastic limit. Now, equation (2.41) 

becomes: 

 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝑆1̅1 𝑆1̅2 𝑆1̅6

𝑆1̅2 𝑆2̅2 𝑆2̅6

𝑆1̅6 𝑆2̅6 𝑆6̅6

] [

𝜎𝑥

0

0

] ,                     (2.47) 

or, 

            𝜀𝑥 = 𝑆1̅1𝜎𝑥  ,                         (2.48)  
            𝜀𝑦 = 𝑆1̅2𝜎𝑥  ,                         (2.49) 

           𝛾𝑥𝑦 = 𝑆1̅6𝜎𝑥  ,                                    (2.50)   

resulting in existence of all components of strain. In response to this applied stress, the element 

stretches in the 𝑥 direction, expected to contracts in the 𝑦 direction, and because the 𝑥–axis is 

not aligned with principal material direction 1, the shear strain 𝛾𝑥𝑦 arise. By definition of the 

Hooke's law, extensional strain in the 𝑥 direction (𝜀𝑥) is related to the stress in the 𝑥 direction 

(𝜎𝑥) by the elasticity modulus in the 𝑥 direction (𝐸𝑥): 

 x
x

xE


           (2.51) 

However, from the strain-stress relations of equation (2.48) extensional strain in the 𝑥 direction 

(𝜀𝑥) is: 

 11x xS          (2.52) 

since previous two equations are identic, the elasticity modulus in the 𝑥 direction (𝐸𝑥) is 

obtained to be: 

 
11

1
xE

S
          (2.53) 

Due to Poisson's effect when the orthotropic thin plate element shown in Figure 2.11 (a) 

is subjected to a tensile stress in the 𝑥 direction, it not only stretches in that direction, but 

it also contracts in the 𝑦 direction. By the definition Poisson's ratio 𝜈𝑥𝑦 is the following 

quotient: 

y

x y

x





           (2.54) 

where the first subscript indicates the direction of the applied stress, while the second subscript 

indicates the direction of contraction. From the strain-stress relations of equation (2.49) 

extensional strain in the 𝑦 direction (𝜀𝑦) is:  

12y xS           (2.55) 
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By substituting equations (2.52) and (2.55) into equation (2.54) Poisson's ratio 𝜈𝑥𝑦 is: 

12

11

x y

S

S
                                   (2.56) 

According to Lekhnitskii, the coefficients of the mutual influence of the first kind: 𝑚𝑥,𝑥𝑦 and 

𝑚𝑦,𝑥𝑦 represent the effect of anisotropy in the 𝑥–𝑦 plane in terms of the appearance of strains 

in the directions of the 𝑥 and 𝑦 axes (𝜀𝑥, 𝜀𝑦) due to the shear stress 𝜏𝑥𝑦 (where:  𝜎𝑥 = 𝜎𝑦 = 0), 

while the coefficients of mutual influence of the second kind: 𝑛𝑥𝑦,𝑥 and 𝑛𝑥𝑦,𝑦 represent the 

occurrence of shear strain in the 𝑥–𝑦 plane (𝛾𝑥𝑦) due to the action of normal stresses 𝜎𝑥 (where: 

𝜎𝑦 = 𝜏𝑥𝑦 = 0) and 𝜎𝑦  (where 𝜎𝑥 = 𝜏𝑥𝑦 = 0). In a similar way as Poisson's coefficient couples 

linear strains, coefficients of mutual influence couple linear and shear strains. By the definition 

coefficient of mutual influence of the second kind: 𝑛𝑥𝑦,𝑥 is: 

              𝑛𝑥𝑦,𝑥 ≡ −
𝛾𝑥𝑦

𝜀𝑥
   (𝜎𝑥 ≠ 0) 

                                        (2.57) 

From equation (2-48) shear strain is: 

           𝛾𝑥𝑦 = 𝑆1̅6𝜎𝑥  ,                                                    (2-58)   

By substituting equations (2.48) and (2.58) into equation (2.57) the coefficient of mutual 

influence of the second kind: 𝑛𝑥𝑦,𝑥 is: 

              𝑛𝑥𝑦,𝑥 = −
𝑆1̅6

𝑆1̅1

    
                                          (2.59) 

The conditions shown in Figure 2.11 (b), correspond to what happens when a normal stress in 

the 𝑦 direction (𝜎𝑦) is applied to the orthotropic thin plate element instead of a stress 𝜎𝑥. In 

case when only normal stress 𝜎𝑦 is applied, equation (2.41) becomes: 

 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝑆1̅1 𝑆1̅2 𝑆1̅6

𝑆1̅2 𝑆2̅2 𝑆2̅6

𝑆1̅6 𝑆2̅6 𝑆6̅6

] [

0

𝜎𝑦

0

] ,                        (2.60) 

or, 

            𝜀𝑥 = 𝑆1̅2𝜎𝑦  ,                            (2.61)  
            𝜀𝑦 = 𝑆2̅2𝜎𝑦  ,                            (2.62) 

           𝛾𝑥𝑦 = 𝑆2̅6𝜎𝑦  ,                                       (2.63)   

resulting again in existence of all components of strain. By definition of The Hooke's law 

extensional strain in the 𝑦 direction (𝜀𝑦) is related to the normal stress in the 𝑦 direction (𝜎𝑦) 

by the elasticity modulus in the 𝑦 direction (𝐸𝑥): 

y

y

yE


                           (2.64) 

Since equations (2.62) and (2.64) are identic, the elasticity modulus in the 𝑦 direction (𝐸𝑦) 

is: 
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22

1
yE

S
                      (2.65) 

By the definition Poisson's ratio 𝜈𝑦𝑥 is the following quotient: 

x
y x

y





                       (2.66) 

By substituting equations (2.61) and (2.62) into equation (2.66) Poisson's ratio 𝜈𝑦𝑥 is: 

12

22

y x

S

S
                        (2.67) 

Based on previous discussion, it can be easily proved that in case of the orthotropic thin 

plate element the following dependencies must be fulfilled: 

              
𝜈𝑥𝑦

𝐸𝑥
 =

𝜈𝑦𝑥

𝐸𝑦
  .                                                                   

By the definition coefficient of mutual influence of the second kind: 𝑛𝑥𝑦,𝑦 is: 

              𝑛𝑥𝑦,𝑥 ≡ −
𝛾𝑥𝑦

𝜀𝑦
   (𝜎𝑦 ≠ 0) 

                                     (2.68) 

By substituting equations (2.62) and (2.63) into equation (2.68) the coefficient of mutual 

influence of the second kind: 𝑛𝑥𝑦,𝑥 is: 

              𝑛𝑥𝑦,𝑦 = −
𝑆1̅6

𝑆2̅2

    
                                     (2.69) 

Finally, the conditions shown in Figure 2.11 (c), correspond to what happens when a shear 

stress in the 𝑥–𝑦 plane  (𝜏𝑥𝑦) is applied to the orthotropic thin plate element. In case when only 

shear stress 𝜏𝑥𝑦 is applied, equation (2.41) becomes: 

 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝑆1̅1 𝑆1̅2 𝑆1̅6

𝑆1̅2 𝑆2̅2 𝑆2̅6

𝑆1̅6 𝑆2̅6 𝑆6̅6

] [

0

0

𝜏𝑥𝑦

] ,                      (2.70) 

or, 

            𝜀𝑥 = 𝑆1̅6𝜏𝑥𝑦  ,                          (2.71)  
            𝜀𝑦 = 𝑆2̅6𝜏𝑥𝑦  ,                          (2.72) 

           𝛾𝑥𝑦 = 𝑆6̅6𝜏𝑥𝑦  ,                                                   (2.73)   

resulting again in existence of all components of strain. By definition of extended Hooke's law 

shear strain in the 𝑥–𝑦 plane  (𝛾𝑥𝑦) is related to the shear stress 𝜏𝑥𝑦 by the shear modulus in 

the 𝑥–𝑦 plane (𝐺𝑥𝑦): 

           𝛾𝑥𝑦 =
 𝜏𝑥𝑦

𝐺𝑥𝑦
                                  (2.74) 

Since equations (2.73) and (2.74) are identic, the shear modulus in the 𝑥–𝑦 plane (𝐺𝑥𝑦) is: 
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          𝐺𝑥𝑦 =
1

𝑆̅66

                                  (2.75) 

Based on previous discussion, having in mind the definition of the coefficients of the mutual 

influence of the first kind 𝑚𝑥,𝑥𝑦 and 𝑚𝑦,𝑥𝑦: 

         𝑚𝑥,𝑥𝑦 ≡ −
𝜀𝑥

𝛾𝑥𝑦
  (𝜏𝑥𝑦 ≠ 0)  , 𝑚𝑦,𝑥𝑦 ≡ −

𝜀𝑦

𝛾𝑥𝑦
  (𝜏𝑥𝑦 ≠ 0) ,                     

it can be easily proved that in case of the orthotropic thin plate element the 

following dependencies must be fulfilled: 
 

                 
𝑛𝑥𝑦,𝑥

𝐸𝑥
=

𝑚𝑥,𝑥𝑦

𝐺𝑥𝑦
  ,               

                
𝑛𝑥𝑦,𝑦

𝐸𝑦
=

𝑚𝑦,𝑥𝑦

𝐺𝑥𝑦
  .            

 

 

Based on equations (2.53), (2.56), (2.59), (2.65), (2.69) and (2.75)  transformed compliance 

matrix coefficients 𝑆𝑘̅𝑙 can be expressed in terms of elastic constants related to global 

coordinate system 𝑥–𝑦 as follows:  

                  𝑆1̅1 =
1

𝐸𝑥
 ,   𝑆1̅2 = −

𝜈𝑥𝑦

𝐸𝑥
 ,   𝑆2̅2 =

1

𝐸𝑦
 ,   𝑆6̅6 =

1

𝐺𝑥𝑦
  , 

                  𝑆1̅6 = −
𝑛𝑥𝑦,𝑥

𝐸𝑥
 ,     𝑆2̅6 = −

𝑛𝑥𝑦,𝑦

𝐸𝑦
 . 

 (2.76) 

In previous Chapter 2.2.2 we obtained transformed compliance matrix coefficients 𝑆𝑘̅𝑙 in terms 

of appropriate engineering constants - see equation (2.44). By combining equations (2.44) and 

(2.76) we obtain: 

1

𝐸𝑥
=

1

𝐸1
𝑐4 + [−

2𝜈12

𝐸1
+

1

𝐺12
] 𝑠2𝑐2 +

1

𝐸2
𝑠4 ,     (2.77) 

               
𝜈𝑥𝑦

𝐸𝑥
=

𝜈12

𝐸1

(𝑠4 + 𝑐4) − [
1

𝐸1
+

1

𝐸2
−

1

𝐺12
] 𝑠2𝑐2 ,      (2.78) 

 
1

𝐸𝑦
=

1

𝐸1
𝑠4 + [−

2𝜈12

𝐸1
+

1

𝐺12
] 𝑠2𝑐2 +

1

𝐸2
𝑐4 ,                     (2.79) 

              
𝑛𝑥𝑦,𝑥

𝐸𝑥
= −[

2

𝐸1
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠𝑐3 + [

2

𝐸2
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠3𝑐 ,       (2.80) 

              
𝑛𝑥𝑦,𝑦

𝐸𝑦
= −[

2

𝐸1
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠3𝑐 + [

2

𝐸2
+

2𝜈12

𝐸1
−

1

𝐺12
] 𝑠𝑐3 ,       (2.81) 

                 
1

𝐺𝑥𝑦
= 2 [

2

𝐸1
+

2

𝐸2
+

4𝜈12

𝐸1
−

1

𝐺12
] 𝑠2𝑐2 +

1

𝐺12

(𝑠4 + 𝑐4) .       (2.82) 

The above equations actually define the off-axis engineering properties of the orthotropic thin 

plate element. 
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3 FDM fabricated plate-like parts from PET-G polymer 

reinforced with short carbon fibers 

As earlier mentioned, the resulting properties of a composite material in general depend on the 

properties of the individual constituents, but also their geometry and the dispersion of phases. 

Details on possible geometries of the reinforcements used in composites are already outlined 

in the Introduction of this thesis (see Figure 1.2). From this Chapter and further on throughout 

the thesis, Short Carbon Fibers (SCF) are particularly interesting as these were used as 

reinforcements of the here-studied polymeric plate-parts. PET-G filament from Black Element 

with claimed 30% weight fraction of SCF was used for preparing the plate-like parts for the 

study. Therefore, studied polymeric samples are actually reinforced with the discontinuous 

fibers and CLT principles cannot be directly applied to predict their behaviour without previous 

research into their behaviour under relevant loadings – in this thesis the in-plane ones are in 

focus. It is also noteworthy that additive manufacturing as a production technique selected to 

fabricate the studied samples influences the distribution of the discontinuous fibers used as 

reinforcements which determines the homogeneity (uniformity) of the material system. The 

more non-uniform the reinforcement distribution, the more heterogeneous the material, and the 

higher the scatter in properties and the probability of failure in the weakest areas [1]. On top of 

that, the orientation of the reinforcement is known to affect the mechanical behaviour and 

occurrence of the anisotropy of the material system and therefore the raster angle potentially 

defining the in-plane angle of reinforcement orientation within the additively manufactured 

plates is chosen to be further examined. 

3.1 Short carbon fibers as reinforcements in additively manufactured 

parts 

Composite filaments with a polymer matrix and microscale additives were developed to 

enhance the strength and stiffness properties of additively manufactured parts – i.e. to bridge 

the gap in terms of mechanical properties between continuous fiber reinforced composites and 

unreinforced polymers used in everyday applications [30]. Short carbon fibers (SCF) are 

primarily used as the advantageous reinforcing agents. Particularly, the milled carbon fibers 

(around 200 µm long) are added to polymer matrix to form a sort of composite filament 

material utilised for 3D printing and fabricating the composite parts as well. The selection of 

the reinforcing additive and a proper polymer matrix is an issue directly dependant on the type 

of application the produced part is intended for. Hence, there should be noted that the PET-G 

polymer reinforced with SCF selected for this study might be used for parts intended for 

moderate loadings, but bearing in mind that this material is a low cost one and at the same time 

available and easy to process on an affordable desktop 3D printer.  

Additive composites infused with SCF have been successfully produced and are readily 

available on the market. Yet, a complete understanding of their behaviour under load remains 

a respectable area of research, given the morphological inhomogeneities present in the final 

additively manufactured part which influence the desired and pre-tailored mechanical 

properties. In order to obtain the stereological reconstructions and visualization of 3D models 

of the two-phase composite structure, micro-CT X-ray images may be used. For example, 

Lobov et al. [26] reconstructed a model of a monofilament sample 3D-printed from 
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acrylonitrile butadiene styrene (ABS) filled with SCF shown in Figure 3.1. There can be seen 

that SCF within ABS polymer are mainly oriented along with the printing direction (along 

vertical in the depicted model). 

 

Figure 3.1 Model of the SCF reinforcement structure of a single-layer monofilament sample (general view and 

enlarged fragment) obtained from micro-CT data [26] 

 

3.2 Raster angle as the influential parameter in FDM 

Alongside other FDM process parameters such as build orientation, layer thickness, infill 

density, extrusion width or nozzle temperature, the printing direction commonly referred to as 

“raster angle” appear to be one of the main parameters when influence on final mechanical 

properties is considered, especially for parts printed with flat orientation [8, 18]. Raster angle 

θ is the angle between the direction of the deposited beads and the x-axis (axis of load 

application), as shown in Figure 3. 2. 

 

Figure 3.2 Schematic of raster angle (θ) in a 3D printed part [32] 

The importance of the applied raster angle while printing the short fiber reinforced parts 

becomes obvious if this angle at the same time determines the angle of spreading the introduced 

reinforcements. This cannot be undoubtedly said to be true in advance as it is the case with the 

continuous fibers used as reinforcements. Again, there should be stated that in order to reach 

the full potential of FDM as an effective and versatile fabrication method to get the load-
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bearing structural components, imbedding reinforcements such as continuous or short fibers, 

particles and nanomaterials into the polymer matrix is required. Only for the first ones, namely 

continuous fiber reinforced composites, there are available relations that might be applied to 

the fabricated parts with more or less adjustment – relations already known from CLT. 

Recently, numerous researchers opted for short carbon fibers as reinforcements to improve the 

mechanical properties of the FDM based additive parts because of commercial availability of 

the feedstock materials and ease of fabrication. For instance, it is noted that short carbon fibers 

used as fillers within the epoxy-based matrix tend to orient along the printing direction due to 

the shear stress induced in the extrusion process around the print nozzle [7] – see Figure 3.3. 

As for more common polymers in 3D printing like ABS, the effects of raster angle on 

mechanical behaviour of parts fabricated from commercially available composite filaments 

seem to still be unknown and in that context Iyer et al. [29] report the effects of raster angle on 

the tensile strength, elastic modulus, flexural strength, flexural modulus, and fracture toughness 

of FDM SCF-reinforced ABS. A decreasing trend in tensile and flexural mechanical properties 

with increasing raster angle was observed. 

 

Figure 3.3 (a) FDM process; (b) Schematic of fiber orientation within epoxy-based resin [7, 33] 
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4 Experimental procedure and results 

The test specimens fabricated from PET-G material reinforced with short carbon fibers (SCF) 

are investigated for their tensile properties. For the fabrication process, a flat build orientation 

was used. Experimental assessments of ultimate tensile strength and stiffness are conducted for 

specimens manufactured with raster angles varying from 0° to 90°, with a 15° increment. 

4.1 Sample specifications and printing parameters  

The printing of tensile test specimens adheres to ASTM D638-03 standard [35] - the Type I 

specimens. 

 

Figure 4.1 TYPE I Specimen Dimensions: Length overall 165mm, Width of narrow section 13mm, Width overall 

19mm, Radius of fillet 76mm 

A steel nozzle was utilized to guarantee wear resistance due to the extremely abrasive nature 

of carbon fiber reinforced filaments. The nozzle had a diameter of 0.4 mm. Prusa MINI+ 3D 

printer settings used to create the test specimens included a heated bed temperature of 90°C, a 

speed of 80 mm/s, an extrusion width of 0.45 mm, a layer thickness of 0.2 mm and an infill 

density of 100% with 25% overlapping (to keep the air gap to a minimum). It is common for 

two neighbouring rasters (beads) to have an air gap, i.e. captured air. Although overlapping can 

lead to uneven surfaces, longer printing times and dimensional inequality, it can also reduce 

the air gap, enhance the part's integrity and make diffusions between neighbouring layers easier 

[27, 28]. For the purpose of avoiding any additional impact on the mechanical properties of the 

final product, all of the specimens were printed without contour lines. 

 

Figure 4.2 Procedure B, Three-Rail Shear Specimen, SI Units 
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Dimensions of specimens printed for shear testing (Figure 4.2) are in accordance with ASTM 

D4255 standard [36]. This test method determines the in-plane shear properties of fiber 

reinforced composite materials in general, by either of two procedures. The Three-Rail Shear 

Test procedure is utilised here (see also Figures 4.12 and 4.13). All printing parameters were 

set to be the same as for the specimens printed for tensile testing. Thickness of the specimens 

was 3 mm and all the specimens were printed in a way that extruded material lines are deposited 

transversely (along the shorter side of the specimen shown in Figure 4.2) which corresponds to 

the 90° raster angle if using the previously defined terminology for the tensile test specimens.  

 

4.2 Tensile testing and obtained results  

For each of the raster angles that were considered (0°, 15°, 30°, 45°, 60°, 75° and 90°) series 

of five test specimens were printed – see Figure 4.3. PET-G filament with manufacturer 

claimed 30% weight fraction of SCF used for printing the specimens was produced by Black 

Element, China. 

Tensile tests were conducted on the Shimadzu AG-Xplus universal testing machine (Figure 

4.4). The results encompassing applied force and current elongation were continuously 

recorded and monitored through the built-in software -Trapezium X. A testing speed of 2.5 

mm/min was used. Digital Image Correlation (DIC) was used to record the extensional strain 

rates of samples during the actual test on the universal testing machine. The fracture surfaces 

of the tested specimens were then analyzed using scanning electron microscopy (SEM). 

 

 

Figure 4.3 Set of printed samples prepared for tensile 

testing 

 
 
 

 

 

Figure 4.4 Experimental setup used for the tensile 

test 
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4.2.1 Universal testing machine results 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

 

(g) 

Figure 4.5 Stress-strain curves obtained for different sample series defined by raster angle 
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Figure 4.6 shows the series-averaged stress-strain diagrams altogether, generated from the data 

collected by the tensile testing conducted on the universal testing machine (previously depicted 

through Figure 4.5 for particular sample series). The stress-strain curves clearly show that the 

tested samples initially exhibited linear-elastic behaviour. The transition between the elastic 

and inelastic regions on the stress-strain curves is not so clearly defined for all the sample series 

tested. The fracture of all samples occurred shortly after reaching their ultimate tensile strength. 

 

Figure 4.6 Stress-strain curves for different raster angles [32] 

 

The process which ensures the corrected zero point on the strain axis (namely toe 

compensation) was performed on the original stress-strain curves derived from universal 

testing machine results. This process ensures that the recorded strain values are accurately 

displayed. 

Figure 4.7a shows a bar graph that highlights the variation in the modulus of elasticity values 

computed for various raster angles. As compared to specimens printed applying the 60°, 75° 

and 90° raster angles, the 0° raster angle specimen obviously ensures considerably higher 

stiffness property. For that reason, it's clear that raster angle changes cause mechanical 

anisotropy occurrence. Figure 4.7b outlines the average values of the ultimate tensile strength 

obtained for different raster angles. The strength values were found to be highest for samples 

printed with 0° raster angle and lowest for samples printed with 75° raster angle. The 

anisotropic property of the tested material explains why samples printed with 75° raster angle 

delivered a minimum ultimate tensile strength value, even though a minimum value for samples 

printed with a 90° raster angle was initially anticipated. 

 

 

Figure 4.7 Variation of modulus of elasticity (a) and ultimate tensile strength (b) with change in raster angle 
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4.2.2 DIC results 

The Digital Image Correlation (DIC) is a non-contact measuring method which enables the 

assessment of the deformation characteristics of the object observed. Actually, it is a 

displacement measurement technique. Displacement is measured by defining and tracking 

markers or patterns on the object’s surface. This is achieved by comparing digital images of 

the object taken before, during and after the deformation. By comparing the positions of these 

markers in images captured before, during and after the deformation, the software gathers 

information about the displacements at various points on the object. These data are used 

afterwards to calculate corresponding strain values.  

In this experimental testing, the specimens’ deformations were monitored by DIC measuring 

system ARAMIS from GOM Metrology. Before the actual test, specimens were prepared by 

applying a stochastic white/black spray pattern onto the surfaces to be recorded. During the 

test, ARAMIS recognizes the surface structure of the measured object in digital camera images 

and allocates coordinates to the image pixels. Then, in the measuring project, the image taken 

initially as the reference one (e.g. see Figure 4.8a) represents the undeformed state of the object. 

During the deformation of the observed specimen, further images are recorded (e.g. see Figure 

4.8b) and then are compared to calculate the necessary displacements. 

   
 

Figure 4.8 An example of recorded a) initial reference condition (no deformation) and b) during the 

deformation (stage within the linear elastic region took as a second reference) of the 0° raster angle specimen 

In order to accurately calculate normal strains (𝜀𝑥, 𝜀𝑦) and in-plane shear strain (𝛾𝑥𝑦), linear 

and angular displacements of certain reference points within the gauge section of the specimens 

were tracked throughout the recorded stages (like using virtual strain gauges – see Figure 4.8). 

The same time stages were taken for all the specimens so the results could be comparable – the 

no deformation stage as the first one and the stage where all the examined specimens are still 

in the linear elastic region as the second one. These displacement data (linear ones in the 

longitudinal and transverse direction, as well as the angular ones) are then compared for the 

two chosen stages and corresponding strains are calculated. Obtained values for specimens 

printed with different raster angles are given in Table 4.1. 

Table 4.1 Summary of values calculated for normal and shear strains for different raster angles 

Raster angle [ °] 𝜀𝑥 [mm/mm] 𝜀𝑦 [mm/mm] 𝛾𝑥𝑦 [°] 

0 -0.00117 0.00310 -0.008 

30 -0.00125 0.00387 -0.191 

45 -0.00134 0.00386 -0.106 

60 -0.00025 0.00309 -0.062 

90 -0.00025 0.00387 -0.008 
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4.2.3 SEM results  

The Scanning Electron Microscope (SEM) is an instrument that can produce a largely 

magnified image of the observed specimen’s surface by using electrons instead of light to form 

an image. It is a type of electron microscope that uses a focused beam of electrons. Therefore, 

it implies a technique used to obtain high-resolution images and detailed information about the 

specimen surface. Because of that, it is suitable for materials characterization and research at 

the sub-micron scale. 

For the conducted experiment, Tescan Mira 3 SEM was used to obtain the magnified images 

of the specimens’ fracture surfaces for a closer observation. After tensile testing, specimens 

were cut to fit the SEM chamber and placed in a way that the fracture surface faces the electron 

source in order to closely inspect the fracture surfaces under SEM. 

Fracture surfaces of the specimens printed with the 0° and 90° raster angles were recorded 

using SEM, as shown in Figures 4.9 and 4.10. Recorded SEM images allowed for examination 

of the specimens’ inhomogeneity in the fracture zone region, together with orientation of the 

introduced short carbon fibers in relation to the applied printing direction.  

Figure 4.9a presents the fracture surface of the specimen printed with the 0° raster angle 

revealing the cross section of one raster and air gap formed around it. The yellow circles 

emphasise some of the carbon fibers that were captured. The dimension of 425 μm highlighted 

in Figure 4.9a which is a measure of the raster width, corresponds to the preassigned printing 

parameter (extrusion width). There can also be noticed that the fibers are mostly aligned with 

the direction of the printing (direction of depositing the beads). In case depicted in Figure 4.9a 

fibers are pointing out of the image (direction normal to image plane). The orientation of short 

carbon fibers and the fibers themselves are more clearly visible in Figure 4.9b. Therefore, it is 

proved that short carbon fibers used as reinforcements generally align within the flow of 

printing direction and this could be the main reason why specimens fabricated with the 0° raster 

angle exibited the highest value of ultimate strength.  

  

Figure 4.9 SEM images of fracture surface of the specimen printed with 0° raster angle: (a) raster cross-section 

together with air gap around it – 300 x magnification; (b) closer look at the captured short carbon fibers – 1000 

x magnification 
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Figure 4.10a shows the fracture surface of the specimen printed with the 90° raster angle, with 

a distinct boundary between the subsequent layers. This is because the major voids are 

positioned between the deposited layers in form of captured air, as anticipated. The highlighted 

measures of 213 μm and 221 μm in Figure 4.10a comply with the preassigned printing 

parameter of a layer thickness of 0.2 mm. In Figure 4.10b, the final orientation of carbon fibers 

is clearly visible. The fibers are generally aligned with the direction of the deposited beads, as 

concluded from traces where the fibers were placed before being pulled out during the fracture. 

This conclusion is further supported by the orientation of fibers that remained on the fracture 

surface of the observed specimen, which can be seen in yellow circles in Figure 4.10b. The 

poor tensile properties of the 90° raster angle specimens could be attributed to the carbon fibers' 

alignment, which is in this case perpendicular to the direction of load application, and the weak 

bonding between two adjacent layers and the presence of voids.  

  

Figure 4.10 SEM images of fracture surface of the specimen printed with 90° raster angle: (a) layers clearly 

visible with border between them in form of captured air – 200 x magnification; (b) closer look at the 

orientation of captured short carbon fibers – 500 x magnification 

It was noticed that a particular number of carbon fibers are not aligned to the printing direction 

after analysing the recorded SEM images. The filament manufacturing process itself likely 

resulted in these fibers failing to bond adequately with the polymer matrix. The red circle in 

Figure 4.10b highlights one of these fibers. Despite that, it is noteworthy that there is actually 

few such fibers when contrasted to those which are properly “wetted” and adhere to the printing 

direction. A representative of interface bonding between fiber and polymer is shown in Fig. 

4.11a, with measured diameter of the fiber highlighted (9 μm). Figure 4.11b shows a closer 

view of the fiber with poor bonding that was circled in red in Figure 4.10b. 

Despite setting the overlapping to 25% in order to reduce the air gap, SEM images revealed 

that the raster geometry inherently created noticeable pockets of air that were captured between 

rasters. According to the SEM images, it is evident that there are also voids within the polymer 

phase and at the interface between the short carbon fibers and the PET-G polymer. In addition 

to lowering the effective elastic moduli due to a decrease in the physical cross-sectional area, 

the existence of these voids may result in high stress concentration factors, which lower the 

final part’s strength properties. 
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Figure 4.11 SEM images of (a) an example of good interface bonding between fiber and polymer, with 

measured diameter of the fiber highlighted – 10000 x magnification and (b) an example of poor bonding – 5000 

x magnification 

Results showing a relatively low value (in terms of what was expected) of ultimate tensile 

strength (52.2 MPa) for samples printed with the 0° raster angle compared to neat PET-G 

(maximum 46.1 MPa [8]) may be due to the large number of inhomogeneities in the printed 

material, even though scanning electron microscopy (SEM) images showed that short carbon 

fibers mainly align with the printing direction and therefore reinforce that particular direction. 

 

 

4.3 Shear testing and obtained results 

In-plane shear properties of SCF-reinforced PET-G specimen (see Figure 4.2) are determined 

according to a standardised procedure. Three-rail shear test procedure was applied. In this 

procedure, the test fixture consists of three pairs of parallel rails usually bolted to the test 

specimen by through bolts (see Figure 4.12). The two outside pairs of rails are joint to the base 

of fixture which is placed on the universal testing machine (see Figure 4.13). The third pair 

(center rails) is guided through a slot in the top of the base fixture. A load is introduced onto 

the center rails and produces a shear load in the specimen. The load may be introduced as either 

tension or compression, but compression loading is more usual because it does not require 

attaching the base fixture to the test machine, as presented by the setup in Figure 4.13 which 

was used for conducting the shear test. 
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Figure 4.12 Specimen for shear testing inserted into 

Three-Rail Shear fixture 

 

Figure 4.13 Three-Rail Shear fixture with specimen 

inserted positioned within the Universal Testing 

Machine 

 

Since load-strain data is required, the specimens were instrumented with strain gauges. Load 

was recorded through the universal testing machine load-sensing device, while strain was 

measured by strain gauges bonded to the specimen at the pre-assigned locations at the center 

of the gauge section (in-between the holes for bolts). Linear strain gauges bonded to the 

specimen at the 45° direction were used to capture extensional strains in that direction. Then, 

these strain data were used to calculate the corresponding shear strains. After load and strain 

data are gathered, the required shear stress – shear strain diagram was formulated (see Figure 

4.14). 

 

 

Figure 4.14 An example of shear stress – shear strain curve obtained for the tested material 
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4.4 Applied methodology for obtaining the elastic constants  

Methodology applied for obtaining the values for modulus of elasticity, Poisson’s ratio, 

coefficient of mutual influence of the second kind as well as the ultimate tensile strength is 

presented throughout this Chapter. Values obtained for the aforementioned quantities are 

summarized for specimens printed with different raster angle patterns ranging from 0° to 90°. 

These values served afterwards to formulate functional relations presented in Chapter 5. 

4.4.1 Modulus of elasticity evaluation 

As mentioned earlier in Chapter 4.1, tensile properties of the tested specimens were determined 

according to the ASTM D638-03 standard [35], under defined conditions of pretreatment, 

temperature and testing machine speed. Dividing the force data recorded on the tensile testing 

machine by the pre-measured original cross-sectional area in the gage length segment of the 

specimen led to gathering the stress data. These data together with the stain data obtained by 

DIC served for drawing the stress-strain diagrams. As shown in Fig. 4.15, the tangents to the 

linear-elastic sections of the stress-strain curves were constructed, and the corresponding 

slopes, which represent the moduli of elasticity, were evaluated. Since there were initial regions 

on the raw stress-strain curves that does not represent a property of the material (an artifact 

caused by a takeup of slack and alignment or seating of the specimen), this artifacts were 

compensated for to give the corrected zero point on the strain axis (so called toe compensation) 

and diagrams previously shown in Figure 4.5 were obtained. 

Table 4.2 displays the mean and standard deviation values of the modulus of elasticity obtained 

for different raster angle specimen series. All of the measurements have small standard 

deviations, which indicates good repeatability in the experimental data.  

 

Figure 4.15 The modulus of elasticity calculation by graphical method (slope of the curve) 

Table 4.2 Summary of values for modulus of elasticity acquired for different raster angles 

Raster angle [ °] E [MPa] 

Average St. Dev. 
0 4752 106 

15 3709 112 

30 2664 64 

45 2089 61 

60 1573 15 

75 1393 33 

90 1569 26 
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4.4.2 Shear modulus evaluation 

Fist, the shear stress is calculated based on the load data recorded on the universal testing 

machine. For the three-rail shear procedure, the shear stress is calculated as follows: 

𝜏 = 𝑃 2𝐴⁄  , 

where P is load applied to the specimen and A is the cross-sectional area at test section 

calculated as the product of the average length and average thickness. The normal strain data 

at 45° (𝜀45) is determined from strain gauges’ readings and the required shear strain is then 

calculated as follows: 

𝛾 = 2𝜀45 , 

by using equations (2.32) and (2.33). Then, the diagram shown in Figure 4.14 is obtained, 

relating the shear stress to the shear strain. 

Now, the shear modulus can be calculated as the ratio of difference in applied shear stress 

between the two strain points within the linear elastic region and difference between the two 

shear strains at the corresponding points (see Figure 4.16): 

𝐺 = ∆𝜏 ∆𝛾⁄  

 

Figure 4.16 Graphical method for calculating shear modulus (slope of the curve) [36] 

The shear modulus values for the tested specimens were determined in the above described 

way and are presented in Figure 4.17. The average value of those (753 MPa) is utilised further 

on throughout the thesis – for establishing correlations between the theoretical (equations 

(2.77), (2.78) and (2.80)) and experimentally obtained tensile elastic constants in relation to 

the raster angle. 

 

Figure 4.17 Values obtained for shear modulus 
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4.4.3 Poisson ratio evaluation 

Following the definition of the Poisson's ratio given in Chapter 2 by the equation (2.54), 

values for different raster angles were obtained using the data on normal strains given in 

Table 4.1. Calculated values for the Poisson’s ratio are presented in Table 4.3. At first 

glance, it is noticeable that values obtained for different raster angles differ quite a lot 

which indicates the anisotropic behaviour of the studied SCF-reinforced PET-G polymer. 

Table 4.3 Summary of values obtained for the Poisson’s ratio for different raster angles 

Raster angle [ °] ν [-] 

0 0.3765 

30 0.3244 

45 0.3475 

60 0.0810 

90 0.0648 

 

4.4.4 Coefficient of mutual influence evaluation 

As earlier defined within the Chapter 2, the coefficient of the mutual influence of the 

second kind represents the effect of anisotropy in the specimen plane (𝑥–𝑦 plane) in terms 

of occurrence of shear strain in the 𝑥–𝑦 plane (𝛾𝑥𝑦) due to the action of normal stress e.g. 𝜎𝑥, 

while at the same time the following applies: 𝜎𝑦 = 𝜏𝑥𝑦 = 0. In a similar way the Poisson's ratio 

values were calculated, values for the coefficient of the mutual influence of the second kind 

were calculated following the equation (2.57) and using the corresponding normal and 

shear strain data given in Table 4.1. Calculated values for the coefficient of the mutual 

influence of the second kind are presented in Table 4.4. Again, it can be noticed that 

values obtained for different raster angles are different and highlight the presence of the 

anisotropy in the studied SCF-reinforced PET-G polymer. 

Table 4.4 Summary of values obtained for the Coefficient of the mutual influence of the second kind for different 

raster angles 

Raster angle [ °] 𝑛𝑥𝑦,𝑥 [-] 

0 0.04503 

30 0.86229 

45 0.47892 

60 0.35006 

90 -0.03612 
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4.5 Strength properties evaluation  

Values for the ultimate tensile strengths are directly calculated from the load data recorded by 

the tensile testing machine as maximum stresses withstood throughout the testing. Namely, 

tensile strength was obtained by dividing the maximum recorded load (force) by the average 

original cross-sectional area in the gage length segment of the specimen in square metres. 

Graphical representation of the ultimate tensile strength (𝜎𝑚𝑎𝑥) can be seen in Figure 4.15. 

The average and standard deviation values for the ultimate tensile strength are listed in Table 

4.5. Similar to the values obtained for modulus of elasticity, standard deviations for strength 

values are also small which again indicates good repeatability in the experimental data. 

Table 4.5 Summary of values for ultimate tensile strength acquired for different raster angles 

Raster angle [ °] 𝜎𝑚𝑎𝑥 [MPa] 

Average St. Dev. 
0 52.2 2.5 

15 47.8 0.8 

30 37.8 0.4 

45 33.1 0.5 

60 24.7 0.9 

75 19.0 0.6 

90 25.4 0.4 
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5 Establishing functional relations 

In this Chapter, there will be established functional relations between the tensile elastic 

constants on the one hand and the corresponding raster angle on the other, together with 

variation of the ultimate tensile strength property across different raster angles – all derived for 

thin-plate parts additively manufactured from PET-G polymer reinforced with short carbon 

fibers. All of the here-referred tensile quantities are determined for seven different raster angles 

ranging from 0° to 90° (with an increment of 15°) and obtained results are presented throughout 

the Chapter 4. Here, the results are brought together in form of dependence of the 

experimentally evaluated tensile mechanical properties on the applied printing direction (raster 

angle) and hence the direction of most fiber spreading, in order to check for agreement with 

relations given in equations (2.77), (2.78) and (2.80) widely known for classical composite plates 

containing continuous fiber reinforcements [34].  

 

5.1 Functional relations between the tensile elastic constants and the 

raster angle 

As for representative tensile elastic constants, modulus of elasticity, Poisson’s 

coefficient and coefficient of mutual influence are considered. These tensile elastic constants 

were previously defined in Chapter 2 through equations (2.77), (2.78) and (2.80) which can be re-

written as:  

𝐸𝑥 =
1

1
𝐸1

𝑐4 + [−
2𝜈12
𝐸1

+
1

𝐺12
] 𝑠2𝑐2 +

1
𝐸2

𝑠4
 , 

    (5.1) 

               𝜈𝑥𝑦 =
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1
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1
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𝑐4 + [−
2𝜈12
𝐸1
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1
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              𝑛𝑥𝑦,𝑥 = −
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+
1

𝐺12
] 𝑠2𝑐2 +

1
𝐸2

𝑠4
 ,      (5.3) 

where 𝑐 = cos(θ) , 𝑠 = sin(θ)  while angle θ is the angle related to the direction of 

reinforcement. As confirmed by SEM images of fracture surfaces, presented in Chapter 4.2.3, 

raster angle directly corresponds to direction of short carbon fiber reinforcement of PET-G 

polymer. 

As shown by equations (5.1), (5.2) and (5.3), to plot the presented theoretically obtained 

curves for 𝐸𝑥, 𝜈𝑥𝑦 and 𝑛𝑥𝑦,𝑥 values for 𝐸1, 𝐸2, 𝜈12, 𝐺12 are needed as inputs. Since raster angle 

directly corresponds to direction of short carbon fiber reinforcement of PET-G polymer, based 

on data from Table 3, Table 4 and Figure 17, average values of these inputs appear to be: 

          𝐸1 = 4752 𝑀𝑃𝑎, 𝐸2 = 1569 𝑀𝑃𝑎, 𝜈12 = 0.3765, 𝐺12 = 753 𝑀𝑃𝑎          (5.4) 
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5.1.1  Modulus of elasticity 𝑬𝒙 

The values evaluated for the modulus of elasticity based on tensile testing conducted 

on the universal testing machine outlined in Chapter 4.4.1 are considered first. By substituting 

equation (5.4) into equation (5.1) ”theoretical” expression for 𝐸𝑥 is obtained. To compare the 

obtained values with the ”theoretical” expression for 𝐸𝑥 given through equation (5.1), Matlab® 

code was formulated. In order to check the matching of experimentally obtained data with 

theoretical approach, values for the modulus of elasticity listed in Table 4.2. together with their 

standard deviations are plotted against the theoretical curve for 𝐸𝑥 as presented in Figure 5.1.  

 

Figure 5.1 Modulus of Elasticity in relation to raster angle θ 

Looking at the estimated values (red line) calculated by the ”theoretical” expression for 

modulus of elasticity - 𝐸𝑥, together with experimentally obtained values (blue dots), there can 

be seen a high level of matching between these values (differences are less than 10%). This is 

true for the whole raster angle range. 

5.1.2  Poisson’s coefficient 𝝂𝒙𝒚 

As mentioned in Chapter 4.4.3, calculated values for normal strains (𝜀𝑥, 𝜀𝑦) obtained 

from DIC results served for determination of values for the Poisson’s coefficient 𝜈𝑥𝑦 - see 

Table 2. By definition, in case when loading is applied in the direction aligned with axis 𝑥, 

Poisson's ratio 𝜈𝑥𝑦 is the following quotient: 

 𝜈𝑥𝑦 = −𝜀𝑦/𝜀𝑥 .         (5.5) 

Thus, experimentally obtained values for Poisson’s coefficient 𝜈𝑥𝑦 were presented in 

Table 4.3. As shown in Figure 5.2 these values are plotted versus different values of raster 

angles observed. Standard deviations of the obtained values (from Table 4.3) are also 

incorporated in the plot. Similar to the aforementioned Matlab® code used for the modulus of 

elasticity variation with the reinforcement direction, here the ”theoretical” expression for the 
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Poisson coefficient 𝜈𝑥𝑦 was employed through equation (5.2), again utilising values for 𝐸1, 𝐸2, 

𝜈12, 𝐺12 as inputs – see equation (5.4). The applicability of the ”theoretical” expression given 

through equation (5.2) to determine the Poisson’s coefficient 𝜈𝑥𝑦 for the additively 

manufactured PET-G polymeric material reinforced with SCF is considered based on contrast 

between the theoretical and the experimental data as shown in Figure 5.2. 

 

Figure 5.2 Poisson’s coefficient in relation to raster angle θ 

Comparing the estimated values calculated by the ”theoretical” expression for Poisson’s 

coefficient - 𝜈𝑥𝑦 (red line) with experimentally obtained values (blue dots) presented in Figure 

5.2, mismatching of the values can be noticed, particularly in the 45°- 75° raster angle range. 

This is in contrast to results presented in Figure 5.1 for modulus of elasticity, where 

experimental values were aligned to the ”theoretical” ones for the whole raster angle range. 

5.1.3  Coefficient of mutual influence 𝒏𝒙𝒚,𝒙 

Experimentally obtained values for normal strain 𝜀𝑥 and in-plane shear strain 𝛾𝑥𝑦 

obtained from DIC results, as presented in Chapter 4.4.4 - Table 4.1, served for determination 

of values for the coefficient of mutual influence 𝑛𝑥𝑦,𝑥. By definition, in case when loading is 

applied in the direction aligned with axis 𝑥, coefficient of mutual influence 𝑛𝑥𝑦,𝑥 is the 

following quotient: 

 𝑛𝑥𝑦,𝑥 = −𝛾𝑥𝑦/𝜀𝑥 .         (5.6) 

 Thus, experimentally obtained values for coefficient of mutual influence 𝑛𝑥𝑦,𝑥 with 

their standard deviations were presented in Table 4.4. Here, the ”theoretical” expression for the 

coefficient of mutual influence 𝑛𝑥𝑦,𝑥was employed through equation (5.3), again utilising 

values for 𝐸1, 𝐸2, 𝜈12, 𝐺12 as inputs – see equation (5.4). The ”theoretical” variation of the 

coefficient of mutual influence with change in the reinforcement orientation is shown in Figure 

5.3. Again, corresponding Matlab® code was formulated to plot experimentally obtained and 

theoretically determined values for the coefficient of mutual influence (Figure 5.3).  
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The applicability of the ”theoretical” expression given through equation (5.3) to 

determine coefficient of mutual influence 𝑛𝑥𝑦,𝑥 for the additively manufactured PET-G 

polymeric material reinforced with SCF is considered based on contrast between the theoretical 

and the experimental data as shown in Figure 5.3. 

 

Figure 5.3  Coefficient of mutual influence 𝑛𝑥𝑦,𝑥 in relation to raster angle θ 

Similar to results obtained for the Poisson’s ratio, comparison of the estimated values 

calculated by the ”theoretical” expression for the coefficient of mutual influence of the second 

kind - 𝑛𝑥𝑦,𝑥 (red line) with the experimentally obtained values (blue dots) presented in Figure 

5.3 does not show adequate matching, particularly in 15°- 60° raster angle range. However, the 

experimental values are converging to the theoretical curve, but are not closely aligned to the 

curve, as the case was with the modulus of elasticity values in Figure 5.1   

 

5.2 Functional relations between the tensile strength and the raster angle  

In the case of observing the maximum stress which additively manufactured SCF-

reinforced PET-G specimens withstood throughout the tensile testing, it is helpful to tentatively 

understand or even try to predict failure in terms of final fracture as a phenomenon proved to 

be directly dependant on the raster angle applied while printing. Accordingly, experimentally 

obtained results for the ultimate tensile strength (see Chapter 4.5) showed various strength 

characteristics for different raster angles and thus SCF reinforcement orientations. This fact 

ultimately directly confirmed the anisotropic nature of the studied additively manufactured 

SCF-reinforced PET-G specimens. These results are presented graphically in Figure 5.4 

combined with proposed functional relation between the ultimate tensile strength on the one 

hand and the raster angle on the other one. Third order polynomial fitting of the experimentally 

obtained values was utilised to create the continuous UTS-raster angle relation shown in Figure 

5.4.  
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Figure 5.4 Proposed functional relation between the ultimate tensile strength and the raster angle which fits the 

experimentally obtained values 

Due to anisotropic nature of the studied parts the use of classical failure criteria used in 

case of isotropic materials (e.g. von-Mises, Tresca etc.) is not applicable. Therefore, further 

investigation regarding prediction of failure for additively manufactured SCF-reinforced PET-

G polymer material is needed.  
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6 Conclusion and future research 

In additive manufacturing (AM), raster angle is recognized as one of the key printing 

parameters which strongly influences the strength and stiffness of the final part. In this thesis 

the effect of raster angle on tensile properties of thin plate specimens made from carbon 

reinforced PET-G material was studied. The major objectives were to establish and analyse a 

functional relation between the corresponding raster angle and: 

- obtained values of tensile strength and stiffness of plate specimens made from carbon 

reinforced PET-G material; 

- the tensile elastic constants that define the anisotropic behaviour of plate specimens made 

from carbon reinforced PET-G material, primarily modulus of elasticity - 𝐸𝑥, Poisson’s 

coefficient - 𝜈𝑥𝑦 and coefficient of mutual influence of the second kind - 𝑛𝑥𝑦,𝑥. 

Aforementioned functional relations were compared with theoretical results given by 

the Classical Lamination Theory (CLT). 

 

6.1 Conclusions  

As a result of the research within this thesis, it is confirmed that raster angle strongly 

influences the strength and stiffness of final additively manufactured thin plate parts made from 

short carbon reinforced PET-G material. 

The relatively high average value of ultimate tensile strength - 52.2 MPa was obtained 

for specimens printed with the raster angle of 0°, compared to the value obtained for specimens 

printed with the raster angle of 90° - 25.4 MPa. The minimum average value of ultimate tensile 

strength was obtained for specimens printed with the raster angle of 75° - 19.0 MPa which 

indicates decrease of 63.6% (compared to value for the 0° raster angle). Similarly, the 

maximum obtained average value of modulus of elasticity - 4752 MPa was obtained for 

specimens printed with the raster angle of 0° compared to the value of 1569 MPa, obtained for 

specimens printed with the raster angle of 90°. Again, the minimum average value of modulus 

of elasticity was obtained for specimens printed with the raster angle of 75° - 1393 MPa, which 

indicates decrease of 70.7% (compared to value for the 0° raster angle).  

SEM images of fracture surfaces of the specimens printed with the 0° raster angle 

revealed dominant alignment of short carbon fibers with the printing direction applied, but also 

moderate to high level of inhomogeneity and voids. Considerable volume fraction of captured 

air (air gaps) with noticeable amount of porosity in polymer phase are probably major factors 

which resulted in relatively low improvement of tensile strength obtained for carbon reinforced 

samples made with the 0° printing direction, when compared to neat polymer samples. In the 

similar manner, voids together with weak bonding between two adjacent rasters undoubtedly 

contributed to poor tensile properties of carbon reinforced samples made with the raster angle 

of 90°. 

Comparison of the estimated values calculated by the ”theoretical” expression for 

modulus of elasticity - 𝐸𝑥 given through equation (5.1), with experimentally obtained values 

listed in Table 4.2 presented in Figure 5.1, showed almost perfect matching (mismatching was 

less than 10% for whole raster angle range). In case of Poisson’s coefficient - 𝜈𝑥𝑦 and 
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coefficient of mutual influence of the second kind - 𝑛𝑥𝑦,𝑥 mismatching was higher than 10% 

for whole raster angle range. Thus, comparison of the estimated values calculated by the 

”theoretical” expression for Poisson’s coefficient - 𝜈𝑥𝑦 given through equation (5.2), with 

experimentally obtained values listed in Table 4.3, presented in Figure 5.2, showed significant 

mismatching particularly in 45°- 75° raster angle range. Similarly, comparison of the estimated 

values calculated by the ”theoretical” expression for coefficient of mutual influence of the 

second kind - 𝑛𝑥𝑦,𝑥 given through equation (5.3), with experimentally obtained values listed in 

Table 4.4, presented in Figure 5.3, showed significant mismatching particularly in 15°- 60° 

raster angle range. 

On the other hand, experimentally obtained results for the ultimate tensile strength, 

shown in Figure 5.4, showed similar behaviour found in laminated composite plates reinforced 

with continuous carbon fibers. This fact ultimately directly confirmed the anisotropic nature of 

the studied additively manufactured SCF-reinforced PET-G specimens. These results are 

presented graphically in Figure 5.4 combined with proposed functional relation between the 

ultimate tensile strength on the one hand and the raster angle on the other one.  

 

6.2 Future research 

It is expected the thesis will contribute to the definition of future constitutive model that 

will enable the application of numerical structural analysis on thin plate-like parts made from 

observed material composition and produced by additive manufacturing. Accordingly, it is also 

expected that the dissertation will contribute to a better understanding and further 

enhancements in possible applications of this type of composite materials for quick and 

efficient production of parts intended for moderate loadings. 

Experimentally obtained strengths (e.g. presented in Table 4.5) are usually obtained as a 

result of conducted procedures defined by standard definitions which involve that these 

experiments must be carried out at standard room temperature. Possible future research might 

involve low temperature conditions for experiments used for obtaining quoted strengths. 

Therefore, it might be interesting to analyze how ultimate strength values, experimentally 

obtained at extremely low or extremely high temperatures, contribute to potential reduction of 

strength of short carbon fiber reinforced AM structures. 

Due to anisotropic nature of the studied parts the use of classical failure criteria used in 

case of isotropic materials (e.g. von-Mises, Tresca etc.) is not applicable. Therefore, further 

investigation regarding prediction of failure for additively manufactured SCF-reinforced PET-

G polymer material is needed. 
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